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ABSTRACT: Modern simulations and games have limited capabilities for simulated characters to interact with each 
other and with humans in rich, meaningful ways. Although significant achievements have been made in developing 
human behavior models (HBMs) that are able to control a single simulated entity (or a single group of simulated 
entities), a limiting factor is the inability of HBMs developed by different groups to interact with each other. We present 
an architecture and multi-level message framework for enabling HBMs to communicate with each other about their 
actions and their intents, and describe the results of our crowd control demonstration system which applied it to allow 
three distinct HBMs to interoperate within a single training-oriented simulation. Our hope is that this will encourage 
the development of standards for interoperability among HBMs which will lead to the development of richer training 
and analysis simulations. 
 
1. Introduction 
 
The rich human behavior models (HBM) that have been 
developed in the psychological, physiological, or political 
science communities, if they are used at all in a modern 
game or simulation, will control only one synthetic entity 
(or coordinated group of entities) and will only produce 
behaviors whose expression and intent are targeted at the 
human interacting with the system.  
 
However, in the applications of the future, we believe that 
there will be a need to draw on HBMs with 
complementary skills or specialties that have been 
developed by different groups, and consequently that the 
HBMs will be required to leave their solipsistic self-
contained worlds and communicate their actions and 
intent to other HBMs controlling other synthetic 
characters.  
 
Given the differences in  scope and focus of the HBMs 
that we have looked at, and to highlight what the extensive 

use of  HBMs in simulations could achieve, we will refer 
to them in this paper as ‘people engines’ (PE). 
 
In a recent DARPA-sponsored project,1 we developed a 
prototype of SCALE-UP (Social and Cultural Analysis 
and Learning Environment for Urban Pre- and Post-
Conflict Operations), a computer-based training and 
analysis system. The goal of SCALE-UP is to provide a 
training and analysis capability to enhance force 
effectiveness in urban settings through the use of multiple 
HBMs to control avatars within a simulated environment.  
 
In the project, we developed a framework for enabling 
distinct people engines to communicate about their actions 
and intents. Using this framework, we developed a 
prototype test bed that integrated three heterogeneous 
people engines with a massive multiplayer on-line game 
for visualization. Two of the people engines were based 
upon existing HBMs (Silverman et al., 2002, Zachary et 
                                                           
1 The work described here was sponsored in part by 
DARPA: contract #NBCHC050067. 



al. 2001), and a third was developed as part of the project. 
To explore the benefits of our approach, we developed a 
specific training scenario in which a human player was 
given the goal of dispersing a crowd through a sequence 
of dialog choices.  The demonstration was based on 
lessons learned for dealing with a crowd with Iraqi 
cultural tendencies. The avatars in our system (a village 
leader, a crowd of twenty individuals, and an agitator) 
were controlled by different people engines that reacted to 
the actions of the human player and of other avatars based 
on their social and cultural interpretations of those actions.   
 
In this paper, we present the messaging framework that we 
developed, describe the architecture of the SCALE-UP 
test bed, introduce the details of our demonstration 
scenario and present the outcomes.  We conclude with our 
thoughts on the next steps required to achieve effective 
standards for interoperability among PEs that will both 
drive the development of future PEs, as well as 
accommodate the rich variety of human behavior models 
that currently exist. 
 
2. Motivation: Interoperable People Engines 
 
In a typical game or simulator, people engines (PEs) need 
to pass along information about one or more of three 
kinds of behaviors: things that they say, gestures that they 
make, and/or actions that they take.  Sophisticated PEs 
need to understand the events in the game sufficiently that 
they can determine their response or general activity 
without the use of predefined scripts. The interoperability 
issues arise because different PEs will often operate at 
different levels of abstraction, both when receiving 
information about the world from other PEs and for 
conveying information about their own activities. 
 
Each of the PEs that we worked with had its own model of 
perception and acting.  Some responded to very abstract 
events like being insulted; some to more concrete events 
like being physically approached. Some produced 
concrete action directives such as uttering the words “Go 
away;” others produced abstract directives like “display 
anger.” 
 
In the real world, people operate at multiple levels of 
abstraction constantly, and are very good at analyzing 
their perceptions to determine what someone else has 
done and why. However, they may make significant 
mistakes in understanding if they translate incorrectly 
between levels. For instance, one culture’s sign for 
success (e.g., thumbs-up) can be another’s obscene insult. 
A person that is unaware of this cultural difference in how 
the literal action is translated may inadvertently give 
offense or misinterpret someone else’s action. We want to 
be able to incorporate the possibility for this kind of 
cultural mistake in our training systems, which means that 
the language that is used to describe a PE’s actions must 

not preclude the possibility of different PEs giving 
different interpretations to the same event. 
 
In a game or a simulator where avatars only interact with 
human players, there is usually no significant need to 
convey information about the intentions behind the 
behaviors of the PEs – the human players are expected to 
make their own interpretations. However, in order to 
enable different PEs to interact with each other as well as 
with humans in a virtual environment, it is important to 
provide those PEs with the capability of understanding 
and behaving at different levels of abstraction. In both 
cases, though, the virtual world simulator needs concrete 
descriptions of what the PE is doing that it can understand 
and that rendering clients can turn into animations and 
sound. 
 
As part of our SCALE-UP effort, we developed a five-
level language for describing agent behaviors. Each level 
is a valid description of what was done. They differ in 
how far they have been abstracted from raw images and 
sound (or, conversely, how far removed they are from 
purposes and intentions). Every action that a PE takes is 
encoded in terms of this language, and every PE sees the 
actions of the other PEs via the messages sent from them 
and encoded in the multi-level vocabulary. 
 
We believe that, in the long-term, such a language may 
form the basis for a messaging standard that enables 
enhanced interoperability among human behavior models 
for controlling synthetic agents in games and simulators.    
We hope that such a standard will drive the development 
of a new class of human behavior model that is designed 
to be cooperative rather than stand-alone.   
 
3. Heterogeneous Messaging through 
Multiple Levels of Abstraction 
 
In this section, we describe four of the five levels in our 
framework, from the most concrete to the most abstract. 
(The fifth level, narrative, was not directly addressed by 
the SCALE-UP effort, see McDonald et al., 2006)  In the 
following sections, we show how these levels are mapped 
to communications between the PEs, the game client, and 
the world-model that mediates between them.   

Level 1: Perceptual 
At the lowest, raw perceptual level, the flow of activity in 
the game or simulator is “represented” by the audio and 
video that a rendering client can produce.  Utterances are 
sound, gestures are sets of pixels and actions are some 
combination of the two. At this level, messages contain 
raw information with little to no annotation.  In order to 
process this information, the AI agent must apply 
perceptual mechanisms directly.  For example, a statement 



may be provided as an audio clip, and speech recognition 
would need to be applied to process it. 
    
Few game AI agents currently have perceptual or 
manipulation mechanisms that would allow them to 
operate at this level, but we doubt that there will be much 
call for them in typical game domains.  However, this 
level would be important for some purposes, such as 
constructing robot test beds. 

Level 2: Literal 
At the literal level, the flow of time and activity in the 
simulator is divided into discrete events. At this and 
subsequent levels, these events are annotated with 
machine-readable, symbolic descriptive information. A 
given event might have annotations from any or all of 
levels two through four. 
 
At the literal level, utterances are represented as a single 
event annotated with the speaker and the sequence of 
words and (if possible) prosodic information, as well as 
descriptions of the coordinated non-iconic gestures and 
facial expressions that accompany the speech. Iconic 
gestures are represented as events, which include a 
physical description of the motions that occurred and who 
performed them.  Actions are represented in world centric 
terms, such as absolute coordinates for motion, and other 
primitives that are natural for the simulator. (In systems 
where the simulator represents the world at a more 
abstract level, the literal and semantic annotations for 
action may be identical.) 

Level 3: Semantic 
At the semantic level, events are annotated with a 
symbolic representation of their content. We use the term 
semantic because when the event is an utterance, the 
annotation at this level resembles the interpretation that a 
good semantic parser would produce.  
 
Utterances are annotated with their “naive” meaning. So 
“I’m cold” will be represented as a statement about 
temperature rather than an indirect request to make the 
speaker warmer, and “Do you know what time it is?” 
would just be represented as a query about a capacity to 
provide knowledge. Gestures are annotated by an 
unambiguous (though perhaps vague) representation of 
their meaning as the agent making the gesture intended it. 
Actions are annotated in functional, scenario-relevant, 
terms such as move-to(door-1), rather than the spatial 
coordinates that appear at the literal level.  

Level 4: Interpreted 
Interpreted annotations are the richest of the levels in our 
framework. Interpretations include the intent of the 
performer of the event. They may also include suggested 
responses or intended consequences. Meanings of or 

responses to events can also be provided by other 
components besides the instigator of the event.  
Information at the interpreted level may be self-
contradictory (and often will be if provided by different 
PEs). The social model may also annotate events at the 
interpreted level by providing cultural or context specific 
interpretations of events (or possible responses, etc.) as 
described briefly in section five. 
 
Figure 1 illustrates an example message that would be 
communicated to a PE to describe a specific action that 
has happened.  The message contains information about 
the specific act (i.e., making the demand “You must leave 
the area!”), a representation of its meaning, as well as an 
interpretation of the effect of the action on the crowd it is 
addressed to (i.e., to show disrespect). 
 

 
 
 
4. Coupled-Worlds Architecture 
 
To support communication among PEs and between the 
PEs and the interface to the human players, we developed 
the coupled-worlds architecture shown in Figure 2. The 
labels on the lines that connect the components show 
which levels are passed between them. Double-headed 
arrows mean that information on that level is passed both 
ways. We’ve used dark solid lines for components and 
links that one would expect in a “conventional” game, and 
light gray dotted lines for what we have added. 

<action> 
 <type>external to crowd interaction 
space</type> 
 <by>squad-leader</by> 
 <to>crowd-all</to> 
 <literal-level> 
  <text>You must leave this area!</text> 
 </literal-level> 
 <semantic-level> 
  <act>demand</act> 
               <proposition predicate=”required”> 
                    <argument> 
                        <proposition predicate=”leave”> 
                             <arg agent=”addressee” \> 
                             <arg location=”square” \> 
                         </proposition> 
                   </argument> 
               </proposition> 
               <affect>command</affect> 
 </semantic-level> 
 <interpreted-level> 
  <effect> 
   <on>crowd-all</on> 
   <content> 
    <respect>disrespectful</respect> 
   </content> 
  </effect> 
 </interpreted-level> 
</action> 
 

Figure 1: Sample communication about an action 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Levels passed among components 
 

On the top left, we have the game client. This is where 
human users access the scenario. The arrow connecting it 
to a person is double headed because it will carry events 
initiated by the player’s GUI interactions back to the 
virtual world. The dotted line linking it to the synthetic 
characters is to remind us of the possibility that some PEs 
might want the raw data and that we should not discount 
that option. 
 
On the right is a pair of tightly-coupled blackboards that 
provide shared world models for the benefit of the PEs. 
We distinguish physical from social models first to 
emphasize that the semantic and interpreted levels convey 
interpersonal information that will not make sense outside 
of the cultural and social situation playing out in the 
scenario, and also to reflect the fact that additional work is 
being done by the combination of the two. 
 
The primary task of the coupled components that sit 
between the synthetic characters and the game client is to 
transport the event descriptions from the characters or 
clients that create them to the ones that should know about 
them, dividing out levels according to what the receiving 
agent can handle. The downward arrow from the physical 
to the social model is to indicate that the locations of the 
characters’ and human player’s avatars matter in all but 
the most trivial virtual worlds. What can be seen and 
heard is location dependent (though it may only be 
represented topologically), and the flow of events has to 
reflect this. 
 
The second task, reflected by the literal arrow pointing 
upward, is to provide translations for PEs that only 
communicate at the semantic or interpreted level. The PE 
driving a particular avatar may be very rich but operate at 
a level of granularity that is too coarse to provide 
animation instructions to its avatar (literal information). 
The social world model can be explicitly programmed to 
provide a mapping between that agent’s interpreted output 

and animation that would reflect it. This is also a place to 
share a rich natural language capability that could take 
semantic-level information and render it as text or speech. 

 
In summary, an agent’s action is described by annotations 
at several different levels of abstraction simultaneously. 
There is no expectation that every agent will be able to 
understand or produce every level, and in some instances 
we arrange for our mediating components to fill in the 
missing information. 
 
5. Crowd Control Scenario 
 
To understand the interoperability issues and then 
demonstrate the feasibility of the messaging framework 
that we designed to address it, we applied our architecture 
to create a training scenario that integrated three distinct 
human behavior models as people engines, and used the 
Big World2 game environment system to render the virtual 
world and portray the behaviors chosen by the people 
engines. 
 
In our training scenario, a human user plays a squad 
leader who is trying to peacefully resolve a problem with 
a crowd that is populated with synthetic characters.  Three 
different people engines were used, each playing a 
different character (or character type) in the scenario. One 
people engine, Edutaniacs’ PMFserv (Silverman 2001), 
controlled the members of a crowd that were expecting a 
food distribution that had not arrived. Another PE, CHI 
System’s iGen/VECTOR (Zachary et al. 2001), controlled 
the community leader who was the crowd’s spokesman. 
The third PE, BBN’s ENDER, which was developed as 
part of the project, modeled an agitator who tried to 
influence the crowd against the squad leader. Figure 3 
shows the crowd scene.  
 
The people engines were implemented using different 
software bases, and each had distinct needs and capacities 
for input and output. For the most part, each PE was 
designed to interact with a simulated world at different 
levels of abstraction. The interactions between the three 
PEs and the human player all used a three-level message 
format consisting of just the literal, semantic, and 
interpreted levels. The perceptual level was provided by 
Big World for the benefit of the human player.  
 
The possible actions of the person playing the role of the 
squad leader were strictly limited to navigating a fixed 
dialog tree of utterances and accompanying actions. (This 
dialog tree also served to bound the range of actions that 
the developers of the PEs had to consider when adapting 
their systems to our scenario. However, with one 
exception, their actions were not scripted.) We created a 
fully filled-in message for each of the options that the 

                                                           
2 “Big World” is a trademark of BigWorld Pty Ltd 
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person could choose, and issued it to all of the PEs at the 
moment the choice was made. (Everyone in the scene is 
assumed to be able to hear the entire conversation and to 
see all gestures made by any other character.) 

 
 

 
Figure 3: Squad leader addressing the crowd 

 
The natural language responses made by CHI System’s  
community leader were also scripted by the dialog tree.  
CHI’s PE used the literal level of the messages from the 
squad leader in order to recognize which action was taken. 
The unscripted emotional and cognitive reactions of this 
PE led to specific literal-level behaviors in the messages 
that it sent out: for example IdleCrossArms, to reflect the 
change in the PE’s internal emotional state to becoming 
angry.  
 
CHI’s PE could move its avatar so that it could face the 
crowd when addressing it at the beginning of the scenario 
and then turn to face the squad leader when he arrived on 
the scene. The PE could direct its avatar to approach the 
(avatar of the) squad leader and had a tuned animation 
that let it walk up to the squad leader and stand at the 
normal face-to-face speaking distance in its culture, which 
is closer than most American’s find comfortable. This 
provided one of the training opportunities within the 
scenario. How the person making the choices for squad 
leader reacts in this instance, as well as others such as the 
choice to distribute pork-filled MREs (meals-ready-to-eat) 
discussed just below, is an example of the kind of actions 
that distinguish a naïve player from an experienced one. 
 
The semantic level was used by BBN’s PE (the agitator 
character) when it needed to handle an action by the squad 
leader that required deeper domain knowledge in order to 
understand its cultural implications. The scenario allowed 
the squad leader to choose to distribute MREs to the 
hungry crowd. Because the semantic-level description of 
this action contained additional information about the type 
of food in the MRE, the BBN’s PE was able to examine 
this information and recognize that the MRE contained an 

ingredient that was religiously prohibited. Unlike the other 
two other PEs, this PE had only a minimal mental and 
emotional state, but did have the domain knowledge 
needed to reason about halal food, and to interpret the 
distribution of non-halal food as disrespectful. The 
agitator’s reaction upon recognizing this disrespectful act 
was to tell the crowd members about it at the interpreted 
level. At that point, it also used the literal level to change 
its ‘idle state’ (the animation sequence that its avatar takes 
between explicit commands) to reflect it increased anger 
and to simulate the effect of talking to its neighbor avatars 
by moving its avatars head from side to side.  
 
The twenty avatars that made up the crowd were 
individually controlled by a single instance of the 
PMFserv people engine. Silverman and his group at the 
University of Pennsylvania have had extensive experience 
in modeling crowds for computer simulation by PMFserv 
(see, e.g., Silverman et al. 2006a,b). In the crowd model 
used in this project, we drew on the work by Eidelson 
(2003) on ‘Dangerous Ideas’. In brief, this model says that 
a person’s affinity with a group and the possibilities of 
conflict within it or the propensity of individual members 
to stay or leave depends on how the member see 
themselves and the others in terms of five modeled 
beliefs: vulnerability, injustice, distrust, superiority, and 
helplessness.  
 
The model of these beliefs in PMFserv depended on the 
values that individual crowd members (usually clones of 
several archetype members) had in their goals, standards, 
and preference trees. (See Silverman & Bharathy 2005 for 
and example of how these ‘GSP’ trees are used. See 
Ortony, Clore, and Collins 1988 for the original 
development of many of the ideas embodied in the GSP 
trees of PMFserv.) The crowd members’ perception of the 
events in the scenario and their reactions to it are all 
filtered through their present emotional and cognitive state 
and combined with the other performance modulator 
functions deployed for this crowd model to arrive at the 
expected utility of the various actions they could take. 
 
Since the crowd has been modeled at a very abstract level 
when compared with the PEs controlling the other two 
synthetic characters, PMFserv viewed the conversation 
between the squad leader and the community leader in 
appropriately abstract terms represented at the interpreted 
level. All of the literal and semantic content of the events 
in the conversation were projected to the interpreted level 
in terms of Maslow’s hierarchy of needs (life for a villager 
can be a day-to-day struggle) and rendered as different 
levels of respect, security, or food. For example, if the 
squad leader chose to bow towards the community leader, 
the simulation system filled in the event message’s 
interpreted level to contain the description “respectful” in 
the respect element, “neutral” in the security element, and 
“unknown” in the food element.  



Similarly, the output actions of individual crowd members 
were summarized by PMFserv as their ‘grievance state’, 
given on a scale from -4 to +4. This, in turn, was 
translated by the simulation framework (the coupled-
world models) which filled in the literal level of messages 
from the individual members of the crowd. This use of the 
literal level was primarily for directing the game client’s 
visual rendering so that the human player could 
understand the state of the crowd in natural way (their 
reaction to the action the person had just made and the 
collective effect of his actions so far). The simulation 
framework first mapped a crowd member’s interpreted 
level grievance value onto literal level actions, and then 
used those actions to request specific perceptual level 
rendering. For example, a particular level of grievance in 
a crowd member’s event message might lead the social 
world model to fill in the message’s literal-level with an 
action such as PoundFist, and the physical world model 
would then request the corresponding game animation.  
 
6. Demonstration 
 
We envision that future versions of SCALE-UP will be 
used for experiential, game-based training systems that 
allow human learners to interact with a variety of 
computer controlled entities driven by different people 
engines. In order for students to learn from scenarios 
populated by people engines, the characters encountered 
must react appropriately to the student’s actions or 
decisions. In particular, culturally insensitive actions 
should have a visible, negative impact on the student’s 
ability to succeed in their mission. Additionally, since the 
student may need to learn about the differences among 
several populations, any scenario should support being 
populated with sets of characters who will react differently 
to the same series of student actions. 
 
Thus, for the SCALE-UP demonstration, we wanted to 
show that a series of “naïve” decisions would have a less 
successful outcome than a series of more culturally 
informed actions, where the outcome is essentially the 
attitude and reactions of the synthetic characters. We also 
wanted to show that either series of decisions would have 
a different impact on crowds consisting of more hostile or 
more moderate individuals. Table 1 shows the different 
quantitative outcomes that we wanted to demonstrate. 
 
In our SCALE-UP demonstration, we selected two distinct 
paths (sequences of dialog choices) through the scenario. 
One path was chosen to reflect a player who understands 
how to deal with an Iraqi crowd and community leader. 
The other path represented a player who was 
inexperienced in dealing with such a scenario and naïve 
about the crowd’s culture. We then instantiated two 
versions of the playable scenario, each populated with a 
different set of crowd members. One crowd was tuned to 
have moderate views towards Americans and the other 

had more extreme (negative) views towards Americans 
and a higher propensity towards violence.   
 
Our focus was on producing differentiated outcomes and 
not on accurately modeling a specific culture or situation. 
Though limited to a relatively small set of gestures, the 
crowd avatars were able to visually show a nearly violent 
reaction by starting to make throwing motions. Hostility 
was expressed through vigorous arm waving. Similarly, 
distrust was expressed through crossing arms, and 
agreement through nodding. Because the individuals in 
the crowd were parameterized slightly differently, they did 
not execute these gestures all at the same time, thus 
producing a more realistic scene. In addition to the visibly 
differentiated crowd behavior that we observed through 
the game environment, we examined the internal state of 
the crowd members to verify the differentiated outcomes 
of each set of conditions. The average grievance state of 
the crowd members could be tracked throughout the short 
scenario. This measure of the crowd’s mood could be 
used as a measure of the student’s success in convincing 
the crowd to disperse. 
 
Table 1: Crowd reactions to series of decisions 

 Moderate crowd  Extreme crowd  

Culturally 
naïve actions 

Hostile, but not 
violent 

Violent or nearly 
violent 

Culturally 
aware actions 

Cautious, 
cooperative 

Hostile, but not 
violent 

 
7. Lessons Learned 
 
We note several issues that arose in the course of 
implementing a messaging system with multiple levels of 
abstraction between different people engines.  
 
First, training systems such as the SCALE-UP prototype, 
which are made up of multiple people engines and a game 
client as the human interface, benefit from using a 
physical world model outside of the game. Originally, we 
intended to model some aspects of the physical world 
which were not covered by the game itself, such as “off-
stage” character movements, separately from the game’s 
physical world simulation. However, it became clear that 
there were also benefits to using a separate, more abstract, 
physical world model to represent things that the game’s 
world model already covered. For example, BigWorld, 
like most game engines, represents physical locations 
using a coordinate system. Specific physical coordinates 
in the scenario map were associated with a list of more 
abstract notional locations, such as “front-of-crowd” or 
“home”. The people engines selected movement actions 
based on the notional locations. Thus, when the absolute 



locations of the avatars was changed, the people engines 
still behaved correctly; only the mapping between 
absolute coordinates and notional locations needed to be 
updated. This notion of separating the social and physical 
world model from the game client should also allow the 
people engine testbed to use different game clients as 
appropriate. For example, the BigWorld game client was 
suitable for the first-person scenario demonstrated, but a 
more strategic level game client might be better for other 
types of scenarios. Since most game clients will not be 
designed to interface with external people engines, it is 
likely that each new game client will require a custom 
interface to the rest of the testbed. 
 
Second, the issue of the timing of people engine reactions 
was significant. If a character reacted too quickly or too 
slowly, it detracted from the player’s immersion into the 
scenario. Game clients do not always provide notification 
of when an animation or movement has been completed, 
and computationally intensive people engines will take 
varying amounts of time to generate a reaction. In our 
infrastructure and message system, we used explicit event 
duration and notification delays to tune the scenario and 
prevent “faster than light” reactions. Yet using explicit 
notification delays (so that people engines won’t “notice” 
an action until a person would have noticed it) can make it 
harder for a computationally intensive people engine to 
produce a timely reaction. Distributing the computational 
load among more computers can minimize the problem, 
but it is also likely that very computationally intensive 
people engines will not be suitable as part of a real-time 
training scenario. 
 
Finally, there were questions about how to use human 
behavior models that were designed to be brains rather 
than bodies in a system that allowed a human participant 
to constantly view the other characters. Many cognitive or 
emotional models operate at a high level of abstraction 
and are not concerned with lower level actions such as 
smiling or shifting their weight from one foot to the other. 
We used a translation layer that turned emotional state 
into visible behaviors expressing that emotion. However, 
there were still questions about whether these generated 
behaviors should be one time events (cross arms, pause, 
then return arms to sides) or new default postures (cross 
arms, and leave them crossed until doing something 
different). Various people engines can also differ in 
whether they report emotional state in response to 
notifications of events, at periodic intervals, or upon a 
change in state. We chose to translate the emotional state 
of the crowd members, reported in response to dialog 
events or other actions, as new default postures. However, 
the people engine controlling the community leader 
instead chose to initiate one time events upon a change in 
emotional state. Both methods led to reasonable looking 
characters. 
 

8. Conclusions 
 
Our experience with the SCALE-UP feasibility 
demonstration showed that different, independently 
developed systems for generating computer controlled 
behavior could “play” in the same scenario, facilitated by 
a simulation system using messages with multiple 
abstraction levels to communicate between characters 
(human and synthetic) 
 
As game- and simulation-based training systems become 
more complex, system developers, for better or worse, 
will be faced with the same problems that we encountered 
in our work. Achieving a realistic level of social behavior 
with convincing details, especially if it involves natural 
language, will inevitably lead to incorporating 
heterogeneous sets of PEs into such systems.  These PEs 
will likely be developed by people with different scientific 
and engineering backgrounds, and have different strengths 
and weaknesses. Limitations in time and resources will 
mean that the game framework will have to bend to fit the 
interface limitations and requirements of these PEs, rather 
than the other way round. 
 
To further enhance and validate our ideas, we plan to 
develop an enhanced test bed for model comparison and 
validation using a more complex virtual world.  We plan 
to define a set of challenge problems and draft interchange 
standards to focus groundbreaking behavior modeling 
research in the domain of socially and culturally affected 
interpersonal interactions.  Through these steps and more, 
we hope to work towards establishing a robust 
communication framework and architecture that will lead 
to improved cooperation among HBMs and enhanced 
training and analysis applications. 
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