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Introduction

Relation Detection

Thousands of people were in the streets
and in the basilica to pay tribute.
Former president Jimmy Carter represented
the United States.
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Introduction

Machine Learning for Information Extraction

Relation Detection ⊂ Information Extraction

Uses specific linguistic knowledge
Adaptation requires costly human effort

Machine Learning → Adaptative IE

Supervised approaches
Weakly supervised approaches

Supervision → Bias

Unsupervised approaches

Avoid biases
Use clustering techniques
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Introduction

Our Proposal

New unsupervised approach to learning for relation extraction

Using probabilistic clustering models

Evaluation in ACE Relation Mention Detection task

Popular evaluation framework
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Approach

Approach
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Approach Overview

Overview

x = <E  , E  >
1 2

Instance Related /

Unrelated

E 1 E 2

Sentence

Classifier
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Approach Overview

Overview

Scoring Filteringx = <E  , E  >
1 2

Instance
s(x)

Score Related /

Unrelated

E 1 E 2

Sentence
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Approach Overview

Assumptions

Scoring:

Clustering → point of view
Cluster → shared sets of features → relatedness
Cluster → reliability → score

∑
clusterings with scored clusters ⇒ Scorer

Filtering:

Unsupervised learning → ∃ non-related instances
Highly scored instances → related pairs
Threshold value ⇒ Filterer
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Approach Scorer

Scorer Learning

Corpus

...
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Approach Scorer

Scorer Learning

Corpus Pre-Processing

Tokenization, POS-Tagging, NERC

Instance Generation

X = {xi}
Pairs of entities co-occurring within a sentence

Distance threshold

Generation of binary features

Context window
Pattern-based → dist_%d, left_%d_%t. . .
Frequency threshold
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Approach Scorer

Scorer Learning

Instance Clustering

p(cpq|xi ; Θp)
Mixture of Bernoulli distributions
Expectation-Maximization algorithm
Massive repeated randomization → Robustness

Cluster Scoring

z(cpq)
Cluster Measures

Size
Homogeneousness → Radius

Formulae

NSiz, Rad, NDns
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Approach Scorer

Scoring
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Approach Filterer

Filterer Learning

Determination of Threshold Score

sth such that xi ∈ R+ ↔ s(xi ) ≥ sth

Heuristic-based
1 Obtain scores of instances in training corpus
2 Sort instances by score, obtaining a decreasing convex function
3 Find a cut-off point
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Approach Filterer

Filterer Learning

Gpe-Loc - NSiz
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Evaluation

Evaluation
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Evaluation Framework

Evaluation Framework

Corpora

AQUAINT (APW 2000) → 29Mw
ACE 2003–2008 → 500kw, 98k entities, 18k relations

Task

Relation Mention Detection
Recall, Precision, F1

Approaches

Grams-Ub
Single
Mass
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Evaluation Results

Average Results

Rec Prc F1

Grams-Ub - 43.5 65.6 51.0

Single NSiz 52.8 54.3 52.3
Single Rad 52.1 54.2 50.3
Single NDns 53.4 54.1 52.5

Mass NSiz 59.5 53.7 55.8
Mass Rad 62.8 51.7 56.0
Mass NDns 59.1 54.2 55.9
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Evaluation Results

Filtering
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Conclusions

Conclusions
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Conclusions

Conclusions

New unsupervised approach to learning for relation extraction

Using probabilistic clustering models

Evaluation in ACE Relation Mention Detection task

Popular evaluation framework

4-point F1 increase above state-of-the-art upper bound
Inclusion of richer features → Greater flexibility
Benefits of massive combination
Robustness to cluster score function
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Thanks

Thank you!
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