Unsupervised Relation Extraction by Massive Clustering

Edgar Gonzàlez Jordi Turmo

TALP Research Center

7 December 2009

Gonzàlez & Turmo (TALP)

Unsupervised Relation Extraction

7 December 2009 1 / 20

3

イロト イポト イヨト イヨト

Thousands of people were in the streets and in the basilica to pay tribute. Former president Jimmy Carter represented the United States.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - ���?

Thousands of people were in **the streets** and in **the basilica** to pay tribute. Former president **Jimmy Carter** represented **the United States**.

Entities

イロト イポト イヨト イヨト

Thousands of people were in **the streets** and in **the basilica** to pay tribute. Former president **Jimmy Carter** represented **the United States**.

people \longleftrightarrow *streets*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Thousands of people were in **the streets** and in **the basilica** to pay tribute. Former president **Jimmy Carter** represented **the United States**.

people \longleftrightarrow basilica

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Thousands of people were in **the streets** and in **the basilica** to pay tribute. Former president **Jimmy Carter** represented **the United States**.

Jimmy Carter \longleftrightarrow United States

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

- \bullet Relation Detection \subset Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort

イロト イポト イヨト イ

- \bullet Relation Detection \subset Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- $\bullet \ \ \text{Machine Learning} \rightarrow \text{Adaptative IE}$
 - Supervised approaches
 - Weakly supervised approaches

- \bullet Relation Detection \subset Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- $\bullet \ \ \text{Machine Learning} \rightarrow \text{Adaptative IE}$
 - Supervised approaches
 - Weakly supervised approaches
 - $\bullet \ \ Supervision \rightarrow Bias$

- \bullet Relation Detection \subset Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- $\bullet \ \ \text{Machine Learning} \rightarrow \text{Adaptative IE}$
 - Supervised approaches
 - Weakly supervised approaches
 - $\bullet \ \ Supervision \rightarrow Bias$
 - Unsupervised approaches
 - Avoid biases

- \bullet Relation Detection \subset Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- Machine Learning \rightarrow Adaptative IE
 - Supervised approaches
 - Weakly supervised approaches
 - $\bullet \ \ Supervision \rightarrow Bias$
 - Unsupervised approaches
 - Avoid biases
 - Use clustering techniques

Our Proposal

- New unsupervised approach to learning for relation extraction
 - Using probabilistic clustering models
- Evaluation in ACE Relation Mention Detection task
 - Popular evaluation framework

イロト イポト イヨト イヨト

Approach

Approach

Gonzàlez & Turmo (TALP)

Unsupervised Relation Extraction

7 December 2009 5 / 20

999

(日) (四) (三) (三) (三)

Overview

E

590

イロト イヨト イヨト イヨト

Approach Overview

Overview

3

1

990

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Scoring:

- $\bullet~$ Clustering $\rightarrow~$ point of view
- $\bullet~$ Cluster \rightarrow shared sets of features $\rightarrow~$ relatedness
- $\bullet \ \ Cluster \rightarrow \ reliability \rightarrow score$

3

イロト イポト イヨト イヨト

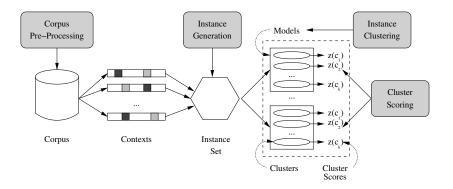
• Scoring:

- $\bullet~$ Clustering $\rightarrow~$ point of view
- $\bullet~$ Cluster \rightarrow shared sets of features $\rightarrow~$ relatedness
- $\bullet \ \ Cluster \rightarrow \ reliability \rightarrow score$
- \sum clusterings with scored clusters \Rightarrow Scorer

3

イロト イポト イヨト イヨト

• Scoring:


- $\bullet~$ Clustering $\rightarrow~$ point of view
- $\bullet~$ Cluster \rightarrow shared sets of features $\rightarrow~$ relatedness
- $\bullet \ \ Cluster \rightarrow \ reliability \rightarrow score$
- \sum clusterings with scored clusters \Rightarrow Scorer
- Filtering:
 - $\bullet~$ Unsupervised learning \rightarrow $\exists~$ non-related instances
 - $\bullet~$ Highly scored instances $\rightarrow~$ related pairs

イロト 不得下 イヨト イヨト

Scoring:

- $\bullet~$ Clustering $\rightarrow~$ point of view
- $\bullet~$ Cluster \rightarrow shared sets of features $\rightarrow~$ relatedness
- $\bullet \ \ Cluster \rightarrow \ reliability \rightarrow score$
- \sum clusterings with scored clusters \Rightarrow Scorer
- Filtering:
 - $\bullet~$ Unsupervised learning \rightarrow $\exists~$ non-related instances
 - $\bullet~$ Highly scored instances $\rightarrow~$ related pairs
 - Threshold value \Rightarrow Filterer

イロト 不得下 イヨト イヨト

э

590

イロト イポト イヨト イヨト

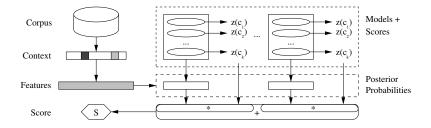
- Corpus Pre-Processing
 - Tokenization, POS-Tagging, NERC

3

イロト イポト イヨト イヨト

- Corpus Pre-Processing
 - Tokenization, POS-Tagging, NERC
- Instance Generation
 - $\mathcal{X} = \{x_i\}$
 - Pairs of entities co-occurring within a sentence
 - Distance threshold
 - Generation of binary features
 - Context window
 - $\bullet \text{ Pattern-based} \to \texttt{dist} \texttt{\/} \texttt{d}, \texttt{left} \texttt{\/} \texttt{d} \texttt{\/} \texttt{t} \ldots$
 - Frequency threshold

- Instance Clustering
 - $p(c_{pq}|x_i;\Theta_p)$
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - \bullet Massive repeated randomization \rightarrow Robustness

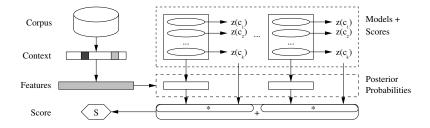

- Instance Clustering
 - $p(c_{pq}|x_i;\Theta_p)$
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - \bullet Massive repeated randomization \rightarrow Robustness
- Cluster Scoring
 - *z*(*c*_{*pq*})
 - Cluster Measures
 - Size
 - $\bullet \ \ Homogeneousness \rightarrow \mathsf{Radius}$

- Instance Clustering
 - $p(c_{pq}|x_i;\Theta_p)$
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - \bullet Massive repeated randomization \rightarrow Robustness
- Cluster Scoring
 - *z*(*c*_{*pq*})
 - Cluster Measures
 - Size (Normalized by number of non-empty clusters in clustering)
 - $\bullet \ \ Homogeneousness \rightarrow \mathsf{Radius}$

- Instance Clustering
 - $p(c_{pq}|x_i;\Theta_p)$
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - \bullet Massive repeated randomization \rightarrow Robustness
- Cluster Scoring
 - *z*(*c*_{*pq*})
 - Cluster Measures
 - Size (Normalized by number of non-empty clusters in clustering)
 - $\bullet \ \ Homogeneousness \rightarrow \mathsf{Radius}$
 - Formulae
 - NSIZ, RAD, NDNS

Approach Scorer

-


Image: A mathematic states and a mathematic states

E

590

Approach Scorer

$$s(x_i) = \sum_{\hat{\Theta}_p} \sum_{q=1}^{k_p} p(c_{pq} \mid x_i) \cdot z(c_{pq})$$

Gonzàlez & Turmo (TALP)

- $\exists \rightarrow$ 7 December 2009 11 / 20

Image: A mathematic states and a mathematic states

E

590

• Determination of Threshold Score

• s_{th} such that $x_i \in R^+ \leftrightarrow s(x_i) \ge s_{th}$

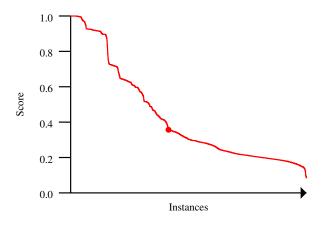
イロト イポト イヨト イヨト

∃ nar

Determination of Threshold Score

- s_{th} such that $x_i \in R^+ \leftrightarrow s(x_i) \ge s_{th}$
- Heuristic-based

- Obtain scores of instances in training corpus
- Sort instances by score, obtaining a decreasing convex function
- Sind a cut-off point


イロト 不得下 イヨト イヨト

GPE-LOC - NSIZ

Image: A mathematic states and a mathematic states

GPE-LOC - NSIZ

3

3

Image: A mathematic states and a mathematic states

590

Evaluation

Evaluation

Gonzàlez & Turmo (TALP)

Unsupervised Relation Extraction

7 December 2009 14 / 20

€ 990

イロト イヨト イヨト イヨト

Evaluation Framework

Corpora

- AQUAINT (APW 2000) \rightarrow 29Mw
- ACE 2003–2008 \rightarrow 500kw, 98k entities, 18k relations
- Task
 - Relation Mention Detection
 - Recall, Precision, F1
- Approaches
 - GRAMS-UB
 - Single
 - Mass

< 4 ∰ ▶ < 4

Average Results

		Rec	Prc	F1
Grams-Ub	-	43.5	65.6	51.0
Single	NSiz	52.8	54.3	52.3
Single	Rad	52.1	54.2	50.3
SINGLE	NDNS	53.4	54.1	52.5
MASS	NSIZ	59.5	53.7	55.8
Mass	Rad	62.8	51.7	56.0
Mass	NDNS	59.1	54.2	55.9

Average Results

		Rec	Prc	F1
GRAMS-UB	-	43.5	65.6	51.0
Single	NSiz	52.8	54.3	52.3
Single	Rad	52.1	54.2	50.3
SINGLE	NDNS	53.4	54.1	52.5
Mass	NSIZ	59.5	53.7	55.8
MASS	Rad	62.8	51.7	56.0
MASS	NDNS	59.1	54.2	55.9

Average Results

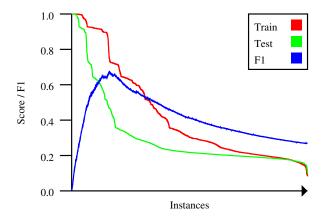
		Rec	Prc	F1
GRAMS-UB	-	43.5	65.6	51.0
Single	NSiz	52.8	54.3	52.3
Single	Rad	52.1	54.2	50.3
SINGLE	NDNS	53.4	54.1	52.5
MASS	NSIZ	59.5	53.7	55.8
Mass	Rad	62.8	51.7	56.0
MASS	NDNS	59.1	54.2	55.9

Results

Filtering

GPE-LOC - NSIZ

∃ ⊳


• • • • • • • •

 $\exists \rightarrow$ E

Results

Filtering

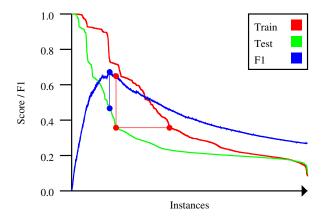
GPE-LOC - NSIZ

Gonzàlez & Turmo (TALP)

Unsupervised Relation Extraction

7 December 2009

イロト イヨト イヨト イヨト


590 17 / 20

E

Results

Filtering

GPE-LOC - NSIZ

イロト イヨト イヨト イヨト

E

Conclusions

Conclusions

Gonzàlez & Turmo (TALP)

Unsupervised Relation Extraction

7 December 2009 18 / 20

€ 990

イロト イヨト イヨト イヨト

Conclusions

- New unsupervised approach to learning for relation extraction
 - Using probabilistic clustering models
- Evaluation in ACE Relation Mention Detection task
 - Popular evaluation framework

イロト イポト イヨト イヨト

Conclusions

- New unsupervised approach to learning for relation extraction
 - Using probabilistic clustering models
- Evaluation in ACE Relation Mention Detection task
 - Popular evaluation framework
 - 4-point F1 increase above state-of-the-art upper bound
 - $\bullet~$ Inclusion of richer features $\rightarrow~$ Greater flexibility
 - Benefits of massive combination
 - Robustness to cluster score function

Thanks

Thank you!

Gonzàlez & Turmo (TALP)

Unsupervised Relation Extraction

7 December 2009

イロト イヨト イヨト イヨト

୬ < ୍ 20 / 20

Ξ.