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Classification of acoustic events using SVM-based clustering schemes
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Abstract

Acoustic events produced in controlled environments may carry information useful for perceptually aware interfaces. In this paper we
focus on the problem of classifying 16 types of meeting-room acoustic events. First of all, we have defined the events and gathered a
sound database. Then, several classifiers based on support vector machines (SVM) are developed using confusion matrix based clustering
schemes to deal with the multi-class problem. Also, several sets of acoustic features are defined and used in the classification tests. In the
experiments, the developed SVM-based classifiers are compared with an already reported binary tree scheme and with their correlative
Gaussian mixture model (GMM) classifiers. The best results are obtained with a tree SVM-based classifier that may use a different feature
set at each node. With it, a 31.5% relative average error reduction is obtained with respect to the best result from a conventional binary
tree scheme.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Activity detection and description is a key functionality
of perceptually aware interfaces working in collaborative
human communication environments like meeting-rooms
or classrooms. In such types of environments the human
activity is reflected in a rich variety of acoustic events,
either produced by the human body or by objects handled
by humans, so auditory scene analysis [1] by computer
may help to detect and describe human activity as well as
to increase the robustness of automatic speech recognition
systems.

Acoustic event classification (AEC) is one of the problems
considered by computational auditory scene analysis. In-
deed, speech usually is the most informative acoustic event,
but other kind of sounds may also carry useful information.
For example: clapping or laughing inside a speech, a strong
yawn in the middle of a lecture, a chair moving or door noise
when the meeting has just started. When trying to deal with
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the problem of AEC in the framework of the CHIL project
[2], we soon noticed that reported works are scarce. Actually,
classification of sounds has usually been carried out so far to
segment digital audio streams using a limited number of cat-
egories, like music/speech/silence/environmental sound (see
e.g. Ref. [3]). Usually those works are intended to index-
ing and retrieval of multimedia documents. Audio retrieval
is also the objective in Ref. [4], using a relatively high num-
ber of sound classes (13) and without explicit segmentation,
and also in Ref. [5], where animal sounds are retrieved us-
ing natural language sentences. On the other hand, several
works have been devoted to the problem of detection of sin-
gle sounds, like laughter detection in Ref. [6]; or Ref. [7],
where the authors built systems for detecting/classifying sev-
eral sounds independently from each other. The AEC prob-
lem has also been considered in the framework of speech
recognition in Ref. [8]. Aiming to improve the robustness
of the ASR system, the authors in Ref. [8] dealt with the
problem of classifying 92 types of isolated sounds that had
been collected in an anechoic room, the RWCP sound scene
database [9]. Some more information about the history and
the state of the art in the problem of audio classification can
be found in Ref. [10].
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In this paper, we focus on acoustic events that may take
place in meeting-rooms or classrooms and on the preliminary
task of classifying isolated sounds. The number of sounds
encountered in such environments may be large, but in this
initial work we have chosen 16 different acoustic events, in-
cluding speech and music, and a database has been defined
for training and testing. While in Ref. [8] the authors looked
at the problem from the point of view of speech recogni-
tion, applying the usual automatic speech recognition strat-
egy (cepstral features, classifier based on Hidden Markov
Models (HMM) and Gaussian Mixture Models (GMM)), in
our work we consider, develop and compare several feature
sets and classification techniques, aiming at finding the ones
which are most appropriate for the problem we are dealing
with. In this way, not only the parameters that are used in
speech recognition to model the short-time spectral enve-
lope of the signals and its time derivatives are considered,
but also other perceptual features which may be more fitted
to non-speech sounds. Moreover, HMMs require relatively
large amount of data to accurately train the models, some-
thing that is not realistic in our task, since there are not many
collections of meeting recordings and the number of samples
of some type of sounds that can be found in them is small.

Recently, the support vector machine (SVM) paradigm
has proved highly successful in a number of classification
tasks. As a classifier that discriminates the data by creat-
ing boundaries between classes rather than estimating class
conditional densities, it may need considerably less data to
perform accurate classification. In fact, SVMs have already
been used for audio classification [11] and segmentation
[12]. In this work we use SVM classifiers and compare them
with GMM classifiers.

As SVMs are binary classifiers, some type of strategy
must be employed to extend them to the multi-class prob-
lem. In Ref. [11], the authors used the binary tree classifi-
cation scheme to cope with several classes. That approach
requires a relatively high number of classifiers and classifi-
cation steps, and the number of classes has to be a power
of 2 to get the most benefit from the technique. There are
other ways of applying SVMs to the multi-class problem; see
Ref. [13] for a comparison of different methods of multi-
class SVM classification. In our work, we propose and de-
velop several variants of a tree clustering technique. Relying
on a given set of confusion matrices, that technique chooses
the most discriminative partition and feature set at each step
of classification, and, unlike the binary tree, works for any
number of classes.

Comparative tests have been carried out using the two ba-
sic classifiers (GMM and SVM) and a number of classifica-
tion schemes (binary tree and several clustering alternatives).
The effects of using two different regularization parameters
of the SVM classifiers to compensate data unbalance, and
a confusion matrix-based modification of those parameters
are also investigated in this work.

The paper is organized as follows: in Section 2 we present
the database of gathered sounds. Section 3 describes the

features and explains the construction of feature sets. The
basic theory of SVM and GMM classification techniques is
reviewed in Section 4. The experiments and a discussion of
the results are presented in Section 5. Finally, conclusions
are given in Section 5.

2. Database

The first problem we had to face when trying to develop
a system for classifying acoustic events which take place
in a meeting-room environment was the lack of data. As
mentioned above, there exists a relatively large database of
sounds, the RWCP sound scene database, but only a small
part of the sounds included in that database can be consid-
ered as usual or at least possible in a meeting room.

The second column of Table 1 shows the 16 categories of
sounds that were chosen. As can be seen in the third col-
umn, only four of them belong to the RWCP database. The
other sounds have been found in a large number of web-
sites, except the speech sounds, which were taken from the
ShATR Multiple Simultaneous Speaker Corpus [14] and in-
clude short fragments from both close-talk and omnidirec-
tional microphones. The number of samples is 100 or larger
for the sounds taken from the RWCP database, but it is much
smaller for a few classes. As shown in the fourth column of
Table 1, chair moving and yawn events have only 12 sam-
ples in the database. The whole database amounts 53 min of
audio (942 files).

Indeed both the diversity in the number of samples per
class and the small number of samples for some sounds
are a challenge for the classifier. And, the fact that sounds
were taken from different sources makes the task even more
complicated due to the presence of several (at times even
unknown) environments and recording conditions.

Table 1
The 16 acoustical events considered in our database, including number
of samples and their sources (I means Internet)

Event Source Number

1 Chair moving I 12
2 Clapping RWCP + I 100 + 7
3 Cough I 47
4 Door slam I 80
5 Keyboard I 45
6 Laughter I 26
7 Music I 38
8 Paper crumple RWCP 100
9 Paper tear RWCP 100

10 Pen/pencil handwriting I 30
11 Liquid pouring I 40
12 Puncher/stapler RWCP 200
13 Sneeze I 40
14 Sniffing I 13
15 Speech ShATR 52
16 Yawn I 12
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3. Audio features

The signals from all the sounds in the database presented
above were downsampled to 8 kHz, normalized to be in
the range [−1 1], and partitioned in frames using: frame
length =128, overlapping of 50%, and a Hamming window.
The silence portions of the signals were removed using an
energy threshold.

Three basic types of acoustic feature were considered in
this work. Two of them are spectrum envelope representa-
tions used in speech/speaker recognition, namely the typical
mel-frequency cepstral coefficients (MFCC) plus the frame
energy [15], and the recently introduced frequency-filtered
band energies (FFBE) [16]. Like in speech recognition, they
will be considered either alone or together with their first and
second time derivatives (the so-called delta and delta–delta
features) [15]. We consider both types of features because
we want to compare their discriminative capability in this
application. The third type of features is a small set which
includes perceptual features which are not considered in the
above feature sets and may be more adequate for some kind
of sounds (fundamental frequency and zero crossing rate),
and also a reduced representation of the spectral envelope
and its time evolution. We will call it perceptual feature set,
since it has a more perceptually oriented profile than the
other two.

Thus, the acoustic features considered in this work are
defined in the following way:

1. Perceptual features:

• Short-time signal energy: Computed frame-by-frame.
• Sub-band energies: Four subbands equally distributed

along 20 mel-scaled logarithmic filter-bank energies
(FBE) for each frame.

• Spectral flux: Difference of spectrum values between two
adjacent frames, for each of the above-defined 4 sub-
bands. SF measures the changes of spectrum over time.

• Zero-crossing rate: Computed as the number of zero
crossings within a frame.

• Fundamental frequency: A simple cepstrum-based
method was used to determine it for each frame in the
range [70 Hz, 500 Hz].

2. Cepstral coefficients: Twelve mel-frequency cepstral
coefficients (MFCC) were computed for each frame using
20 mel-scaled spectral bands. The zeroth cepstral coefficient
was removed, but the frame energy was added to the set.

3. FF-based spectral parameters: Parameters based on
filtering the frequency sequence of log FBEs (FFBE) [16].
We have used the usual second-order filter H(z) = z − z−1,
which implies subtraction of the log FBEs of the two adja-
cent bands. Before filtering, the sequence of log FBEs along
frequency is extended with one zero at each side. In this
way, the first and last parameters actually are the energies of
the second and the second last sub-bands. That is the reason
why the frame energy was not used with these features.

Table 2
Feature sets that were used in this work, the way they were constructed
from the basic acoustic features, and their size

Feature set Content Size

1 Perc Perceptual features spectral 11
2 Ceps + der E+MFCC+d+dd 39
3 Ceps E+MFCC 13
4 FF + der FFBE+d+dd 39
5 FF FF 13
6 Perc + ceps + der “Perc”+“Ceps+der” 50
7 Perc + ceps “Perc”+“Ceps” 24
8 Perc + FF + der “Perc”+“FF+der” 50
9 Perc + FF “Perc”+“FF” 24

d and dd denote first and second time derivatives, respectively, E means
frame energy, and “+” means concatenation of features.

The three above-defined types of acoustic features were
combined to build the 9 different feature sets shown in
Table 2 which are considered in the experiments reported
in Section 5. The mean and standard deviation of those fea-
tures, estimated by averaging over the whole acoustic event
signal, were taken for classification, thus forming one fi-
nal statistical feature vector per audio event with a num-
ber of elements which doubles the length of the acoustic
feature set.

4. Classification techniques

Two basic classification techniques are considered in this
work: SVM and GMM. The former is based on decision sur-
faces, and the latter models data with probability distribu-
tions. In this section, we will present both approaches, along
with the SVM variants that are used in the experiments.

4.1. Support vector machines

The SVM is a discriminative model classification tech-
nique that mainly relies on two assumptions. First, trans-
forming data into a high-dimensional space may convert
complex classification problems (with complex decision sur-
faces) into simpler problems that can use linear discrimi-
nant functions. Second, SVMs are based on using only those
training patterns that are near the decision surface assuming
they provide the most useful information for classification.

4.1.1. Construction of a SVM
Let us assume a typical two-class problem in which the

training patterns (vectors) xi ∈ Rn are linearly separable,
as in Ref. [17], where the decision surface used to classify
a pattern as belonging to one of the two classes is the hy-
perplane H0 (Fig. 1). If x is an arbitrary vector (x ∈ Rn),
we define

f (x) = w · x + b, (1)
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Fig. 1. Two-class linear classification. The support vectors are indicated
with crosses.

where w ∈ Rn and (·) denotes the dot product. H0 is the
region of vectors x which verify the equation f (x)=0 [18],
and H1 and H−1 are two hyperplanes parallel to H0, and de-
fined by f (x)=1 and f (x)=−1, respectively. The distance
separating the H1 and H−1 hyperplanes is

2

‖w‖ (2)

and it is called margin. The margin must be maximal in
order to obtain a classifier that is not much adapted to the
training data, i.e. with good generalization characteristics.
As we will see, the decision hyperplane H0 directly depends
on vectors closest to the two parallel hyperplanes H1 and
H2, which are called support vectors.

Consider a set of training data vectors X = {x1, . . . , xL},
xi ∈ Rn, and a set of corresponding labels Y ={y1, . . . , yL},
yi ∈ {1, −1}. We consider that the vectors are optimally
separated by the hyperplane H0 if they are classified without
error and the margin is maximal. In order to be correctly
classified, the vectors must verify

f (xi)� + 1 for yi = +1,

f (xi)� − 1 for yi = −1. (3)

Or, more concisely,

yif (xi)�1, ∀i. (4)

Thus, the problem of finding the SVM classifying function
H0 can be stated as follows:

minimize 1
2‖w‖2

subject to yif (xi)�1, ∀i. (5)

This is called the primal optimization problem [17–19]. In
order to solve it, we form the following Lagrange function:

L(w, b) = 1

2
‖w‖2 −

L∑
i=1

�i[yif (xi) − 1], (6)

where the Lagrange multipliers �i verify

�i �0, ∀i. (7)

The Lagrangian L(w, b) must be minimized with respect to
w and b, so its gradient must vanish, i.e.

�

�b
L(w, b) = 0,

�

�w
L(w, b) = 0. (8)

From the two above equations, it follows, respectively, that

L∑
i=1

�iyi = 0 (9)

and

w =
L∑

i=1

�iyixi . (10)

Substituting the conditions (9) and (10) into the Lagrangian
(6), we arrive at the so-called dual optimization problem:

maximize
L∑

i=1

�i − 1

2

L∑
i=1

L∑
j=1

�i�j yiyj xi · xj

subject to
L∑

i=1

�iyi = 0 and �i �0, ∀i. (11)

The dual optimization problem is a (convex) quadratic pro-
gramming problem that can be efficiently solved with a num-
ber of mathematical algorithms [20]. In our work, we use
the decomposition method with conventional modifications
[19].

Data observed in real conditions are frequently affected
by outliers. Sometimes they are caused by noisy measure-
ments. If the outliers are taken into account, the margin of
separation decreases so the solution does not generalize so
well, and the data patterns may no longer be linearly sepa-
rable. To account for the presence of outliers, we can soften
the decision boundaries by introducing a slack positive vari-
able �i for each training vector [18]. Thus, we can modify
the Eq. (3) in the following way:

w′xi + b� + 1 − �i for yi = +1,

w′xi + b� − 1 + �i for yi = −1. (12)

Obviously, if we take �i large enough, the constraints (12)
will be met for all i. To avoid the trivial solution of large �i ,
we introduce a penalization cost in the objective function
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in Eq. (5), and thus the primal optimization formulation
becomes:

minimize

(
1

2
‖w‖2 + C

L∑
i=1

�i

)

subject to yi(w
′xi + b)�1 − �i , ∀i, (13)

where C is a positive regularization constant which controls
the degree of penalization of the slack variables �i, so that,
when C increases, fewer training errors are permitted, though
the generalization capacity may degrade. The resulting clas-
sifier is usually called soft margin classifier. If C = ∞, no
value for �i except 0 is allowed; it is the so-called hard mar-
gin SVM case.

The formulation (13) leads to the same dual problem as in
Eq. (11) but changing the positivity constraints on �i by the
constraints 0��i �C. Thus, it can be shown that the optimal
solution has to fulfill the following conditions (known as
Karush–Kuhn–Tucker optimality conditions) [19]:

�i = 0 ⇒ yif (xi)�1 and �i = 0, (14)

0 < �i < C ⇒ yif (xi) = 1 and �i = 0, (15)

�i = C ⇒ yif (xi)�1 and �i > 0. (16)

The above equations reveal one of the most important fea-
tures of SVM: since most patterns lie outside the margin
area, their optimal �i’s are zero (Eq. (14)). Only those train-
ing patterns xi which lie on the margin surface (Eq. (15)) or
inside the margin area (Eq. (16)) have non-zero �i , and they
are named support vectors. Consequently, the classification
problem consists of assigning to any input vector x one of
the two classes according to the sign of

f (x) =
M∑

j=1

�j yj xj · x + b, (17)

being M the number of support vectors. The fact that the
support vectors are a small part of the training data set makes
the SVM implementation practical for large data sets [19].

In real situations, the distribution of the data among the
classes is often not uniform, so some classes are statistically
under-represented with respect to other classes. To cope with
this problem in the two-class SVM formulation, we can in-
troduce different cost functions for positively and negatively
labeled points in order to have asymmetric soft margins, so
that the class with smaller data size obtains a larger margin
[21]. Consequently, the conventional soft margin approach
can be generalized as

minimize

⎛
⎝1

2
‖w‖2 + C−

∑
i:yi=−1

�i + C+
∑

i:yi=1

�i

⎞
⎠

subject to yi(w
′xi + b)�1 − �i , ∀i. (18)

As the formulation (18) suggests, when C+ increases, the
number of allowed training errors from positively labeled

data decreases, but at the expenses of increasing the allowed
number of training errors from the negatively labeled data.
And the opposite occurs when C− increases.

The resulting dual problem has the same Lagrangian as
in Eq. (11), but the positivity constraints on �i now become:

0��i �C+ for yi = +1,

0��i �C− for yi = −1. (19)

For a non-linearly separable classification problem we have
first to map the data onto a higher-dimensional (possibly in-
finite) feature space where the data are linearly separable.
Accordingly, the Lagrangian of the dual optimization prob-
lem (11) must be changed to

L∑
i=1

�i − 1

2

L∑
i=1

L∑
j=1

�i�j yiyj�(xi) · �(xj ). (20)

Notice the input vectors are involved in the expression
through a kernel function

K(xi, xj ) = �(xi) · �(xj ), (21)

which can be thought as a non-linear similarity measure
between two data points. According to the Mercer’s theorem
[22], any (semi) positive definite symmetric function can be
regarded as a kernel function, that is, as a dot product in some
space, so we will look for (semi) positive definite symmetric
functions that imply a data transformation to a new space
where the classes can be linearly separated. Note that there
is not need to know the mapping function � explicitly, but
only the kernel K(xi, xj ).

The most often used kernel functions in SVM applications
are the following two:

Radial Basis Function (RBF): K(xi, xj )

= e−|xi−xj |2/2�. (22)

Polynomial: K(xi, xj ) = (xi · xj )
d . (23)

Thus, from Eq. (17) and the kernel concept, it follows that
the two-class classification process with a SVM consists of
assigning a positive/negative label to each input vector x
through the following:

y(x) = sgn

⎛
⎝ M∑

j=1

�j yjK(x, xj ) + b

⎞
⎠ (24)

being M the number of support vectors.
As SVM is a binary classifier, we cannot employ it di-

rectly in our acoustic event classification problem, since we
have a set of 16 classes. In the literature, several methods
of extending from binary classifiers to multi-class classifiers
can be found: one against all, one against one, DAGSVM,
ECOC,. . . (see [13,23] for a comparison). In our experi-
ments, we first use the scheme proposed in Ref. [11], namely
a binary tree with a SVM at each node. A disadvantage of
the binary tree approach is that the number of classes has
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to be a power of two, otherwise the tree is unbalanced and
some classes are more likely to be chosen than others. The
alternative we propose in Section 5 is based on a decision tree
that uses a specific feature set at each node, and it is trained
with a clustering technique from a given set of confusion
matrices. In this way, it uses the most discriminative feature
set at each step of classification and works for any number of
classes. The effect of a confusion matrix based modification
of the generalization parameters C+ and C− of the SVM
classifier is also presented in Section 5.

4.2. Gaussian mixture models

GMMs are quite popular in speech and speaker recogni-
tion. In the design step, we have to find the probability den-
sity functions that most likely have generated the training
patterns of each of the classes, assuming that they can be
modeled by mixtures of Gaussians.

In the GMM, the likelihood function is defined as

p(x) =
P∑

i=1

wiN(x; �i , �i ), (25)

where P is the number of Gaussians, the weights wi verify

P∑
i=1

wi = 1 and wi �0, ∀i (26)

and N(x; �, �) denotes the multivariate Gaussian distribu-
tion

N(x; �, �) = 1

(2�)(|x|/2)
√|�|

× exp

(
−1

2
(x − �)T�−1(x − �)

)
(27)

being � the mean vector and � the covariance matrix (often
considered diagonal). As the goal is to maximize the likeli-
hood (ML), the parameters of the GMM (wi, �i , and �i) are
obtained via the expectation–maximization algorithm [15].
Unlike SVM, which is a two-class classifier, GMM-based
classifiers can handle an arbitrary number of classes. The
GMM-ML classifier belongs to the group of generative clas-
sifiers, unlike SVM, which is a discriminative classifier. Due
to this different approach, GMM generally needs a larger
training set than SVM and so it is usually considered more
complex [24].

In the next section, comparative tests are reported by us-
ing the two basic classifiers (GMM and SVM) and several
classification schemes.

5. Experiments

Several experiments were carried out to assess the clas-
sification performance of the selected feature sets and the
classification systems, either based on SVM or GMM. To

1

631

6

7

87654321

SVMs

Classes

1

Fig. 2. Binary tree structure for eight classes. Every test pattern enters
each binary classifier, and the chosen class is tested in an upper level
until the top of the tree is reached. The numbers 1–8 encode the classes.
The figure shows a particular example, where class 1 is the class chosen
by the classification scheme.

perform the evaluation, the acoustic event samples were ran-
domly permuted within each class and indexed, so odd index
numbers were assigned to training and even index numbers
to testing. Also, 20 permutations were used in each experi-
ment. Because of unevenness in the number of representa-
tives of the various classes, the overall performance is com-
puted as an average of the individual class performances.

As preliminary tests with the SVM classifier showed a su-
periority of the RBF kernel over the polynomial one, only
the former was used in the evaluation. There are two main
parameters (hyperparameters) that are to be specified using
SVMs: � from the RBF kernel and the regularization param-
eter C presented in Section 4.1.1. Regarding the setting of
�, 5-fold cross-validation [17] was applied. After that kernel
parameter is found, the whole training set is used again to
generate the final classifier.

5.1. Binary tree scheme

First of all, a binary tree with a SVM at each node was
applied to our acoustic event classification problem. Fig. 2
illustrates how the classifier works. In our implementation,
the classes in the bottom level are ordered randomly. In Ref.
[11], each SVM was trained using C = 200; in our work,
we chose C =1, since this value yielded better results in the
experiments, a fact that may indicate that our data are more
noisy (contains more outliers) than data used in Ref. [11].

This SVM-based classification system was compared with
a GMM classifier. The latter has one model per class and,
for every test pattern, the model with maximal likelihood is
chosen. Both a fixed and a variable number of Gaussians per
class were tried; the best accuracy was achieved by using
a variable number that depends on the amount of data per
class.

Fig. 3 shows results for both classifiers. The best feature
set in combination with the GMM classifier was the set
number 9 (Perc+FF), with recognition rate 78.9%, whereas
for the SVM classifier was the set number 8 (Perc+FF+der),
with 82.9% recognition rate. Note that, in our experiments,
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Fig. 3. Percentage of classification rate for the SVM-based binary tree
classifier and the GMM classifier on the defined feature sets.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 7 9

feature set

A
C

C
 %

liquid
sneeze
sniff

5 6 8

Fig. 4. Dependence of performance of classifying “liquid_pouring”,
“sneeze” and “sniff” upon the feature sets using SVMs.

the SVM approach shows a higher performance than the
GMM one across all types of feature sets.

5.2. Confusion matrix-based clustering scheme

We have developed a tree clustering algorithm which
makes use of confusion matrices, one for each feature set.
They are obtained from the experiments reported in the last
section, by averaging over the 20 permutations, and nor-
malizing their elements so that each row adds up 1. Those
confusion matrices are used to find the best way of splitting
the classes at a given node into two clusters with the least
mutual confusion. As we have a relatively small number of
classes, we can perform exhaustive search and get the global
minimum. For the sake of homogeneity, we use confusion
matrices obtained by SVM classifiers for SVM clustering,
and GMM matrices for GMM clustering.

As our database contains a large variety of sounds, the
feature set that gets the largest classification rate for a given
class is not necessarily the best one for a different class. This
fact is illustrated in Fig. 4, where the three considered classes
(liquid pouring, sneezing and sniffing) show their perfor-
mance peaks at different feature sets and none of the sets
is the 8th, the one that yields the best overall performance.
Therefore, it is reasonable to assume that the performance

can improve by using a specific feature set to discriminate
within each pair of classes or groups of classes.

The clustering algorithm that selects a specific feature set
for each tree node will be presented in the next section. The
simpler case that uses the same feature set at every node is
also considered in the experiments. We refer to them, re-
spectively, as variable-feature-set and fixed-feature-set clus-
tering schemes. In the following, we will present the former
clustering algorithm since the latter is a particular case of it.

5.2.1. The variable-feature-set clustering algorithm
The algorithm for clustering with a variable-feature-

set approach is formally described in Fig. 5. At the first
step, all possible combinations of grouping 16 classes
into two clusters (i.e. grouping 6 and 10, 8 and 8, etc.)
are searched over the available 9 confusions matrices that
correspond to the 9 considered feature sets. For exam-
ple, for the SVM clustering, we found that the 16 classes
were best separated choosing the clusters C1 = {9} and
C2 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16}, and
the 6th feature set. That process is carried out until we have
single-event clusters. Note in the expression of S

n,m
k from

Fig. 5 that the confusion measures ek
ij are normalized by the

corresponding accuracies ek
ii to cope with the dispersion of

performance rates among the classes. Regarding the GMM
classifier, the algorithm also groups the classes into two
clusters, but in this case two models are generated at each
step, one for each cluster.

The above clustering technique is intended for a relatively
small number of classes, as in our acoustic event classifi-
cation task. When the number of classes is large either ag-
glomerative hierarchical clustering or divisive hierarchical
clustering [25] can be used if they are modified to handle
several feature sets while searching; however, they do not
guarantee to reach the global minimum.

5.2.2. Dealing with the data unbalance problem
In our experiments, we have tried several ways of allevi-

ating the problem of having a too much different amount of
training data between the two clusters at a given tree node.
A straightforward way of tackling that problem which has
been considered in the experiments consists of restricting
the exhaustive search in Fig. 5 to look for an equal num-
ber of classes at each cluster, i.e. having only the index
value n = N/2 at step 2 of the algorithm. That solution is
no longer optimal in terms of the tree structure, but the in-
volved SVMs will work with more balanced data. Hereafter,
we will refer to it as restricted clustering. Fig. 6 shows the
trees obtained by the normal (unrestricted) and restricted
clustering algorithms in the SVM case. Note that the two
trees show a very different structure, but they have the same
number of nodes (N −1), that is the same number of trained
SVM classifiers. Indeed, the restricted tree shows a bal-
anced structure, whereas, as it can be observed in Fig. 6, in
the normal clustering case we mostly have only one class
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Fig. 5. Clustering algorithm based on an exhaustive search and using a set of estimated confusion matrices.
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Fig. 6. Normal and restricted clustering schemes for SVM classifiers.

separated on each clustering step. Actually, there is only one
case where there are two classes grouped in the smaller clus-
ter, which corresponds to classes 11 and 12. We have ob-
served that the amount of confusions between both classes
is a large portion of the total error for class 11. Regard-
ing the GMM-based techniques, since each class model is
trained without using information about the other classes it
is not so much influenced by the problem of data unbalance.
However, we will also consider both clustering schemes for
the GMM case. The resulting schemes are similar to those
in Fig. 6.

The alternative way of coping with data unbalance used
in our experiments (already mentioned in Section 4.1.1) is to

introduce different regularization parameters for positively
and negatively labeled training samples. Additionally, since
a measure of confusions at each tree node can be obtained as
a byproduct of the clustering algorithm, we have used these
estimated measures to adapt the regularization parameters.
The greater the confusion is, the larger the error should be
allowed during training, and so the smaller the regularization
parameters should be. Consequently, we force those param-
eters to be inversely proportional to the confusion measures.
Indeed, we have a ∞ value at the beginning for normal
clustering since the confusion at this step is 0. Note from
Fig. 5 that if the performance of a class for a given feature set
were 0 (ek

ii = 0), the value of S
n,m
k would be ∞. In order to
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decrease the contribution of that possible zeroth performance
of a class to the computation of the confusion measures of
the whole cluster, we substitute zero by a small value. In
our algorithm, we use 0.001.

Three different methods of using and computing the reg-
ularization parameters in the SVM-based classifiers are con-
sidered in this work, along with the baseline method that
uses only a constant parameter C = K . They are defined in
the following, denoting by Sn the confusion measure at the
nth classification step:

(1) Only one regularization parameter C computed as

C = K
1

Sn

. (28)

(2) Two different parameters C+ and C−, defined such that

C+ = K
A−
A+

, C− = K
A+
A−

, (29)

where A+ and A− are the number of positive and nega-
tive training samples, respectively. In this way, the train-
ing errors of the two classes contribute equally to the
cost of misclassification.

(3) The effect of doing both adaptations simultaneously,
namely,

C+ = K
A−
A+

1

Sn

, C− = K
A+
A−

1

Sn

. (30)

In our tests, K was set to value 10 since it gave the best
performance for the baseline method with constant C.

5.3. Results and discussion

Table 3 shows classification performance for GMM
and SVM classifiers using either a variable- or a fixed-
feature-set approach, and either normal (N) or restricted
(R) clustering. The table also shows the standard deviation

Table 3
Performances of variable-feature-set and fixed-feature-set classifiers us-
ing different adaptations of the regularization parameters for the SVM
classifiers

C = K Method 1 Method 2 Method 3

SVM-N variable 84.67 ± 2.5 84.05 ± 1.7 86.71 ± 1.4 88.29 ± 2.1
SVM-R variable 84.72 ± 2.6 84.88 ± 2.7 84.95 ± 2.2 87.20 ± 1.5
GMM-N variable 83.6 ± 2.2
GMM-R variable 82.15 ± 2.3
SVM-N fixed 84.6 ± 1.9 84.4 ± 1.6 86.6 ± 3.0 87.10 ± 1.8
SVM-R fixed 84.6 ± 2.7 83.8 ± 1.2 84.4 ± 2.3 87.06 ± 1.8
GMM-N fixed 81.2 ± 2.3
GMM-R fixed 80.7 ± 2.4

-N and -R, denote normal and restricted clustering scheme, respectively.
Standard deviations estimated over 20 repetitions are denoted with ±�.

for each experiment, estimated over the 20 repetitions. The
first column of results corresponds to C = K = 10, and the
other 3 columns correspond, respectively, to the three above-
mentioned methods of computing the regularization parame-
ters in the SVM cases. Note that SVM performs consistently
better than GMM, and with SVM the highest accuracies are
obtained using the third method.

The column C = K in Table 3 shows that, without
any adaptation, SVM-based restricted clustering performs
equally well as normal clustering (and better than the bi-
nary tree scheme). In that table, we can notice that SVM-N
takes advantage of using different C values for each class
according to the simple equation of proportionality (28),
since the training set sizes are largely spread across classes
in our database. And SVM-R does not take any advantage
due presumably to the balancing average implied by the
half-to-half constraint. Additionally, as we can see from
Table 3, introducing prior knowledge (about confusions)
with the generalization parameter C (method 1) does not
have a positive influence on the classification performance,
while introducing it along with different C values for pos-
itive and negative classes (method 3) leads to an improve-
ment for both types of clustering trees. The gain in perfor-
mance, however, is not much significant, so there is a need
to have a more sophisticated algorithm of introducing prior
knowledge about confusions in the regularization parame-
ters. In restricted clustering we can obtain only the global
minimum of error within the constraint that is why the final
performance of the SVM-R technique is worse than that of
the normal one (Table 3, method 3). We can also observe
that normal clustering seems to perform slightly better than
restricted clustering for GMM.

Notice in Table 3 how the results for SVM fixed-feature-
set clustering show just a slightly worse performance with re-
spect to the variable-feature-set ones. This can be explained
in the following way. On the one hand, for fixed-feature-set
clustering, the chosen feature set is the one which yielded
the best results in the previous experiments with binary tree,
i.e. the 8th, which includes all kind of features: perceptual,
envelope representation and time derivatives. On the other
hand, the SVM classifier has somehow a built-in feature se-
lection process. In fact, as it implicitly works with features
in a transformed domain, if the kernel and the hyperparam-
eters are appropriately chosen (so that good results are ob-
tained), its transformation may imply emphasizing those fea-
tures that are crucial for a good classification. That is why
for the SVM classifier no feature selection technique leads
to a huge classification improvement [26]. Moreover, using
real-world data, it was shown in Ref. [26] that the best fea-
ture set was the one that included all types of features. Addi-
tional evidence from our experiments is given by the fact that
the difference in performance between fixed- and variable-
feature-set is more noticeable for the GMM classifiers than
for the SVM ones. Nevertheless, in spite of that implicit fea-
ture selection process in SVM classifiers, and the fact that
a fixed- feature-set scheme requires less computation, the
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Table 4
Confusion measure Sn (multiplied by 100), best separating feature set, and percentage distribution of the classification error (for the best results in
Table 3) along the 15 nodes (depicted in Fig. 6 for SVM) for both normal and restricted clustering, and for the variable-features-set SVM classifier and
the GMM classifier

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SVM-N Confusion 0 0.01 0.03 0.07 0.78 0.82 0.83 0.98 3.90 1.27 1.57 2.57 8.44 15.00 46.88
Features 6 3 6 7 7 8 3 7 5 9 5 3 6 4 9
Error 0.78 1.97 0 0 7.65 15.42 2.19 6.30 4.47 4.38 6.64 19.63 18.93 6.23 5.39

SVM-R Confusion 0.41 2.15 0.04 0.15 15.74 1.74 0 0 4.41 46.88 2.23 3.31 0 0 0
Features 7 9 7 8 6 9 6 5 5 4 8 8 3 1 1
Error 23.59 12.35 1.14 0.69 23.1 6.01 0.46 9.12 5.32 4.76 6.51 1.29 3.95 1.20 0.53

GMM-N Confusion 0.01 0.1 0.18 0.22 0.28 0.74 1.10 1.14 2.41 3.77 3.00 7.55 13.76 29.86 55.07
Features 6 9 9 3 7 7 9 5 9 4 5 7 1 6 1
Error 0.07 1.00 3.46 2.91 2.19 6.55 6.89 5.94 8.33 10.63 6.11 5.28 14.61 14.60 11.42

GMM-R Confusion 0.53 5.59 0.10 15.60 1.92 0.58 0 12.03 55.07 0.81 6.84 0.77 0.92 0 0.1
Features 9 6 7 6 8 3 1 1 1 5 5 7 7 1 6
Error 25.35 24.27 3.27 15.43 3.23 3.18 0 3.18 9.50 2.63 7.18 0.51 1.83 0.38 0.07

variable-feature-set scheme may still be advantageous for
the SVM case. In fact, apart from offering some informa-
tion about the acoustical properties of the chosen classes,
the variable-feature-set scheme obviously shows a smaller
restriction bias than that of the fixed-feature-set clustering,
thus resulting in a smaller inductive bias and a presumable
higher overall accuracy [27].

The proposed clustering schemes (both normal and re-
stricted) show two computational advantages in front of the
binary tree classifier. First, the required number of trained
SVM is N − 1, where N is the number of classes, while
for the binary tree (N − 1)N/2 trained SVM are needed.
Second, the proposed schemes involve a smaller number of
classification steps, 4 for restricted clustering, and between
1 and 14, depending on the input pattern, for normal cluster-
ing in our case (see Fig. 6), whereas the binary tree requires
15. However, the proposed variable-feature-set scheme has
an obvious disadvantage: with our choice of feature sets (see
Table 2) up to 9 feature sets can be involved in testing, 7 in
our case (numbers 3 4 5 6 7 8 9).

From Table 4 we can extract some observations concern-
ing the feature sets. Looking at bold numbers in the SVM
case of Table 4, which correspond to a confusion measure
larger than 10, it seems that the best separating feature sets
for the most confused classes mostly are FFBE-based fea-
tures (sets 4, 5, 8, 9), while observing the italic numbers,
which correspond to a confusion measure smaller than 1, it
appears that the for the least confused classes the best sep-
arating feature sets are MFCC-based (sets 2, 3, 6, 7). This
fact may indicate that the FFBE-based features are more dis-
criminative than the MFCC features for highly overlapped
data distributions, while MFCC features appear to show the
best performance when there is a clearer separation between
classes. However, for the most confused classes in the GMM
case (see bold numbers in the GMM part of Table 4) the

average best feature set is the one we have called perceptual
set. This may be due to the relatively low size of that feature
set, which facilitates the estimation problem.

Note in Table 4 that for normal clustering the largest er-
rors are more located towards the end of the tree path while
for restricted clustering they are towards the beginning. This
effect, that is also illustrated in Fig. 7, can be expected for
the normal clustering technique, due to the way the cluster-
ing algorithm in Fig. 5 works. Apparently, the restrictions
applied by restricted clustering make the largest errors are
placed at the beginning. That information can be useful to
improve classification by boosting, since the most erroneous
steps generally contain rare class data and boosting the SVM
that deal with rare categories has been shown to improve
general performance in Ref. [27].

Table 5 shows the confusion matrix corresponding to
the best results. The resulting classification rates for the
various types of sounds are diverse due to both the acous-
tic nature of sounds and the unevenness of the number of
samples in the database. Notice that the sounds we could
name human vocal-tract non-speech (HVTNS) sounds
(numbers 3, 6, 13, 14, and 16) account for a large relative
amount of confusions, since they only are 5/16 of the total
number of classes and contribute with 69.7% of the total
error. The only other sound with more than 10% error is
number 11. In average, the HVTNS classes have a small
number of samples in the database, but there are other
sounds with similar number of samples (like chair mov-
ing), which do not show such a high error. Furthermore,
the HVTNS sounds are mainly confused among them-
selves (the average for the 5 classes is 73.96%). Actually,
although the proposed clustering schemes are based on
acoustic features, some clusters can be interpreted from a
semantic point of view, that is according to their source
identity; e.g. the shaded cluster in Fig. 8 contains “cough”,
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Fig. 7. Distribution of the errors along the tree path for SVM-N, GMM-N, SVM-R and GMM-R. A darker cell means a larger error.

Table 5
Confusion matrix corresponding to the best results (88.29%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 96.67 0 0 0 0 1.67 0 0 0 0 0 0 0 0 0 1.67
2 0 96.79 0 0.19 0.57 0.19 0 0 0.57 0 0 0.38 1.13 0.19 0 0
3 0 0.43 88.70 2.61 0 5.22 0 0 0 0 0 0.43 2.61 0 0 0
4 0 0.75 0.50 96.50 0 0.75 0 0 0.50 0 0.50 0 0.50 0 0 0
5 0 0 0 2.27 87.73 3.64 0 0 0 0 2.27 3.18 0.91 0 0 0
6 0.77 0 26.92 3.85 0 48.46 0 0 0 9.23 0 0 10.00 0.77 0 0
7 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
8 0 0.20 0 0.40 0 0 0 98.8 0.20 0 0 0.2 0.20 0 0 0
9 0 0 0 0 0 0 0 0.2 99.80 0 0 0 0 0 0 0

10 0 0 1.33 1.33 0 3.33 0 0 0 92.67 0 0 1.33 0 0 0
11 0 0 0 2.00 1.50 1.00 0 2.5 0 3.50 77.00 10.0 2.50 0 0 0
12 0 1.30 0 0 0 0.60 0 0.2 0 0 0.10 97.2 0.60 0 0 0
13 0 0.50 14.50 0 0 8.00 0 0 0 0.50 2.50 0 74 0 0 0
14 0 5.00 5.00 0 0 0 0 0 0 6.67 0 0 6.67 76.67 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0
16 0 0 11.67 0 0 3.33 0 0 0 1.67 0 0 1.67 0 0 81.67

“laughter”, “sneeze”, and “yawn”, sounds which belong to
that HVTNS set.

6. Conclusion

This paper is a preliminary attempt to deal with the
problem of classifying acoustic events that occur in a
meeting-room environment. A database has been defined,
and several feature sets and classification techniques have

been tested with it. In our tests, the SVM-based techniques
show a higher classification capability than the GMM-
based techniques, and the best results were consistently
obtained with a confusion matrix based variable-feature-
set clustering scheme, arriving with SVM to a 88.29%
classification rate, which implies a 31.5% relative average
error reduction with respect to the best result from the
conventional binary tree scheme. That good performance
is mostly attributable to the presented clustering tech-
nique, and to the fact that SVM provides the user with the
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Fig. 8. Restricted clustering tree based on SVM. The numbers in the nodes are the ordinal numbers of the 15 SVM classifiers, and the bold numbers
between each pair of clusters denote the best separating feature sets.

ability to introduce knowledge about data unbalance and
class confusions.
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