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Abstract 
 

     Within the framework of the speech technologies, voice conversion consists 
of transforming the voice of a speaker, called source speaker, for it to be 
perceived by listeners as if it had been uttered by a different specific speaker, 
called target speaker. Although there are many speaker-dependent voice 
characteristics, voice conversion focuses mainly on those that are acoustic in 
nature: the spectral characteristics and the fundamental frequency. Among the 
multiple applications of voice conversion, the most important one is to allow 
the synthesis systems generating speech with different voices without the need 
for recording large databases associated to each of them. The objective of this 
thesis is to provide the voice conversion systems with higher quality and 
versatility than they have at present. 

     As a first step, a speech analysis, modification and synthesis system based on 
the harmonic plus stochastic model has been developed. The new methods for 
prosodic modification of speech signals and segment concatenation operating 
on the parameters of such model are the first contribution contained in this 
thesis. In contrast to other existing alternatives, the new methods do not require 
the use of reference signal points placed at a pitch-synchronous rate, so they 
allow a more flexible initial analysis of the signals and they succeed at solving 
the phase problems that derive from it. In order to prove the validity of the new 
model and its associated algorithms for speech synthesis, which is a previous 
requirement for being applied to voice conversion, they are compared to TD-
PSOLA, the most popular technique in the speech synthesis world, under 
strong prosodic modification conditions. The results of the test show that the 
new model is preferred by listeners. 

     The first limitation observed in current voice conversion systems is the fact 
that manipulating the speech signal for converting the source voice into the 
target voice implies degrading its quality. Thus, the existing spectral conversion 
methods show a trade-off between the degree of conversion achieved and the 
quality of the converted signals. For this reason, in this thesis, using a state-of-
the-art baseline system based on statistical gaussian mixture models with linear 
transformations, a new method called Weighted Frequency Warping is 
proposed. This method combines the previous statistical approach with 
frequency warping, which is known to introduce very small quality 
degradation in the converted signals. The new voice conversion method is 
evaluated by means of perceptual tests in which the conversion accuracy and 
the quality of the converted sentences are rated by listeners using a 5-point 
scale. It is concluded that the new method achieves quality scores more than 0.5 
points higher than the baseline system, whereas there is a small decrement in 
the conversion scores, lower than 0.1 points. The mean quality score is slightly 
higher than 3.5, which is highly remarkable. After participating in a public 



international evaluation campaign, it can be observed that such results are very 
good compared to those of the rest of the competitors. 

     The versatility of current voice conversion systems is often limited by their 
requirements for estimating adequate transformation functions from the 
training data. A vast majority of them need that the training sentences uttered 
by the source and target speaker are exactly the same. Although some 
techniques for training voice conversion functions from non-parallel sentences 
have been proposed during the last years (some of them are also valid for 
multilingual contexts), the performance scores of the overall voice conversion 
system decay. A new iterative technique for aligning speech frames coming 
from sentences uttered by two different speakers is proposed here. Its main 
advantage is that it only takes into account acoustic features, so it does not 
require phonetic or linguistic extra information. The experiments confirm that 
the new frame alignment technique allow obtaining very similar scores to those 
obtained in ideal training conditions. It is also proved that when the same 
technique is applied in a context where the source and target languages are not 
the same, the decrement of the resulting scores is small. The excellent results 
obtained by the voice conversion system based on Weighted Frequency 
Warping and the proposed alignment technique in a public international 
evaluation, are also presented. 

     Finally, the voice conversion system created in this thesis is applied to 
building a multi-speaker speech synthesis system. Experiments are carried out 
for evaluating the system in terms of conversion accuracy and quality. 

 
 



Resumen 
 

     Dentro de las tecnologías del habla, la conversión de voz consiste en 
transformar la voz de un hablante, llamado hablante origen, de tal modo que 
los oyentes la perciban como si fuera la de otro hablante, llamado hablante 
objetivo. Aunque los rasgos de la voz dependientes del hablante son diversos, 
la conversión de voz se aplica especialmente a los de naturaleza acústica, es 
decir, los rasgos espectrales y los de frecuencia fundamental. Las aplicaciones 
de la conversión de voz son múltiples, siendo la más destacada permitir a los 
sistemas de síntesis de voz generar habla con diferentes voces sin necesidad de 
disponer de grandes bases de datos asociadas a cada una de ellas. El propósito 
de la presente tesis es dotar a los sistemas de conversión de voz de una mayor 
calidad y versatilidad que la que actualmente tienen. 

     Como primer paso para la realización del presente trabajo de investigación, 
se ha desarrollado un sistema de análisis, modificación y síntesis de voz basado 
en el modelo armónico-estocástico de señal. La primera de las contribuciones 
contenidas en esta tesis son nuevos métodos que operan sobre los parámetros 
de dicho modelo y que sirven para la modificación prosódica de la señal de voz 
y para la concatenación de fragmentos. A diferencia de otras alternativas 
existentes, estos métodos no requieren tomar como referencia puntos de señal 
sincronizados con su período fundamental. Por lo tanto, permiten un análisis 
inicial más flexible y resuelven eficazmente los problemas de fase que se 
derivan de él. Con el fin de demostrar la validez del nuevo modelo y sus 
algoritmos asociados para síntesis de voz, requisito previo para proceder a 
convertir voces, se compara con TD-PSOLA, que a lo largo de los años se ha 
consolidado como la técnica más recurrida en el mundo de la síntesis de voz, en 
condiciones de modificación prosódica fuerte, resultando que los oyentes 
prefieren mayoritariamente el primero. 

     La primera limitación encontrada en los sistemas de conversión de voz 
actuales es el hecho de que convertir una voz en otra significa manipular la 
señal en una cierta medida, lo cual acarrea un deterioro en su calidad. De este 
modo, los diferentes métodos de conversión existentes presentan un 
compromiso entre el grado de conversión alcanzado y la calidad de las señales 
convertidas. En esta tesis, partiendo de un sistema propio del estado del arte 
actual basado en transformaciones lineales y modelos estadísticos de mezclas 
gaussianas, se propone un nuevo método de conversión llamado Weighted 
Frequency Warping, que consiste en combinar el método anterior con la técnica 
conocida como frequency warping, que se caracteriza por ser respetuosa con la 
calidad de la señal. El nuevo método es sometido a la evaluación subjetiva de 
varios oyentes, encargados de puntuar tanto el parecido entre voces convertidas 
y voces objetivo como la calidad de las señales convertidas resultantes, en una 
escala de 5 posibles valores. Se concluye que el nuevo método es capaz de 
incrementar la calidad en más de 0.5 puntos con respecto al sistema de partida, 



mientras que los resultados de conversión experimentan un leve descenso de 
menos de 0.1 puntos. La puntuación en calidad supera los 3.5 puntos, lo cual es 
altamente destacable. Tras participar en una evaluación pública a nivel 
internacional, se observa que los resultados obtenidos gracias al nuevo método 
son muy buenos con respecto al resto de competidores. 

     La versatilidad de los sistemas de conversión actuales viene limitada por los 
requerimientos para poder estimar funciones de transformación adecuadas a 
partir de los datos de entrenamiento. Muchos de los sistemas existentes 
necesitan ser entrenados con frases iguales pronunciadas por los dos locutores 
implicados. Aunque durante los últimos años se han propuesto técnicas que 
permiten entrenar los sistemas en ausencia de frases paralelas, algunas de ellas 
compatibles con contextos multilingües, el rendimiento del sistema resultante 
se ve perjudicado. Se propone aquí una nueva técnica iterativa para alinear 
tramas sonoras de frases pronunciadas por distintos hablantes, que tiene como 
ventaja principal el hecho de considerar solamente aspectos acústicos de la 
señal y no información extra de tipo lingüístico o fonético. Los experimentos 
presentados confirman que la nueva técnica de alineamiento permite obtener 
unos resultados de conversión y calidad muy similares a los del sistema 
entrenado en condiciones ideales. Asimismo, se prueba que la misma técnica 
puede ser aplicada cuando los idiomas origen y objetivo son distintos, con un 
ligero deterioro en el rendimiento del sistema. Se incluyen los excelentes 
resultados alcanzados en una evaluación pública internacional por un sistema 
de conversión de voz basado en Weighted Frequency Warping que incorpora la 
nueva técnica de alineamiento. 

     Finalmente, el sistema de conversión de voz desarrollado es aplicado a la 
creación de un sistema de síntesis de voz multi-hablante. Se realizan 
experimentos perceptuales para la evaluación de dicho sistema en cuanto a 
conversión y calidad. 
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1. Introduction to voice 
conversion 

 

1.1. Voice conversion: definition 
 

     Among all the mechanisms that allow humans communicating and 
interacting with each other, speech is the most natural and precise one. 
Nowadays, the scientific community tries to face the challenge of designing 
speech-based human-computer interfaces, extending the role of speech to 
certain real-life situations in which more primitive ways of interaction 
(keyboard, mouse, joystick, graphic user interfaces, commands, buttons, etc.) 
are used until present. In other words, it is intended to make machines 
recognise well what human speakers say, and answer by generating output 
utterances that the listeners are capable of understanding, trying to imitate the 
human way of communicating with similar naturalness and precision. The 
development of speech technologies has led to a wide variety of research areas 
related to different tasks involved in making computers interact orally with 
humans: modelling of speech production and perception, prosody analysis and 
generation, speech and audio processing, enhancement, coding and 
transmission, speech synthesis, analysis and synthesis of emotions in expressive 
speech, speech and speaker recognition, speech understanding, accent and 
language identification, cross- and multi-lingual processing, multimodal signal 
processing, dialogue systems, information retrieval, translation, applications for 
handicapped persons, etc. 

     In this context, speech synthesis can be defined as the artificial production of 
human speech. The central topic of this thesis, voice conversion, can be 
considered a part of the speech synthesis area. The goal of voice conversion 
systems is to modify the voice produced by a specific speaker, called source 
speaker, for it to be perceived by listeners as if it had been uttered by a different 
specific speaker, called target speaker. Thus, the characteristics of the source 
speaker have to be identified by the system and replaced by those of the target 
speaker, without losing any information or modifying the message that is being 
transmitted. Voice conversion systems have to be capable of accomplishing two 
main tasks: 

1) Given a certain amount of training data recorded from specific source and 
target speakers, the system has to determine the optimal transformation for 
converting one voice into the other one. 

2) The system has to apply this optimal transformation to convert new input 
utterances of the source speaker. 
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1.2. Voice conversion: applications 
 

     The main applications of voice conversion are related to the speech synthesis 
field. The aim of Text-to-Speech (TTS) synthesis systems is to convert words in 
written format into speech. The way of operating of a standard TTS system can 
be described as follows [Hua01]: 

 First, the input text, which may contain not only regular words but also 
numbers, dates, acronyms, proper names, foreign words, etc., has to be 
translated into a sequence of phonetic symbols. 

 Second, the so called prosody generation block attaches appropriate 
rhythm and intonation information to the phonetic sequence, according 
to the knowledge acquired during a previous training process. 

 Finally, the output speech waveform is generated following the phonetic 
and prosodic specifications provided by the previous blocks. 

The block diagram of a generic TTS system is shown in figure 1.1. 

 

 
Figure 1.1: block diagram of a TTS system. 

 

     At present, the waveform generation module of high-quality TTS systems is 
based on unit selection: the synthetic utterances are built by selecting 
appropriate speech segments from a pre-recorded database and concatenating 
them together. The physical attributes of the concatenated units are modified to 
match the desired intonation patterns and also to avoid audible discontinuities 
in the synthetic speech. Incorporating voice conversion technologies into TTS 
systems allows transforming the pre-recorded voice into any other target voice, 
so that it would not be necessary to record an entire database for each of the 
desired output voices. Avoiding multiple recordings and their associated post-
processing is interesting because in general this is an expensive and time-
consuming activity. Furthermore, it helps to reduce the amount of memory 
required by a multi-speaker synthesis system, increasing its portability and 
making easier to integrate it into mobile phones or small devices. Since the 
voice conversion functions can be trained from few minutes of audio and take 
up few amount of memory, it is possible to transmit and incorporate new voices 
to the synthesizer in an easy way.  

     Voice conversion systems have interesting applications in the entertainment 
industry: dubbing the voice of actors in different languages, synthesizing the 
voice of actors that are not alive or that have lost their voice to some extent, 
creating virtual clones of famous people for videogames, etc. In addition, voice 
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conversion systems can also be applied to create unknown target voices, so that 
a single TTS engine can generate multiple perceptually different voices for 
different characters in videogames, for instance, without increasing the memory 
requirements of the system. 

     Speech-to-speech translation technology is devoted to creating translating 
machines that serve as interpreters in multilingual conversations between two 
or more people speaking different languages. Such machines decompose the 
problem into three different subtasks: first, the utterances in the source 
language are converted into text using speech recognition tools; then, machine 
translation techniques are applied to translate the text to the target language; 
finally, the translated sentences are spoken by a TTS system. In this situation, it 
is desirable that the listeners can easily identify the speaker whose utterances 
are being translated, so voice conversion systems can be applied to transform 
the standard voice of the TTS system into the voice contained in the speech 
signal at the input of the speech recogniser. One of the main problems of 
designing a voice conversion system for speech-to-speech translation is the fact 
that the source and target speakers do not speak the same language. 

     In a medical context, another application field is the design of speaking aids 
for people with speech impairments or hearing aids for specific hearing 
problems. Voice conversion may also help to improve the pronunciation of 
different phonemes spoken by children or students of foreign languages, letting 
them hear their own voice pronouncing the problematic sentences without 
errors. 

     From a scientific point of view, acquiring a high level of knowledge about 
speaker individuality would be very useful to make progress in other speech 
technologies like speaker-independent speech recognition, speaker recognition, 
very-low-bandwidth speech coding using an adequate parameterization of the 
speaker-dependent information, etc. 

 

1.3. Speech signal and speaker individuality 
 

     The human physical mechanism for producing speech can be described as 
follows. The speaking process breaks out when the speaker pushes air from the 
lungs through the trachea. The airflow reaches the glottis, where the vocal cords 
can be open or closed. When producing unvoiced sounds such as, for instance, 
fricative consonants, the vocal cords remain open and the airflow crosses the 
larynx without obstacles. Instead, when the sounds being produced are voiced 
like vowels, the speaker closes the vocal cords, so the air pressure under the 
larynx gradually increases until the resistance of the vocal cords is not enough 
to restrain the airflow. Then, the airflow crosses the glottis and the pressure 
below decreases until the vocal cords are closed again. This phenomenon is 
repeated periodically, making the vocal cords vibrate. In any of the two cases, 
after having crossed the glottis, the airflow passes through the vocal tract, 



Chapter 1. Introduction to voice conversion 

 4 

composed of the pharynx, the nasal cavity and the oral cavity, whose shape is 
determined by physical articulators like the lips, the jaw, the tongue and the 
teeth. The speaker controls the position of all these articulators for producing 
specific phonemes. 

     From a signal processing point of view, the speaking process can be 
described by the so called source-filter model, where the source signal 
represents the airflow coming from the glottis, and the physical vocal tract is 
represented by a filter that modifies the frequency-shape of the source signal. 
The speech production process is illustrated in figure 1.2. The glottal source 
signal that corresponds to voiced sounds looks like a train of pulses whose 
amplitude is proportional to the opening area of the vocal cords. Thus, the 
glottal closure instants are located at the zeros of the signal. The time between 
two consecutive glottal closure instants, which depends on the physical 
characteristics of the vocal cords, determines the fundamental frequency or 
pitch of the produced speech signal. The pitch frequency is usually represented 
by the symbol f0. Since the glottal source is quasi-periodic, it can be represented 
in the frequency domain by a set of sinusoids whose frequencies are integer 
multiples of the pitch, f0. The unvoiced sounds are characterized by a noise-like 
glottal source signal. The vocal tract filter shapes in frequency the glottal source 
signal according to the instantaneous position of the articulators, and therefore 
it is characterized by a number of time-varying resonances, called formants. In a 
steady state, each phoneme is characterized by a specific formant structure, so 
when a sequence of phonemes is uttered by the speaker, the physical 
articulators of the vocal tract make the formants move gradually from a steady 
position to the next. 

     Thus, the speech signal perceived by listeners can be seen as the result of 
filtering the glottal source through the vocal tract. The spectrogram and the 
waveform of a real speech fragment are shown in figure 1.3. The unvoiced 
speech segments (first part of the signal in figure 1.3) have noise-like aspect in 
the time domain, whereas the voiced speech segments look like locally periodic 
waveforms. Therefore, the voiced segments are characterized in the frequency 
domain by the presence of harmonically-related signal components, whose 
intensity varies in frequency. The most powerful harmonics are those that 
coincide with the positions of the vocal tract formants. The magnitude spectrum 
of the speech signal is conditioned by the frequency response of the vocal tract, 
but also by the spectral characteristics of the glottal source signal, derived from 
the voiced/unvoiced property, the pitch frequency f0 and the shape of the 
glottal pulses. 
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Figure 1.2: human speech production. 

 

   
(a) 

(b) 

 

Figure 1.3: spectrogram (a) and waveform (b) of a fragment of natural speech uttered by a male 
speaker. 
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     The speech signal carries useful information at different levels. At the top 
level, the sequence of phonemes uttered by the speaker transmits linguistic 
information that the listener is capable of decoding and understanding. This 
kind of linguistic information is codified mainly by the vocal tract 
characteristics (formants) and by some glottal source characteristics 
(voiced/unvoiced). The pitch contour helps to determine whether the sentences 
are affirmative, interrogative or negative, whereas the stress of words, which 
helps to recognise the word itself, is transmitted as a local peak in the pitch 
contour. Apart from that, the so called prosodic features of voice (the speaking 
rate, the rhythm, the intonation, etc., and also the pitch contour) may contain 
important information about the emotional state of the speaker: joy, anger, 
sadness, fear, etc. Finally, the speech signal contains also speaker-dependent 
information that allows the listener recognising the person who is speaking. 

     The question is: what are the voice characteristics that contain the 
information about the speaker individuality? The factors that are relevant for 
people to recognise the person who is speaking can be classified in two 
categories: 

1) The linguistic factors are those contained in the message transmitted by the 
speaker. The most important one is the speaker’s language or dialect, but 
there are other remarkable linguistic cues derived from the speech, such as 
the terminology used by a specific speaker and the syntactic constructs or 
lexical patterns that he uses more typically. In general, the linguistic voice 
characteristics of a given speaker are strongly influenced by his family and 
people living around him, and it depends also on the age, social status, place 
of birth or residence, and the community the speaker belongs to. 

2) The acoustic factors can be defined as the individual voice characteristics 
that can be measured or estimated directly from the acoustic speech 
waveform, regardless of the message that is being transmitted. They are 
located at two different levels: 

 Supra-segmental level: it includes the prosodic features such as the 
fundamental frequency contour, the duration of words, syllables or 
phonemes, timing, rhythm, duration and location of pauses and, 
intensity levels, etc. All these features may be socially conditioned, and 
may also change depending on the emotional state of the speaker. 

 Segmental level: the main segmental acoustic descriptors of the timbre of 
voice are the average pitch level, the frequency response of the vocal 
tract, and the glottal source characteristics. 

All these characteristics may be considered by listeners when trying to 
discriminate the speaker from a given utterance. Their relative relevance 
depends on the circumstances, the specific speaker and also the specific listener. 

     The main challenge in voice conversion technologies is to find a way of 
representing all the information related to the speaker’s individuality by means 
of few parameters that can be easily converted. Since it is very difficult to 
analyze and model the linguistic voice characteristics of a specific speaker, 
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current voice conversion systems are addressed mainly to the acoustic features 
of voice. Indeed, a vast majority of them focus only on the segmental level. For 
this reason, the process of transforming only the acoustic characteristics of voice 
will be also called voice conversion throughout this dissertation. 

 

1.4. Objectives of the thesis 
 

     The general objective of this thesis is to research into voice conversion 
systems and methods in order to improve their quality and versatility.  

     The first specific objective of the thesis is to design new spectral conversion 
methods that succeed at converting the source voices into the target voices 
without degrading significantly the quality of the manipulated signals, and 
implement the consequent voice conversion system. 

     The second specific objective is to create a voice conversion system capable 
of estimating adequate voice conversion functions in all possible training 
scenarios: 

 Intra-lingual scenario with parallel corpus available: the same training 
sentences are uttered by both the source and target speakers in the same 
language, so the correspondence between phonetic characteristics is easy 
to establish. 

 General intra-lingual scenario: the training sentences of the source and 
target speakers are uttered in the same language but are not necessarily 
the same. 

 Cross-lingual scenario: the source and target training sentences are not 
the same and are uttered in a different language. In this case, studies will 
be carried out in English and Spanish. 

     The third objective consists of integrating the resulting voice conversion 
system into a TTS system, so that it can operate not only as a conversion device 
whose input is a given speech signal and whose output is the converted voice, 
but also as a stand-alone TTS system that generates different converted voices 
from a single synthesis database. 

     The degree of fulfilment of the described objectives will be determined by 
means of perceptual tests: the similarity between converted and target voices 
and the quality of the converted speech will be rated by real listeners, so that 
the final performance scores are reliable and give an idea of the impact that the 
resulting system can have in the real world. The resulting voice conversion 
system is to be used for real-life applications, so a very important point is that 
the quality of the synthetic converted speech has to be satisfactory for the 
listeners. The research will be addressed to achieve high similarity scores 
between converted and target voices, but a higher priority will be given to the 
quality scores. 



Chapter 1. Introduction to voice conversion 

 8 

     It has to be clarified that in this dissertation the definition of voice conversion 
will be restricted to the transformation of the acoustic characteristics of voice. 
Moreover, the transformation of prosodic contours is also out of the scope of 
this thesis. Only the mean pitch level of speakers will be adapted. 

 

1.5. Thesis overview 
 

     The rest of the dissertation is organized as follows. 

     In chapter 2, the current state of the art of voice conversion technologies is 
critically analyzed, determining the problems that remain still unsolved and the 
limitations of existing techniques. 

     Chapter 3 is devoted to the design of a suitable speech model that allows all 
kind of prosodic and spectral manipulations of the speech signal. The main 
contributions and novelties contained in chapter 3 are the following: 

 A new method for time-scale modification of speech signals analyzed at 
a constant frame rate using a harmonic plus stochastic model. 

 A new method for estimating the linear-in-frequency phase term of a 
given set of harmonic sinusoids, and its application to calculate phase 
envelopes. 

 A new method for pitch-scale modification of speech signals analyzed at 
a constant frame rate using a harmonic plus stochastic model. 

 A new method for eliminating the phase mismatches at the boundaries 
of speech units to be concatenated. 

     In chapter 4, a baseline voice conversion system is built using the model 
described in chapter 3 and state-of-the-art transformation techniques. After that, 
new techniques for converting spectral envelopes are proposed. The 
contributions presented in this chapter are: 

 The implementation details of a voice conversion system based on state-
of-the-art techniques using a harmonic plus stochastic model. The 
harmonic spectral envelope is parameterized and converted by means of 
linear transformations, and the stochastic envelope is predicted from the 
harmonic one in voiced segments, whereas in unvoiced segments it is left 
unmodified. A simple pitch level adaptation between speakers is 
applied. 

 A new method for spectral envelope conversion, called Weighted 
Frequency Warping, which is a combination between statistical methods 
and frequency warping transformations. It gives very good results in 
terms of conversion-quality balance. 
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 Two methods for calculating optimal piecewise linear frequency 
warping functions automatically. One of them results to fit very well 
with the new spectral envelope conversion method mentioned above. 

     Chapter 5 presents a new method for aligning speech frames from different 
speakers when only non-parallel sentences are available for training the voice 
conversion system. Thus, it contains two main novelties: 

 A new iterative method for frame alignment. 

 Evaluation of a complete voice conversion system based on Weighted 
Frequency Warping and the proposed alignment method in intra-lingual 
and cross-lingual conditions. 

     Chapter 6 is devoted to the design of a multi-speaker TTS system using the 
voice conversion techniques presented in previous chapters. The main 
contributions of this chapter are the results and discussion of the system 
evaluation. 

     Finally, in chapter 7 the main conclusions of this dissertation are 
summarized and some possible research lines for future work are proposed. 

     Appendix A contains a detailed description of Ogmios, the UPC TTS 
synthesis system, which is used for the experiments concerning synthetic voices 
in chapters 3 and 6. Appendix B describes the recording databases used for the 
voice conversion tests throughout the thesis. 
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2. State of the art of voice 
conversion technologies 

 

 

     Voice conversion systems try to capture the speaker’s individuality by means 
of few parameters, so that it can be easily converted. Although a complete voice 
conversion system should transform all types of speaker-dependent 
characteristics of speech, as it has been stated in chapter 1, current voice 
conversion systems are focused only on the acoustic features of voice. 
Moreover, a vast majority of them are focused only on segmental-level features. 

     Research studies on the relationship between voice individuality and certain 
acoustic features have a relatively long history. For instance, Matsumoto et al. 
investigated contributions of pitch, formant frequencies, spectral envelope and 
other acoustic parameters [Mat73]. They concluded that f0 was the most 
important descriptor for individuality, followed by formant frequencies, f0 
fluctuations and spectral tilt. Sato found that the average speech spectrum was 
useful for gender discrimination [Sat74]. Itoh and Saito [Ito82] showed that the 
spectral envelope had the greatest influence on individuality, followed by f0 and 
temporal structure. Furui studied the relationship between psychological and 
physical distances among speakers [Fur86], and reported that the long-term 
average spectrum smoothed by cepstrum coefficients showed the highest 
correlation, followed by averaged f0. In particular, the 2.5-3.5 KHz frequency 
range was found to have the greatest contribution to individuality. Taking all 
these previous studies into account, Kuwabara and Sagisaka stated that voice 
individuality is an amalgam of many parameters, whose relative relevance can 
differ from speaker to speaker and thus depends on the nature of the speech 
material under study [Kuw95]. According to the conclusions of those studies, 
the voice conversion systems found in the literature are addressed in general to 
transforming the short-time spectral envelopes and the pitch level of the 
involved speakers, and some of them are also extended to supra-segmental 
features like pitch contours. 

     The general architecture of a voice conversion system is shown in figure 2.1. 
As it can be observed, the voice conversion process can be decomposed into 
two phases: the training phase and the conversion phase. During the training 
phase, the function for transforming the voice characteristics of the source 
speaker into those of the target speaker is learnt from a training database that 
contains recorded speech utterances. During the conversion phase, the system 
applies the already trained function to transforming new input utterances of the 
source speaker. 
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Figure 2.1: general architecture of a voice conversion system. 

 

     Voice conversion is the result of a sequence of tasks that can be classified into 
four groups, represented by different coloured areas in figure 2.1. This chapter 
presents a detailed review of the methods and algorithms related to each of the 
task groups involved in voice conversion. 

     During both the training and conversion phase, the involved speech signals 
are analyzed frame by frame, according to a certain speech model that allows 
signal manipulation. More information about this topic is given in section 2.1. 

     After the analysis, each analyzed frame is translated into a fixed number of 
parameters with good conversion properties. The different types of 
parameterization found in the literature are detailed in section 2.2. 

     In order to learn proper conversion functions during the training phase, a 
correspondence has to be found between the acoustic characteristics of the 
source speaker and those of the target speaker. This alignment process is crucial 
for the correct performance of the whole system. The existing types of 
alignment methods are described in section 2.3, and the specific requirements 
of cross-lingual voice conversion systems in terms of alignment are also 
commented. 

     Once the training database is correctly parameterized and aligned, the next 
step consists of training adequate transformation functions. There is a wide 
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     Apart from spectral envelopes, one of the most important physical 
characteristics to be converted is the pitch of speakers. Most of the existing 
systems perform a simple mean-pitch-level adaptation. Nevertheless, some 
works dealing with pitch contours and more general prosodic transformations 
(related to supra-segmental aspects of voice) can also be found in the literature. 
Section 2.5 contains a brief review of pitch transformation techniques. 

     Finally, in section 2.6 the conclusions of this bibliographic study are 
summarized. 

 

2.1. The analysis/reconstruction framework 
 

     One of the most important design characteristics of a voice conversion 
system is the speech model used to analyze the input signals and reconstruct 
the modified signals. A good speech model for voice conversion has the 
following characteristics: 

 First of all, it allows reconstructing the signal from the model parameters 
(copy synthesis) with high fidelity, so that the reconstructed signal and 
the original signal are almost indistinguishable. 

 It provides procedures for modifying the prosodic characteristics of 
speech (pitch, duration and intensity) without introducing artifacts. 

The first two characteristics mean that the chosen model is suitable for synthesis 
purposes, but there is a third condition: 

 The model has to allow flexible spectral modifications that do not 
degrade the quality of the synthesized speech. 

The relationship between the voice conversion system and its underlying 
synthesis system is very close, because a correct interaction between them is 
necessary when transforming prosodic features like the pitch. Furthermore, 
artifacts coming from the analysis-synthesis process are still present in the 
converted signal. 

     One of the most popular synthesis techniques is TD-PSOLA [Mou90], which 
provides high-quality synthesized speech with artifact-free prosodic 
modifications. However, it assumes no model for the speech signal. Instead, it 
operates directly on the samples in the time-domain, so it cannot be applied to 
voice conversion. Instead, some other variants of the PSOLA technique have 
been successfully used for voice conversion, like LP-PSOLA or FD-PSOLA 
[Mou95]. Some examples can be found in [Val92, Sün05, Tur06, Dux06a]. 

     Models based on a sinusoidal decomposition of speech [Mca86a, Qua92, 
Rod02] are very suitable for voice conversion, because they provide a high 
degree of flexibility to manipulate the parameterized signal. Harmonic models 
are a particular case of sinusoidal models. Some voice conversion systems using 
sinusoidal and harmonic models can be found in [Kai01, Ye06, Shu06]. In 
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[Sty96], the harmonics plus noise model (HNM, based on the decomposition of 
the speech signal into a harmonic component and a noise-like component) was 
successfully applied to building a voice conversion system [Sty98]. In order to 
avoid problems related to the phase, most of the sinusoidal and hybrid systems 
operate in a pitch-synchronous way, using PSOLA-like methods for prosodic 
manipulation. 

     The STRAIGHT model [Kaw97] is also useful for conversion purposes. 
STRAIGHT uses pitch-adaptive spectral analysis combined with a surface 
reconstruction method in the time-frequency region, and an excitation source 
design based on phase manipulation. It allows very high manipulation factors 
for pitch and duration, without significant quality degradation. This kind of 
representation is adequate to interpolate spectral envelopes and to extract 
parameters like the cepstral coefficients. The STRAIGHT representation was 
used in [Tod01, Tod05, Tod06, Oht07a, Oht07b]. 

     Recently, more complex models of speech describing both the glottal source 
and the vocal tract have reached satisfactory performance in terms of signal 
manipulation [Vin07, Per05], and it is expected that the extension of current 
voice conversion techniques to such kind of models will lead to significant 
improvements in this field. 

 

2.2. Parameterization 
 

     All the voice conversion systems found in the literature analyze, transform 
and regenerate each signal frame individually. There are three main reasons for 
parameterizing the speech frames before training and applying voice 
conversion functions: 

 The identity of a speaker is well represented by some kind of parameters. 

 It is extremely difficult to convert voices directly from the data given by 
the analysis (signal periods, short-time spectrum samples, amplitudes + 
frequencies + phases, etc.). Converting low-dimensional vectors is easier. 

 The parameters used in voice conversion tasks have in general good 
interpolation properties. 

The most typical types of parameterizations used in voice conversion tasks are 
the following: 

 Parameters related to formants, like formant frequencies, bandwidths 
and intensity [Abe88, Miz94, Gut98, Gut01, Ren04, Shu06]. 

 All types of cepstral coefficients (CC): discrete cepstrum [Sty96], MFCC 
[Tod05, Sty98], LPC-cepstrum [Lee07]. The main reason for choosing 
such coefficients is that they have been widely used in other areas of 
speech technology like speech or speaker recognition, with very good 
results. Furthermore, they provide a reliable measure of acoustic distance 
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between different frames, which is an important property for alignment 
tasks. 

 Line spectral frequencies (LSF) [Ars99, Kai01, Ye06, Sün06, Dux06b], 
which are a special representation of all-pole filters. LSFs are reported to 
have very interesting properties for voice conversion tasks. 

 In some cases, the spectral samples are directly used for voice 
conversion instead of more handy parameterizations. This is adequate 
when the system applies transformation functions based on frequency 
warping of spectrums [Val92, Sün03a]. 

Studies on the convenience of different parameterizations [Kai01, Ye04a] 
conclude that LSF are advantageous with respect to other spectral 
representations for several reasons: 

 They are a good representation of the formant structure. 

 They have better interpolation properties. 

 A perturbation in one of the coefficients affects only a small portion of 
the spectrum. 

The use of LSF coefficients is very common in recent voice conversion systems. 

 

2.3. Alignment 
 

     Voice conversion systems are capable of learning transformation functions 
from the training data of the source and target speakers. In order to map the 
source speaker’s acoustic space to the target speaker’s acoustic space, it is 
necessary to have a previous knowledge about the source-target 
correspondence between different training units. The process in which this 
correspondence is established is called alignment. Several alignment strategies 
can be adopted, depending on the requirements of the spectral envelope 
transformation method applied by the system. They can be divided in three 
groups. 

 

2.3.1. Alignment of acoustic classes 
 

     In some voice conversion systems, like for instance those based on mapping 
codebooks or frequency-warping functions [Ars98, Sün03a], the input source 
vectors belonging to different acoustic classes are transformed in a different 
way. Thus, in order to train class-dependent functions, a correspondence has to 
be found between the acoustic classes of the source speaker and those of the 
target speaker. Ideally, each class represents the characteristics of a certain 
phoneme or phoneme group. 
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     In [Ars98] the states of hidden Markov models are interpreted as acoustic 
classes. The same speaker-independent model is used to segment the source 
and target speaker’s utterances, so the correspondence between them is 
automatically established. In [Sün03a] the classification is performed by means 
of clustering techniques, and the source-to-target correspondence is determined 
using minimum-distance criteria. 

 

2.3.2. Frame-to-frame alignment 
 

     A vast majority of voice conversion systems found in the literature learn 
vector-transformation functions from a set of paired parameter vectors (each 
vector contains the parameters of one speech frame). If a parallel training 
corpus is available, it is very simple to find the source-to-target correspondence 
at frame level. A parallel corpus is obtained when exactly the same training 
sentences are uttered by both the source speaker and the target speaker. The use 
of parallel training corpora guarantees that the phonetic sequence is the same 
for both speakers, so the alignment process is simplified. In this case, the most 
preferred frame-alignment technique is dynamic time-warping (DTW), almost 
standard in voice conversion systems [Abe88, Sty98, Kai01, Sün05, Tod05]. The 
main disadvantage of DTW is that the optimal source-target pairs are 
determined by searching the path of minimal global distortion without taking 
into account the differences between speakers. Stylianou proposes an improved 
alignment that consists of a first alignment based on DTW, an initial estimate of 
the voice conversion function, and then a second DTW-realignment of 
converted-target vectors, so that a much more accurate correspondence 
between frames is found [Sty07]. 

     An alternative method based on hidden Markov models (HMM) has been 
also proposed for parallel training sentences whose orthography and phonetic 
transcription are known. First, all the sentences are segmented using speaker-
dependent models. Then, the boundaries of the phonemes or sub-phonemes are 
taken as anchor points, and linear time-warping [Dux06b] or dynamic time-
warping [Ye06] is used inside the units to establish the correspondence between 
source and target vectors. A high-accuracy alignment is obtained by means of 
this procedure, but it must be taken into account that training accurate HMMs 
requires enough training data from each of the speakers. 

     In a very recent work [Nan07], statistical methods have been also applied to 
optimize the spectral conversion function and the time-sequence matching of 
vectors simultaneously, using maximum likelihood criteria. The results 
reported point that such a statistical method outperforms typical systems in 
which alignment and training are separate processes. 

     In a realistic voice conversion application, only non-parallel corpora may be 
available during the training phase. Four different alignment methods have 
been used in this situation: 
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 Class mapping [Sün04]. The source and target vectors are classified 
separately in clusters. A first mapping is established between each source 
acoustic class and one of the target acoustic classes by comparing the 
associated vocal-tract-normalized centroids. Then, all the vectors inside 
each class are mean-normalized and finally the frame alignment is 
performed by finding the nearest neighbour of each source vector in the 
corresponding target class. 

 Dynamic programming [Sün06a]. Given a set of N source vectors {sk}, 
the dynamic programming technique is used to find the sequence of N 
target vectors {tk} that minimizes the cost function calculated as follows: 
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The underlying idea is similar to that of unit selection: the global cost 
function C takes into account the source-target cost but also the target-
target concatenation cost. The function d(·) represents the acoustic 
distance between two vectors, and the factor α is empirically adjusted 
depending on the relevance of each kind of distance. This alignment 
technique is reported to outperform the previous one, and it allows 
building a text-independent and language-independent system, because 
the correspondence between frames is obtained using acoustic criteria 
only. However, it has two drawbacks: (a) it is very time-consuming, and 
(b) increasing the size of the training database implies worsening the 
conversion scores, since the optimal sequence {tk} is closer to {sk} when 
there are more frames available for selection. 

 Speech recognition [Ye04b]. A speech recognizer operating with 
speaker-independent HMMs is used to label all the source and target 
frames with a state index. Given the state sequence of one speaker, the 
alignment procedure consists of finding longest matching sub-sequences 
from the other speaker until all the frames are paired. 

 Unit selection using a TTS system [EnN05, Dux06]. In some 
applications like the customization of a text-to-speech synthesizer, a 
huge database of speech from the source speaker is available, so the TTS 
system can be used for generating the same sentences that have been 
recorded from the target speaker. Given that a parallel training corpus is 
now available, the parameter vectors can be aligned by DTW or HMM. 
The main disadvantage of this method is that it can be applied only 
when there are enough data from the source speaker to build a TTS 
system. This strategy is incompatible with cross-lingual applications. 

 

2.3.3. No alignment 
 

     Some of the systems found in the literature do not actually require an 
alignment method. Instead, a certain acoustic model is estimated from the 
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training data of one of the speakers and the optimal transformation function is 
calculated using the information contained in the model itself. 

     In [Ye06], acoustic hidden Markov models are trained from the training 
parameter vectors of the target speaker, and a probabilistic voice transformation 
function is statistically estimated in such way that the transformed source 
vectors give maximum likelihood with respect to the model. The 
transformation function used in this work is based on a gaussian mixture model 
of the source vector space. 

     Some other approaches are based on adaptation of models: an already 
trained transformation function between speakers A and B is adapted to the 
acoustic data of a different target speaker C. Two different adaptation 
techniques have been proposed for voice conversion: maximum-a-posteriori 
(MAP) adaptation [Lee06] and maximum-likelihood stochastic transformations 
(MLST) [Mou06]. The MLST technique allows also adapting the conversion 
function to a different source speaker. 

     Before concluding, the increasing prominence of HMM-based systems in the 
speech synthesis field has to be emphasized [Mas96]. Given one input text and 
one HMM already trained, such systems are capable of generating an optimal 
output sequence of parameter vectors from which the synthetic utterance can be 
reconstructed. HMM-based speech synthesis systems have successfully used 
adaptation techniques like MAP or MLLR (maximum-likelihood linear 
regression) to synthesize speech with different voices: the initial HMM is 
estimated from the training data of the source speaker, and then it is adapted to 
maximize the likelihood of the target speaker’s training vectors with respect to 
the modified HMM [Mas97, Tam98]. The adapted model can be directly used 
for synthesizing speech with the target voice. This is a conceptually different 
formulation of the voice conversion problem, restricted to the domain of TTS 
systems. The main problem associated to this promising technology is that at 
present, in spite of the recent improvements [Zen07], the quality of the synthetic 
speech obtained through HMMs is still limited by the statistical synthesis 
procedure itself, and the same occurs when synthesizing speech from adapted 
HMMs. This is the reason why typical voice conversion systems are usually 
combined with corpus-based speech synthesis systems, whose associated 
quality scores are closer to those of natural speech. 

 

2.3.4. Requirements of cross-lingual voice conversion 
 

     Cross-lingual voice conversion is the most extreme situation in terms of 
alignment. Voice conversion systems dealing with different languages have 
some special requirements because the utterances available for training are 
characterized by different phoneme sets. Obviously, the main difference 
between intra-lingual and cross-lingual alignment is that it is not possible to 
obtain parallel corpora from utterances in different languages, so the most 
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popular alignment strategies are not valid anymore. On the other hand, it can 
be remarked that training cross-lingual voice conversion functions would not 
be problematic at all if the alignment problem was solved. Despite the recent 
appearance of some cross-lingual applications for voice conversion like speech-
to-speech translation, few works on cross-lingual voice conversion can be found 
in the literature.  

     As explained before, systems using adaptation techniques (MAP, MLLR, 
etc.) do not need an explicit alignment between source and target vectors or 
acoustic classes. Since the adaptation of acoustic models is a statistical 
procedure, using this kind of systems makes cross-lingual voice conversion 
possible [Mou06, Lee06, Lat06]. 

     Systems requiring alignment can be trained in cross-lingual conditions when 
at least one of the speakers is bilingual: the transformation function for acoustic 
vectors can be estimated using conventional methods from a parallel corpus 
recorded in the language that both speakers have in common (in fact, it is 
enough if only one of them is bilingual). In the conversion phase, this acoustic 
function can be applied to transforming the voice of the source speaker without 
worrying about the language. This strategy was successfully adopted in [Abe90, 
Mas01, Dux06b]. The main disadvantage of this simple approach is that it is 
difficult to find bilingual speakers for every pair of languages. 

     Among the techniques proposed for aligning frames when only non-parallel 
corpora are available, only those that perform the alignment following 
exclusively acoustic criteria are compatible with cross-lingual voice conversion 
[Sün03b, Sün06b]. The rest of techniques are based on intra-lingual HMMs and 
TTSs, and although theoretically they could be extended to a cross-lingual 
context, it has not been done yet. An adequate alignment technique based 
exclusively on acoustic features is desirable for several reasons: 

 The problem of finding bilingual or multilingual speakers for recording 
parallel corpora is avoided. 

 It transforms non-parallel training corpora into parallel corpora 
compatible with almost all the voice conversion systems. 

 Since it does not use linguistic information of any kind, it allows text-
independent and language-independent voice conversion. 

 

2.4. Spectral envelope conversion methods 
 

     The transformation of spectral envelopes is the central task of a voice 
conversion system. A vast majority of the publications on voice conversion are 
related to this task. A lot of different techniques have been proposed during the 
last twenty years, since the voice conversion problem was stated in 1988. 
Despite the diversity of methods, they can be classified in six groups, 
depending on the type of transformation that they apply. A detailed 
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explanation of the existing spectral conversion methods and algorithms is 
presented in the following subsections. 

 

2.4.1. Methods based on mapping codebooks 
 

     The first work on voice conversion was carried out by Abe et al. in 1988 
[Abe88]. The system is based on vector quantization (VQ) and mapping 
codebooks. The training phase consists of the following steps: 

1) The source and target speakers pronounce a learning word set. All the 
words are vector-quantized frame by frame. 

2) The correspondence between vectors of the same words from the two 
speakers is determined using DTW. The correspondences are accumulated 
as histograms. 

3) Using each histogram as a weighting function, the mapping codebook is 
defined as a linear combination of the target speaker’s vectors. 

4) Steps 2 and 3 are repeated to refine the mapping codebook. 

The vectors contain acoustic features like formant frequencies and bandwidths, 
spectral tilt, glottal waveform, etc. In the conversion phase, the source speaker’s 
input utterance is LPC-analyzed and the spectrum parameters are vector-
quantized using the source speaker’s own codebook. Then, they are decoded 
using the source-target mapping codebooks. 

     In [Shi91], the concept of fuzzy vector-quantization and fuzzy mapping is 
applied to improve the previous system. Each source vector is represented as a 
weighted linear combination of all the codewords. Every correspondence 
between the two sets of codewords is taken into account when converting the 
source vectors. 

     In the voice conversion system proposed by Mizuno and Abe in 1994 
[Miz94], the codewords of a one-to-one mapping codebook are inspected to 
extract their formant frequencies, formant bandwidths and spectral tilt. The 
correspondence between the formants of each pair of source and target 
codewords is established manually, and the formant frequency shift values and 
tilt shift values are stored as transformation rules. In the conversion phase, the 
input source speech is vector quantized by frames using the codebook of the 
source speaker. The LPC poles whose characteristics are closer to the reference 
formants of the dominant codeword are chosen as current formants, and the 
associated rules are applied to them. The spectral tilt is copied directly from the 
codeword. The modification of all the parameters is performed simultaneously 
using an algorithm that minimizes the spectral distortion. The authors 
concluded that the listeners preferred this system rather than the classical VQ 
system, because it guaranteed a higher speech quality after the modification. 
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     In 1999, Arslan proposed a new codebook-based conversion method: STASC 
(speaker transformation algorithm using segmental codebooks) [Ars99]. In this 
case, a transfer function H(w) is calculated for each frame so that the target 
frame is obtained as 

( ) ( ) ( ) [ ] ( ){ }( )wYFTnywXwHwY 1Re, −=⋅=  (2.2) 

The speech frames are classified by phonemes or by HMM states, and the 
average LSF vector of each cluster is calculated for the source speaker, {Si}, and 
for the target speaker, {Ti}. These vectors are taken as entries of a one-to-one 
mapping codebook. Given a source LSF input vector x, the distance from x to 
each of the codewords Si, called di, is calculated as 
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The sub index k denotes the kth vector element. The length of the vectors is p. 
Since the presence of a formant is characterized by two close line spectral 
frequencies, the distance function includes a weighting factor that emphasizes 
the contribution of these lines. Then, a weight vi is assigned to each of the 
codebook words Si, obtained as 
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for a certain optimal γ whose calculation details are omitted here. The converted 
vector F(x) is then calculated as follows: 
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The transfer function for the current frame is given by the all-pole filters 
associated to the LSF vectors x and F(x), Vx(w) and VF(x)(w) respectively. 

( ) ( ) ( )wVwVwH xxF )(=  (2.6) 

As explained afterwards, the author proposed also to modify the LPC excitation 
signal and other features related to prosodic aspects of the speech. 

     An evolution of the STASC method was presented by Turk and Arslan in 
[Tur06]. First, some refinements were made in the codebooks to eliminate the 
source and target classes that had been matched in the alignment step but were 
significantly different (i.e. accent reasons). A spectral equalization procedure 
was also used to cope with the problem of the different recording environments 
between the source and target speakers. Finally, the use of a pre-emphasis filter 
was discussed in order to make the system more robust to small variations in 
the speech signal. 

     One of the most novel approaches based on vector-quantization was the one 
developed by Salor and Demirekler in 2006 [Sal06]. Their system is trained 
using a parallel corpus: the sentences are automatically segmented into phones 
using HMMs, and DTW is used inside each phone to obtain the frame pairs. 
Using a LSF parameterization, the frames of both speakers are vector-quantized 
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and a codebook is obtained for each speaker: {Si}i=1..L and {Tj}j=1..L. From the 
sequence of training vectors, an L×L histogram matrix H is obtained. H(i, j) 
shows how many times the pair {Si, Tj} was found in the aligned vector-
quantized training corpus. Another L×L matrix P is obtained for the target 
speaker, in which P(i, j) indicates the transition probability from the ith class to 
the jth class, based on the number of occurrences found in the training data. 
Given a sentence from the source speaker to be converted, it is firstly translated 
into N vector-quantized frames. Then, the N×L histogram matrix H(sen) 
associated to the whole sentence is built: the kth row of H(sen) is copied from the 
row of H associated with the class assigned to the kth frame, representing the 
probability of each target class to be paired with it. Finally, the dynamic 
programming procedure is used to find the best trajectory from the first row of 
H(sen) to the last one, obtaining the N-length sequence of target classes that 
maximizes the probability function given by the product of their individual 
probabilities in H(sen) and the transition probabilities between them, provided 
by the matrix P. The converted signal is synthesized following the selected 
sequence of target codewords. 

 

2.4.2. Methods based on frequency-warping functions 
 

     The dynamic frequency warping technique was first introduced by Valbret 
et al. in [Val92]. Given a pair of spectra X(w) and Y(w), modelled by them log-
spectral samples, this technique finds the frequency warping function w’(w) so 
that the spectral distance between X(w’(w)) and Y(w) is minimized. In practice, 
the warping function is calculated as a set of frequency bin pairs. In order to 
eliminate the effect of the glottal source, the spectral tilt is estimated and 
eliminated from X and Y before finding the optimal path. As the warping 
function is different for different phonemes, a vector-quantization procedure is 
applied to partition the acoustic space and then an independent warping 
function is defined for each class. During the conversion step, the warping 
function of the most suitable class is applied to the log-spectrum of the source 
speaker. The spectral tilt is also modified. 

     In [Sün03a], the acoustic space of the source and target speakers is divided 
into classes, and a correspondence is found between every source class and one 
target class. Different types of frequency-warping functions for vocal tract 
length normalization (VTLN) with one or more parameters are studied and 
compared. A smoothing technique is applied to the parameters of the warping 
functions of consecutive frames in order to avoid the artifacts caused by the 
discontinuities between different classes. The quality of the synthetic converted 
speech is reported to be very high, but the identity of the target speaker is not 
completely captured by this method. 

     Rentzos et al. proposed to apply frequency warping functions combined 
with HMMs of the formant trajectories [Ren04]. Prior to training the system, 
speaker-dependent HMMs of MFCCs are used to estimate the phoneme 
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boundaries by forced-alignment segmentation. The formant candidates 
associated to each HMM state are obtained by means of an LPC analysis and 
are modelled using another HMM whose associated feature vectors contain the 
frequency, bandwidth and intensity of the formants. This results in a two-
dimensional HMM that is used to determine the formant trajectories, discarding 
the poles that do not represent real formants. The equation for voice conversion 
at frame t is expressed as 
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The frequency warping function includes the mapping functions for both the 
formant frequency α(w,t) and bandwidth β(w,t), defined by sub-bands, and γ 
maps the spectral magnitude between the source and target speakers. Finally, 
the converted spectrum is translated into the converted LPC coefficients. 

     Recently, a very simple approach based on mapping formants was 
presented [Shu06]. The training step consists of selecting one or more key 
speech frames from the source and target speakers that can be considered 
equivalent in terms of acoustic content: phoneme, context, etc. The frames with 
most stable formants are preferred. For example, the central frames of phoneme 
/e/ are a good choice. The formants are extracted from the source and target 
key frames, and a piecewise linear warping function is defined by the paired 
frequency points, including (0, 0) and (π, π). In the experiments, a single 
warping function is used for all the frames, and a filter is included to 
compensate for the inter-speaker differences in the frequency distribution of the 
energy. The main advantage of this system is that the perceptual speech quality 
is almost unaltered, but obviously the identity conversion scores are low. 

     More types of non-linear frequency warping functions are investigated in 
[Pri06], obtaining similar conclusions with regard to the converted-to-target 
similarity and the quality of the synthetic speech. 

 

2.4.3. Methods based on speaker interpolation 
 

     The idea of speaker interpolation was originally proposed by Iwahashi and 
Sagisaka in 1994 [Iwa94, Iwa95]. The authors state that the parameter vectors 
that characterize the spectral envelope of a generic target speaker can be 
obtained by a linear combination of parameter vectors obtained from a set of N 
different pre-stored speakers. 
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Here, xik represents the vector xk obtained from the ith speaker. The weighting 
factors are estimated by minimizing the cepstral distance between the 
converted and target spectra. 
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2.4.4. Methods based on neural networks 
 

     Neural networks have been also used for voice conversion purposes. Fewer 
details are given about this kind of techniques, because they did not reach an 
important impact, due to the almost simultaneous birth of GMM-based 
systems, whose performance really made a breakthrough in voice conversion 
technologies. 

     In [Nar95], artificial neural networks are used to learn a transformation 
function between the three first formants of the source speaker and those of the 
target speaker. The waveform is regenerated by a formant synthesizer. 

     A comparative study presented by Baudoin and Stylianou in 1996 [Bau96] 
shows that the performance of such systems is worse than that of GMM-based 
systems, which were born approximately at the same time. 

     In [Wat02], a three-layer radial basis function (RBF) network is used to 
convert the LPC spectral envelopes. The input vector x is applied to all the RBFs 
in the hidden layer. Each of them generates a radially symmetric response: 
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The kth element of the output vector y is obtained by the network by computing 
the following linearly weighted summation: 
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In order to simplify the training, the centroids ci are chosen by applying the k-
means algorithm to the source training vectors, and σi is forced to take the value 
||ci||2. The weight coefficients are adjusted to minimize the least square error of 
the transformation for the training data. 

 

2.4.5. Methods based on probabilistic linear transformations 
 

     One of the methods proposed in [Val92] is based on the concept of linear 
multivariate regression. The training speech frames of the source speaker are 
LPC-analyzed and vector-quantized into Q classes. For each of the classes, a 
transformation matrix is calculated as follows. First, the mean is subtracted 
from all the source vectors inside each class. Let Cq(s) be the matrix whose 
columns are the mean-normalized source vectors inside the qth class, and Cq(t) 
the matrix given by their aligned mean-normalized target vectors. Then, a 
transformation matrix Tq is calculated by finding the solution of the following 
least squares problem: 
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During the conversion phase, the speech frames are vector-quantized and the 
mean vector and the transformation matrix of the assigned class are used to 
convert the spectral envelope. This method based on linear transformations is 
reported to provide a high degree of similarity between converted and target 
voices, but produces some audible distortions. 

     The use of statistical methods for converting spectral envelopes led to one of 
the most important advances in the voice conversion field. The most important 
drawback of the systems based on vector-quantization is the appearance of 
discontinuities in the transformation function near the transitions between 
classes. This problem is solved by dividing the acoustic space into overlapping 
classes, so that all the input vectors have a certain probability of belonging to 
each of the acoustic classes. In the system proposed by Stylianou [Sty96, Sty98], 
a gaussian mixture model (GMM) is fitted to the training acoustic vectors of 
the source speaker by means of the expectation-maximization (EM) algorithm. 
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N(x; µi, Σi) is a gaussian vector distribution defined by the mean vector µi and 
the covariance matrix Σi, and αi is the weight assigned to the ith gaussian 
component of the model. The proposed conversion function is given by the 
following expression: 
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where pi(x) denotes the probability that x belongs to the ith gaussian component. 
The vectors vi and matrices Γi are calculated during the training phase by 
minimizing the least squares error given by the distance between the 
transformed vectors {F(xk)} and the corresponding aligned target vectors {yk}, 
taken from a parallel corpus. The feature vectors contain discrete cepstral 
coefficients extracted from the amplitudes of the harmonic sinusoids found in 
the voiced frames. A noisy component is also extracted from all the frames, but 
its transformation is performed by two different corrective filters, one for the 
unvoiced frames and other for the aperiodic component of the voiced frames. 
The shape of the filters is trained by dividing the average noise periodogram of 
the target speaker by that of the source speaker. 

     In [Kai01] the aligned source and target LSF vectors are concatenated 
together and a joint GMM is trained from the resulting training vectors. The 
parameters of the gaussian components of such joint model, {αi, µi, Σi}, provide 
enough data to obtain the following conversion function: 
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In this case, the probability pix(x) refers to the model defined by {αi, µix, Σixx}. At 
present, the described spectral envelope conversion method has become almost 
a standard, because it outperforms all the previous techniques in terms of 
balance between quality and conversion degree. The soft acoustic classification 
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based on GMMs avoids the appearance of typical artifacts caused by the 
discontinuities in the transformation function. However, it was reported that 
the converted speech signal suffered from a certain over-smoothing effect that 
degraded the quality as well. Some authors tried to solve this new problem. 

     Since the quality of a frequency-warped spectrum remains high compared to 
that of unmodified speech, Toda et al. [Tod01] had de idea of combining the 
output of the GMM-based system and the DFW-based system. Given a source 
spectrum X(w) and its two converted spectra Ygmm(w) and Ydfw(w), the combined 
solution can be calculated by the following expression: 

( ) ( ) ( ) ( ) ( )( ){ } ( ) 10,logloglogexp ≤≤−+= wwYwYwwYwY dfwgmmdfw γγ  (2.15) 

The weighting function proposed, γ(w), is linear in frequency. When using the 
described method, the speech quality is found to be much higher than in GMM-
only systems, but there is a small decay in the conversion scores. 

     Another solution for the over-smoothing problem, proposed in [Che03], 
consists of using the probabilities given by the GMM to build a different 
transformation function, based on the concept of maximum-a-posteriori 
adaptation: 
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The mean target vectors are obtained by the adaptation procedure: 
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The authors apply a smoothing procedure to the transformed envelopes to deal 
with the appearance of clicks or unrepresentative points in the trajectories of the 
spectral features. The speech quality is increased by this approach, but the 
obtained conversion scores are lower. 

      An interesting new proposal is made in [Kum03, Ver05], introducing the 
concept of voice fonts. The voice fonts try to completely represent the speaker 
individuality in such manner that the conversion procedure is implemented as 
a substitution of the acoustical descriptors encoded in the source fonts by those 
of the target fonts. During the training step, the source and target data are 
segmented and separate source and target GMMs are estimated from the 
vectors that correspond to each phone/diphone phi: 
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The conditional probability P(phi/x) that a vector x belongs to a phone phi can 
be computed as 
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where βi represents the speaker-dependent measured probability of occurrence 
of phone phi and N is the number of phones. To replace the source spectral 
envelope with the target one, the following conversion function is applied: 
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The super indices x and y are referred to the models of the source and target 
speakers, respectively. Only the contribution of the K most probable phones is 
taken into account, with K≤N. 

     The system described by Ye and Young in [Ye04a, Ye06] is also based on 
gaussian mixture models, and the applied conversion function is similar to 
Stylianou’s, but different strategies are proposed by the authors to enhance the 
quality of the baseline system. One of them is the use of perceptual post-
filtering after the transformation to avoid the excessive broadening of the 
formants caused by the over-smoothing effect. Other important proposal is the 
target speaker’s phase envelope prediction from the converted magnitude 
envelope. During the training phase, the spectral vectors yk of the target speaker 
are stored together with their corresponding pitch-normalized waveform sk[n] 
and with a vector pk containing the probabilities {pi(yk)} given by a GMM. Let us 
call P the matrix whose kth column is pk and S the matrix whose kth column is 
the waveform sk[n]. The following least squares system is solved to find the 
transformation matrix Tp: 

PTS ⋅= p  (2.21) 

The columns of Tp can be seen as the entries of the optimum waveform 
codebook. Given a new vector y converted from x and its probability vector p, 
the converted waveform is predicted as: 

pTs ⋅= p  (2.22) 

The converted phase envelope can be directly inferred from the waveform, as 
there is a very close relationship between them. 

     In other work presented by Toda et al. [Tod05], the spectral conversion is 
performed by maximum likelihood functions, considering the global variance 
of the converted parameters. The GMM Θ is estimated from the concatenated 
source-target vectors containing static and dynamic spectral features. Given a 
time sequence of MFCC vectors {xk} to be converted, the objective is to find the 
sequence {yk} that maximizes the likelihood function 

{ } { } { }( )Θ= ,,log mpL kk xy  (2.23) 

where {m} is the sequence of mixtures determined by maximizing p({xk}/{m},Θ). 
In order to include the information given by the variance of the static spectral 
parameters, statistics about it are measured during the training step and a 
related term is added to the likelihood function L. The sequence of converted 
vectors obtained after the maximization presents a parameter variance similar 
to the one of natural speech. The experiments carried out by the authors show 
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that the objective and subjective improvements in terms of conversion degree 
are very important. 

     In [Tod06], a GMM-based eigenvoice conversion system is described. The 
idea is to obtain generic target speakers from a single source speaker by 
adjusting few parameters. A parallel corpus of several speakers is available. 
First, one of the speakers is chosen as source and the rest are considered target 
speakers, and then a target-independent GMM λ(0) is trained from all the 
source-target vector pairs (one-to-many alignment). Second, each target-
dependent GMM λ(s) is trained by updating only the target mean vectors of λ(0) 
by means of the EM algorithm. The updated means are the redefined as 
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where only the vectors w are speaker-dependent. After having determined the 
matrices Bi and vectors bi(0), the speaker individuality can be controlled just by 
tuning the vector w. Updates and improvements of this method can be found in 
[Oht07a, Oht07b]. 

 

2.4.6. Methods based on hidden Markov models 
 

     As it has been explained in section 2.3, a particular branch of voice 
conversion has grown around HMM-based speech synthesis systems. The main 
disadvantage of HMM-based speech synthesis [Mas96] is that the quality of the 
synthetic speech is not very high compared to that achieved by corpus-based 
synthesis systems. However, generating target voices by adaptation of acoustic 
models does not introduce a significant quality degradation compared to that 
already present in the synthetic speech without modification. This is an 
important property, taking into account that these systems are expected to 
continue evolving during the next years. 

     In [Mas97] the concept of voice conversion is introduced for the first time in 
an HMM-based speech synthesis system. During the training step, phoneme 
HMMs are estimated using MFCC and their first and second derivatives. In the 
synthesis step, when no conversion is applied, a sentence HMM representing 
the text to be synthesized, λ, is constructed. The synthetic utterance is generated 
from the sentence HMM λ by finding the state sequence q and vector sequence o 
which maximize P(q,o/λ,T), where T is the length of the sequences. In order to 
perform voice conversion, the trained HMMs are used to segment the data 
samples of the target speaker, and the means and covariance matrices of the 
model are MAP-adapted using the target samples associated to each of the 
states. 
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The adapted model is directly used to synthesize speech. Since the MAP 
adaptation is carried out with very few data, vector field smoothing (VFS) is 
applied to interpolate new parameters of untrained distributions and to smooth 
the estimated parameters of trained distributions. In [Tam98] a different kind of 
adaptation, MLLR, is used in the same synthesis system: 

ΣBBΣbAµµ T=′+=′ ,  (2.26) 

A, b and B are determined following a maximum likelihood criterion. 

     Following the idea of obtaining a generic target speaker from multiple source 
speakers (speaker interpolation), in [Tam01] an arbitrary speaker's voice is 
obtained by MLLR adaptation from a generalized HMM trained from a multi-
speaker database. The prosodic features are also included in the model. The 
converted speech is synthesized by a HMM-based TTS system. 

     Apart from this, there can be found other systems in which HMMs are not 
used for synthesis but only for training conversion functions. In [Mor03], the 
conversion of vocal tract parameters is assumed to be represented as: 

bAvv +=′  (2.27) 

Given a speech corpus of the source speaker and a small set of utterances of the 
target speaker, the source-to-target conversion is trained according to the 
following procedure. First, the formant frequencies and the formant intensities 
are extracted from all the training data. After that, speaker-dependent HMMs 
are trained from the corpus of the source speaker, and then the MLLR 
technique is applied to find A and b so that the target data give maximum 
likelihood with respect to the mean-adapted HMMs. During the conversion 
phase, the source vectors are transformed according to the transformation 
function given by A and b, and then the speech is resynthesized from the 
converted parameters. 

     In [Dux04], a HMM is estimated from the training data, and a conversion 
function similar to that of a GMM-based voice conversion system is optimized 
for the source-target pairs within each state. In the conversion phase, the source 
sentence is segmented according to the trained HMM, and the parameter 
vectors are transformed by applying the state-dependent function. In the same 
paper, another method based on decision trees is presented. The phonetic 
information available in a TTS system is used to train decision trees, which 
classify the frames and select the best gaussian-like conversion function to be 
applied. The comparison made between these two approaches and the classical 
GMM approach shows that the performance of GMM-based systems is slightly 
better than that of the HMM-based system, but the method based on phonetic 
classification by decision trees leads to higher conversion scores. 

     The idea proposed in [Lat06] is more ambitious than simple voice 
conversion, and takes also benefit from the flexibility provided by a HMM 
synthesizer. In this system, HMMs are employed to build a polyglot system. 
Firstly, speaker-independent models are built from the training data, recorded 
from several speakers and languages. In order to do this, the multilingual 
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transcriptions are translated into a phonetic representation common to all the 
languages. Speaker-dependent HMMs are obtained from the trained model by 
MLLR. Extrinsic languages can also be spoken by the system by applying a 
phone mapping procedure. 

 

2.4.7. High-resolution voice conversion: methods for converting 
residuals 

 

     The methods described above, especially those based on linear probabilistic 
transformations, are designed to transform parameterized spectral envelopes, 
and most of them are implemented using all-pole or LPC parameterizations. 
The appearance of GMM-based systems lead to very satisfactory results in vocal 
tract conversion, so during the last years several works have focused on 
increasing the resolution of the spectral transformation by transforming the 
residual or excitation part of the signal, in order to reach a higher similarity 
between converted and target speakers and also higher speech quality scores. It 
has to be emphasized that the kind of techniques contained in this subsection 
are not exactly spectral envelope conversion techniques, but they act as a 
complement of them. 

     Taking into account that the all-pole filter is not a perfect estimator of the 
vocal tract, it can be considered that the residual or excitation signal contains 
various types of information: 

 Formant information: when the order of the vocal tract filter is chosen, 
there is a compromise between the frequency resolution provided by the 
filter and the length of the vectors that the system is capable of 
transforming in a reliable way. The strategy is to choose the lowest order 
that guarantees a certain degree of perceptual quality in the synthesized 
converted speech. As a consequence of this, there are some spectral 
peaks or valleys that are not well modelled by the estimated vocal tract 
filter. Furthermore, there are some phonemes whose associated spectral 
envelope contains not only poles but also zeros, like for example the 
nasal consonants. The excitation signal reflects all these aspects. 

 Phase information: fitting an all-pole filter to the spectrum means 
assuming that the minimum-phase response of the filter serves to model 
the phase envelope. This approach is not completely realistic, so part of 
the phase information turns to be included in the residual when inverse 
filtering is applied to the original speech. 

 Information about the glottal source: if the all-pole filter is estimated 
from the samples located inside the closed phase (by definition, the time 
interval within the signal period in which the glottis is closed), the 
residual excitation contains useful information about the glottal source, 
which is reported to carry most of the emotional aspects of the speech. 
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 Noise. 

If the residual signal is not modified when converting voices, the listeners 
would consider that a third speaker is obtained as output. In the next 
paragraphs, the existing residual treatment approaches proposed in the 
literature are analyzed. 

     In the STASC conversion system described in a previous section [Ars99], the 
excitation of a given converted filter is obtained with the help of codebooks. As 
explained before, given a source parameter vector s to be converted, different 
weights vi are assigned to each of the codebook entries so that the distance 
between the resulting weighted combination of codewords and the source 
vector s is minimum. The transfer function for the vocal tract filter, H(w), is 
obtained from the weights vi. The authors propose also to use the same weights 
to build another transfer function Hg(w) associated to the excitation. The one-to-
one mapping codebooks for the vocal tract include information about the 
average excitation of each class, so the source excitation spectral samples are 
estimated by a weighted combination of the residual codewords of the source 
speaker. The converted excitation is obtained the same way, and both of them 
are used to estimate Hg(w). The global transfer function for the current frame is 
now H(w)·Hg(w). 

     The next attempt to predict the residual signal of a given converted speaker 
is presented in [Kai01]. A Qth-order gaussian mixture model is estimated from 
the LSF training vectors of the target speaker, {yk}. Each of these vectors yk has 
an associated magnitude residual rk(m), measured in dB, and a phase residual 
rk(p). Both of them consist of a fixed number of interpolated spectral samples. Let 
us call pq(yk) the probability that yk belongs to the qth gaussian component of the 
model. The qth codeword entry is given by 
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In the conversion phase, given a converted LSF vector F(x), the residual r is 
obtained by a linear combination of the codebook entries: 
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The linear combination of the phase envelopes are avoided due to the lack of a 
method that allows the reliable unwrapping of the phase. 

     In [Ye04a] a simple residual selection method is proposed. During the 
training phase, the training LSF vectors of the target speaker, {yk}, and their 
corresponding magnitude residuals, {rk}, are stored together into a table. In the 
conversion phase, given a converted filter F(x), the closest yk is found in the 
table, and its associated rk is taken as r. 

     A new method based on codebooks is proposed in [Ye06], in which a 
minimum-error residual codebook is calculated using the probabilities 
provided by a Qth-order gaussian mixture model of the LSF vocal tract of the 
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target speaker. The training LSF vectors {yk} of the target speaker are translated 
into Q-length vectors {pk}, which contain the probabilities that {yk} belong to 
each of the gaussian components of an already estimated gaussian model: pk = 
[p1(yk) … pQ(yk)]T. A matrix Tr is built by solving the minimum square error 
problem given by the following system: 

PTR ⋅= r  (2.30) 

R is the matrix whose columns are the residual vectors {rk} seen during the 
training phase and the columns of P are the probability vectors {pk} obtained 
from the LSF vectors {yk}. The Q columns of the resulting matrix Tr can be 
understood as the elements of a codebook which assigns the optimal residual 
pattern to each of the gaussian components of the trained model. In the 
conversion phase, for each LSF vector F(x) and its associated probability vector 
p, the optimal residual r is calculated as 

pTr ⋅= r  (2.31) 

It must be emphasized that the author works with an amplitude-only residual, 
because he uses a separate method to predict the phase envelope, instead of 
using the one provided by the LSF converted filter. 

     In [Sün05] seven different techniques of residual processing were compared. 
Two of them were proposed by the same author in previous papers, but a 
detailed explanation can be found in this comparative study. 

1) The first method is called residual selection + smoothing. After having 
found the sequence of residuals from the training data of the target speaker 
by the residual selection algorithm, a smoothing technique is applied to 
avoid the appearance of artifacts. Here, the residual vectors are samples of 
pitch-normalized speech. The residual signal is expected to be quasi-
periodic in the voiced regions and quite noisy in the unvoiced regions, so 
the author proposes to vary the length of the gaussian smoothing window 
according to the voicing degree of the frame to be converted. 
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The parameter α is constant and σt is the voicing degree of frame t, from 0 to 
1. N(x/µ,σ) represents the normal distribution with mean µ and standard 
deviation σ. The smoothing window is very narrow when σt is close to 0 
(unvoiced frames) and maximally wide when σt is close to 1 (voiced frames). 

2) The second method, which is reported to outperform the previous one, 
comes from the generalization of the unit selection paradigm employed in 
speech synthesis. Given a sequence of converted filters {F(xt}} and the same 
table built in the selection + smoothing technique, {rt} is determined by 
minimizing the global cost function defined as follows. 
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Crv(r, F(x)) represents the distance between r and the residual obtained from 
F(x) by the selection procedure above. Crr represents the concatenation cost 
between two residual vectors. 

     In [Sün06], the already explained VTLN technique was applied to residuals 
instead of spectral envelopes. Even if theoretically this approach should not 
lead to any noticeable improvement, it was found by the author that it has a 
strong influence on the voice identity. On the other hand, an important 
advantage is that the deterioration caused to the synthesized signal by the 
VTLN technique is almost negligible compared to those of the vocal tract 
transformation and prosodic modifications. 

     An interesting study was carried out by Duxans and Bonafonte [Dux06], in 
which experiments were made to compare three strategies for voice conversion 
with residual manipulation: 

1) Leaving the LPC residual of the source speaker unaltered. 

2) Converting the residuals of the source and target speakers like if they were 
independent from the vocal tract. The paired residuals seen during the 
training phase were kept as codewords of a codebook. During the 
conversion step, the closest source codeword was found for every source 
residual, and its aligned target codeword was taken as output.  

3) Predicting the target residual from the converted vocal tract. The same 
codebook-based approach is adopted. 

A CART vocal tract mapping system was used in all cases. It was concluded 
that the third strategy lead to the best results, so it was stated that the intra-
speaker correlation between filter and excitation was much higher than the 
correlation between the residuals of different speakers. 

     The residual prediction technique proposed in [Han07] tries to model the 
dependence of the residuals not only on the vocal tract, but also on the f0. First, 
the training LSF vectors {yn} representing the vocal tract of the target speaker 
are classified into Q clusters whose centroids are {ŷq}. Second, the residuals {rn} 
associated to the LSF vectors inside each cluster are also divided into L sub-
clusters looking at their f0. The representative magnitude residual of the lth sub-
cluster inside the qth cluster is calculated by a weighted combination of all the 
vectors {rn} inside it: 
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The phase of the representative residuals is copied from the rn whose associated 
yn is the most probable LSF vector of each sub-cluster. During the conversion 
phase, given a converted LSF vector F(x), its corresponding magnitude residual 
is calculated as 
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where lq* denotes the sub-cluster with closest f0 inside the qth cluster. The phase 
residual is copied from the typical residual of the sub-cluster with highest 
associated probability. The authors report that the new prediction method 
clearly outperforms the classical one, thank to the f0-based sub-classification. 

     The novelty of the residual prediction technique presented in [Per07] is that 
it takes into account the transition probabilities between clusters. During the 
training phase, given the LSF vectors of the target speaker {yn} and their 
associated residual {rn}, the vectors {rn} (instead of the LSF vectors, as in 
previous methods) are divided into clusters, and the probability density 
function of LSF vectors is modelled by independent GMMs inside each cluster. 
In parallel, the transition probability between clusters is extracted from the 
training data. During the conversion phase, the residual r that corresponds to 
the converted LSF vector F(x) is estimated by means of a linear combination of 
the residual centroids with weights determined by the GMMs and the transition 
probabilities. This technique is also reported to improve the performance of 
voice conversion systems with classical residual prediction methods. 

     It can be concluded that high-resolution voice conversion is still an open 
topic of research, but also that GMM-based transformation of vocal tract 
envelopes is considered accurate enough by the authors that focus their 
research on residuals. 

 

2.5. Prosodic transformations 
 

     Typical voice conversion systems apply a basic pitch level transformation 
consisting of simply shifting and rescaling the mean pitch level. This basic 
transformation is often enough to modify the perceived identity of one speaker. 
However, there can be found different works focused on supra-segmental 
features of speech in which a deeper study on prosodic contour transformation 
techniques is carried out. In the following paragraphs, the different existing 
alternatives for transforming pitch and prosodic contours are described. 

     In the first voice conversion system found in the literature, which uses 
mapping codebooks for spectral transformation [Abe88], mapping codebooks 
for pitch frequencies and power values are also generated at the same time. 
Once the codebooks have been created, the transformation of prosodic features 
is similar to the codebook-based spectral conversion. The only differences are 
that a scalar-quantization is applied instead of VQ, and that the mapping 
codebook between two speakers is defined based on the maximum occurrence 
in the histogram. 

     Arslan and Talkin propose a more sophisticated prosodic transformation for 
STASC [Ars98]. The f0 is transformed by a normalization-denormalization 
procedure: 
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The statistics of the f0 are measured over the training data from the source (s) 
and target (t) speakers. It must be remarked that in more recent works, logf0 has 
been converted instead of f0 [Dux06]. With respect to the duration and energy 
modification factors, they are calculated for the current frame using the weights 
vi assigned to each of the entries of the spectral conversion codebook for the 
corresponding input vector. The codewords correspond to different phones or 
units, and each of them has an associated average duration D and energy E. The 
current duration modification factor is calculated as 
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The same idea is followed to modify the energies. 

     The same pitch conversion method based on replacing the mean and 
variance of f0 is compared to two new methods in [Cha98]: the scatterplot 
method consists of estimating a polynomial transformation function from 
phoneme-dependent mean-f0 pairs; on the other hand, a sentence contour 
codebook method is presented. The subjective evaluations show that both new 
methods lead to more promising results than the first one. 

     In [Cey02], an attempt to build a pitch conversion system is made. Instead of 
modifying the mean and variance of f0, the pitch is transformed to the log 
domain and a regression line is estimated using the minimum quadratic error 
criterion, from which the offset and declination slope are determined. The linear 
term is subtracted from the original contour and the variance is then measured. 
These three parameters are extracted from different utterances, and a linear 
function is used to describe them as a function of the utterance length. The 
linear function has its own offset, slope and variance, so the number of 
parameters is now 9. The conversion of the pitch contour is performed by 
substituting the parameters of the source speaker by those of the target speaker. 

     The pitch contour transformation method proposed by Gillett and King 
[Gil03] is based on four reference pitch parameters extracted from the training 
utterances: sentence initial high S, non initial accent peaks H, post-accent 
valleys L and sentence final low F. A piecewise linear mapping function is 
established between the pitch of the source and target speakers using the pairs 
of measured pitch parameters as reference points. 

     A comparative study between different techniques for pitch modification in 
a voice conversion context is carried out in [Ina03]. The techniques compared 
are the following: 

 Simple mean and variance replacement. 
 Scatterplot. 
 Linear pitch transformation based on GMM. 
 Codebooks of sampled f0 contours obtained from whole sentences. 
 Codebooks of sampled f0 contours obtained from voiced segments of 

speech. 
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The utterance codebook method results to be the best, although in general the 
performance of the studied methods is strongly influenced by the type and 
variability of the utterances used for training and testing. 

     In [Ren04], the following pitch and intonation parameters are considered for 
conversion: 

 Average pitch. 
 Pitch range, delimited by the frequencies located at a distance of three 

times the standard deviation from the average value. 
 Three different kinds of slopes: (a) the phrase slope, measured across the 

entire length of an intonation phrase, (b) initial pitch slope, measured 
from the first pitch segment of a phrase, and (c) final pitch slope, at the 
end of an intonation phrase. 

 Average slope of pitch accent. 
 Speaking rate, phoneme duration pattern and pause pattern. 

     The revised works are based on the assumption that the pitch is completely 
independent from the acoustic features. On the other hand, in En-Najjary’s 
work [EnN04] the voice conversion is performed by means of a GMM in which 
the information about f0 is included in the parameter vectors. Thus, spectral 
and pitch conversion are simultaneous. Compared to a system using the simple 
linear f0 modification, this new approach is reported to be preferred by most of 
the listeners. A similar approach is presented in [Han07], showing that this 
method is better than GMM-based methods at converting fundamental 
frequencies. 

     In [Hel07], a syllable-based prosodic codebook is used to predict the 
converted f0 using not only the source contour but also linguistic information 
and segmental durations. The selection of the most suitable target contour is 
carried out using a trained classification and regression tree. The results reveal 
a significant improvement when the proposed method is compared to the 
GMM-based pitch prediction approach. 

     Finally, the prosodic conversion has also been studied in the context of 
speech-to-speech translation. This task is even more difficult than the simple 
intra-lingual pitch conversion, but in [Agü06] it is shown that the prosodic 
information in one language can be used to get better converted prosody for 
another target language. 

 

2.6. Conclusions 
 

     A summary of the techniques and methods reviewed in this chapter is 
presented in table 2.1. Each row of the table is related to one of the task groups 
involved in voice conversion, according to the block diagram shown at the 
beginning of the chapter, in figure 2.1. 
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     During the last decade, the performance of voice conversion systems has 
reached a satisfactory level, especially since statistical methods started to be 
used in this field. This assertion is confirmed by the fact that some of the 
systems published during the last years focus on residual prediction for 
increasing the resolution of the spectral transformations. However, there are 
still some problems that are not completely solved: 

1) There is a trade-off between the quality of the converted speech and the 
similarity between the converted and target speakers. For example, GMM-
based systems are characterized by good conversion scores but lower 
quality scores, whereas systems using frequency warping functions do not 
significantly degrade the quality of signals but are not good at converting 
voices. Further improvements are necessary to develop new methods that 
successfully modify the identity of the speakers but also minimize the 
quality degradation. This is important for real-life voice conversion 
applications in which listeners are expecting to hear natural-sounding 
voices. 

2) In some practical applications, voice conversion systems need to be trained 
using a non-parallel training corpus. In extreme cases, like those involving 
several languages (like for instance in a speech-to-speech translation 
problem), the system should be trained using cross-lingual corpora. It is 
very desirable to develop acoustic alignment techniques that make voice 
conversion systems compatible with such applications. Although some 
methods have been proposed, they have important disadvantages like the 
computational complexity or their impact on the conversion scores. 

3) Although a vast majority of voice conversion systems are designed to be 
compatible with TTS systems, the interaction between them has not been 
optimized (at least for concatenative speech synthesis), and this can lead to 
unnecessary quality losses. Let us imagine the following situation: one TTS 
system based on unit selection selects the most appropriate units and 
modifies their f0 to match the specifications given by the prosody generation 
block, and then a voice conversion function is applied to the synthetic 
speech so that f0 is given again the original value. The quality degradation 
introduced by the double prosodic manipulation should have been avoided 
by an adequate interaction between blocks. Furthermore, it is desirable to 
instruct the unit selection block so that it assigns a higher selection 
probability to the units that can be converted more accurately. At present, 
there can not be found in the literature any paper addressing this kind of 
topics. 

4) The efforts of the researchers have been focused mainly on transforming 
segmental acoustic features of speech, but converting prosodic 
characteristics of voice is still an important challenge. Most of the reviewed 
voice conversion systems were tested using sentences with a low degree of 
expressiveness, but in real-life situations the prosodic aspects are very 
important for identifying one speaker. In fact, the application of voice 
conversion technologies to reinforce emotion conversion is a topic of 



Chapter 2. State of the art of voice conversion technologies 

 38 

increasing interest [Kaw03, Wu06, Hsi07], but a better knowledge about 
prosody transformation is essential for manipulating non-neutral speech. 
On the other hand, it is evident that a complete voice conversion system 
should consider also linguistic cues but, at present, this higher-level problem 
has not been faced yet. 

5) The performance of state-of-the-art voice conversion systems is satisfactory 
when enough training data are available. When the recording time of one of 
the speakers is very low (10 seconds, for example), the performance decays. 
Although Mesbahi et al. have recently carried out a first study on training 
data reduction [Mes07], this is still one possible topic of research. 

According to the objectives of the thesis, solutions for problem 1, 2 and 3 are 
proposed in chapter 4, 5 and 6, respectively. 
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Voice conversion: state of the art 

Speech model 

FD-PSOLA, LP-PSOLA 
Sinusoidal, HNM 
STRAIGHT 
Vocal tract + glottal source 

Parameterization 

Parameters related to formants 
Cepstral coefficients 
Line spectral frequencies 
Spectral samples 

Alignment 

By classes: HMM, clustering 
By frames, parallel corpus: DTW, HMM, statistical methods 
By frames, non-parallel corpus: class mapping, dynamic programming, 

speech recognition, TTS 
No alignment: ML transformations, adaptation of models 

Spectral 
conversion 

Mapping-codebooks 
Frequency-warping functions 
Speaker interpolation 
Neural networks 
Probabilistic linear transformations 
Hidden Markov models 
High resolution: residuals 

Prosodic 
transformations 

Codebooks 
Mean and variance adaptation 
Scatterplot 
GMM-based transformations 
Contour codebooks 
Contour conversion 
Joint f0+spectrum conversion 

Table 2.1: state of the art of voice conversion technologies at the time of writing this 
dissertation. 
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3. Flexible harmonic plus 
stochastic speech model 

 

 

     The first step before creating a voice conversion system consists of choosing 
a suitable speech model with certain properties (see figure 3.1). The voice 
conversion process implies several challenges for which the choice of a suitable 
speech model is a crucial point: adequate spectral manipulation, adaptation of 
prosodic contours, etc. As a first condition, the speech model has to be good for 
synthesis purposes. This condition is satisfied when the model has the 
following three characteristics: 

 The analysis-reconstruction of speech signals without modification is 
transparent or almost-transparent. This means that when a speech signal 
is analyzed and reconstructed from the model parameters, the resulting 
signal is perceptually indistinguishable from the original. 

 The energy, duration and fundamental frequency contours of the speech 
segments can be modified without introducing audible artifacts into the 
regenerated signal and without changing the timbre of the original voice, 
even if the modification factors vary in time. 

 As the voice conversion technologies are fundamentally addressed to 
speech synthesis systems based on unit selection and concatenation, the 
model should provide methods for concatenating speech units selected 
from different phonetic and prosodic contexts without audible artifacts. 

In addition, a fourth condition has to be satisfied for the speech model to be 
compatible with voice conversion applications: 

 The model has to allow flexible spectral manipulations. 

Finally, there are some other characteristics that are highly desirable for the 
objectives raised in chapter 1. The voice conversion system to be created has to 
be compatible with two operation modes: (i) as a stand-alone application that 
analyzes, converts and synthesizes any input signal; (ii) as a complement for a 
TTS system that allows customizing the output voice. Particularly for mode (i), 

 The procedures concerning the analysis, transformation and synthesis 
processes should be efficient, fully automatic and unsupervised.  

 

This chapter is structured as follows. 

     In section 3.1, the most common speech models used for synthesis tasks are 
reviewed and discussed, concluding that the models based on a sinusoidal 
decomposition are the most suitable according to the objectives of this thesis. 
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     In section 3.2, the most important sinusoidal or harmonic systems found in 
the literature are described, and their disadvantages are discussed. 

     In section 3.3, after analyzing the points where the existing approaches can 
be improved, a new model and its associated algorithms are presented. 

     In section 3.4, the new model and all the algorithms for prosodic 
modification and unit concatenation are validated together by comparing their 
performance with that of TD-PSOLA in a speech synthesis context. 

     In section 3.5, the main conclusions of this chapter are summarized. 

 
Figure 3.1: parts of a voice conversion system involved in this chapter, inside the shaded area. 

 

3.1. Why the harmonic plus stochastic model? 
 

     At present, most of the high-quality speech synthesis systems that can be 
found in the literature are based on Time-Domain Pitch-Synchronous Overlap-
Add techniques [Mou90]. The TD-PSOLA analysis process consists of 
decomposing the speech waveform into a stream of short-time analysis signals 
obtained by multiplying the waveform by a sequence of time-translated 
analysis windows. The analysis time instants are set at a pitch synchronous rate 
on the voiced portions of speech (they correspond to the glottal closure instant) 
and at a constant rate on the unvoiced portions. The analysis window is 
generally chosen to be a symmetric Hanning window whose length is 
proportional to the local pitch period. The proportionality factor is 2 for the 
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standard implementation. TD-PSOLA is the simplest method for high-quality 
prosodic modification of speech signals. The modification consists of 
determining synthesis time instants according to the desired time-scale and 
pitch-scale modifications. Along with the stream of synthesis time instants, a 
mapping between the synthesis and the analysis time instants is determined, 
specifying which short-time analysis signal(s) should be selected for any given 
synthesis time instant. Finally, the synthetic waveform is obtained by 
combining the short-time signals synchronized on the stream of synthesis time 
instants. 

     Figure 3.2 and figure 3.3 show how TD-PSOLA modifies the pitch and 
duration of signals, respectively. For pitch modification, the distance between 
adjacent synthesis time instants is chosen to be the desired local pitch period. A 
nearest neighbour mapping between analysis and synthesis time instants is 
established and the windowed short-time signals that correspond to each 
analysis instant are placed at its associated synthesis instants. Depending on the 
mapping, these short-time frames may be duplicated (for shorter new pitch 
periods) or deleted (for longer new pitch periods). The duration modification is 
based on the same algorithm, but the pitch is kept invariable, so the distance 
between the synthesis instants is the same than that of the analysis. The 
analysis-synthesis mapping is obtained by applying the nearest neighbour 
algorithm to the length-normalized instants. 

     As the speech is modified directly from its samples, the main limitation of 
TD-PSOLA is its lack of control over the spectral envelopes. This results in two 
main consequences: 

 The concatenation of speech segments can introduce artifacts into the 
synthetic signal when the formant frequencies and bandwidths are not 
continuous in the unit boundaries. This problem is less serious when the 
synthesis database is large enough to contain many instances of each 
unit, so that the unit selection block can choose the units for which the 
concatenation discontinuities are minimal. 

 Voice conversion procedures are not compatible with TD-PSOLA, 
because it assumes no model for the speech signal. No spectral 
manipulation can be applied directly to the speech samples. 

For this reason, other implementations of PSOLA are preferred for certain tasks. 
The FD-PSOLA technique [Mou95] is similar to TD-PSOLA. The difference is 
that in FD-PSOLA the modifications are carried out in the frequency domain, 
and therefore the spectral manipulation ability is not a problem anymore. In 
LP-PSOLA systems [Mou95], which combine the PSOLA technique and the 
residual-excited LPC model of speech, the original signal is split into a time-
domain excitation signal and a time-varying spectral envelope estimated at 
each analysis instant. The modification algorithms are applied to the excitation 
signal, and the output signal is obtained by combining the modified excitation 
with the re-synchronized envelopes. These PSOLA implementations are more 
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suitable for voice conversion tasks and have been used in different systems 
found in the literature [Val92, Ars99, Sün03a, Dux04, Sün05, Tur06]. 

 

 
Figure 3.2: pitch-scale modification by a factor 1.5 using TD-PSOLA. 

 

 

 
Figure 3.3: time-scale modification by a factor 2.0 using TD-PSOLA. 
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     The speech signal representation using STRAIGHT [Kaw97] is also useful for 
conversion purposes. STRAIGHT performs a pitch-adaptive spectral analysis in 
order to obtain a time-frequency surface that represents the time-varying 
magnitude envelope. For the speech reconstruction, an excitation signal based 
on phase manipulation is built and combined with the parameterized envelope. 
This model allows very high manipulation factors for pitch and duration 
without further degradation. On the other hand, this kind of representation 
involves information expansion rather than reduction. Thus, its main 
applications are related to voice conversion and speech manipulation, since the 
spectral envelopes are well characterized and certain parameters like complex 
cepstrum, which is very useful in many areas of speech technologies, are easily 
obtained from them. On the contrary, it is not suitable for high quality synthesis 
because it would have strong memory requirements due to the information 
expansion, whereas the quality of the synthetic speech is worse than that 
obtained by PSOLA systems. STRAIGHT representation has been used in 
several voice conversion systems [Tod01, Tod05, Tod06]. 

 

     The so called sinusoidal models assume that the speech waveform can be 
locally represented by a sum of sinusoids with time-varying parameters. 
Harmonic models are a special case of sinusoidal models in which the 
frequencies of the sinusoids are restricted to be integer multiples of the local 
fundamental frequency. There are several reasons why sinusoidal models are 
very appropriate for all kind of voice transformations: 

 They provide a framework for high quality speech reconstruction and 
prosodic modification. 

 The parameters of the sinusoids carry important information from the 
waveform but also from the spectrum. Good estimates for magnitude 
and phase spectral envelopes can be extracted from the model 
parameters, and therefore the model provides maximal flexibility for 
spectral manipulation and voice conversion. 

 As a consequence of this, the model has good physical properties for 
concatenative speech synthesis, because it allows suppressing the 
waveform and spectral discontinuities at the boundaries between two 
adjacent units. 

 In addition, it allows data compression for embedded systems. 

 Finally, it is compatible with all the voice conversion methods reviewed 
in chapter 2. Thus, many of the most relevant voice conversion systems 
are based on such models [Sty98, Kai01, Ye06, Shu06, Err07a]. 

Hybrid models are based on a deterministic plus stochastic decomposition of 
speech: the deterministic part is sinusoidal (or harmonic), and the stochastic 
part deals with all the signal aperiodic components that are not well 
represented by sinusoids. The main advantage of hybrid models, apart from 
those of pure sinusoidal models, is that both signal components, which are 
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different in nature, can be treated in a different way. This is useful for high-
quality speech synthesis, because it helps to avoid the tonal artifacts that appear 
when PSOLA-like techniques are applied to modify unvoiced sounds [Sty96]. In 
voice conversion systems a two-component model is also useful, since 
transforming the voiced segments of speech is much more important for the 
similarity between converted and target voices than transforming the unvoiced 
segments (where the deterministic component is zero) [Ye04a]. In addition, 
controlling the energy carried by both components in voiced segments allows 
manipulating the voice quality to a certain extent. On the other hand, splitting 
the signal into two different components and designing appropriate 
transformation functions for both is not straightforward. However, in this thesis 
a harmonic plus stochastic model (HSM) has been used for analyzing, 
modifying, manipulating and synthesizing the speech signals. 

 

     As a final remark, in contrast to all the models reviewed above, in which the 
speech signal is manipulated considering how the transformed signal is 
perceived by listeners, source-filter models trying to capture the mechanisms of 
speech production have been recently applied to voice transformation tasks 
[Vin07]. Although voice conversion results are not visible yet, the characteristics 
of such models seem to be very appropriate for voice conversion applications, 
because theoretically, parameterizing both the glottal source and the vocal tract 
allows better capturing the differences between speakers and easily 
manipulating speech properties like voice quality. Thus, it is expected that 
significant progress will be made during the next years by means of this kind of 
models. 

 

3.2. Sinusoidal and hybrid systems: a bibliographic 
study 

 

     A wide variety of consolidated systems based on a sinusoidal or harmonic 
decomposition can be found in the literature. Although most of them are not 
hybrid systems, the associated algorithms related to manipulation of signals 
decomposed into sinusoids are valid also for the deterministic component of 
hybrid systems. In general, many solutions have been proposed for the 
following two problems: 

 Accurate analysis and reconstruction of speech signals. In general, 
natural speech signals and signals reconstructed from this kind of 
parameters are indistinguishable, so the most important problem is the 
second one. 

 High-quality prosodic modification of speech without breaking the inter-
frame phase coherence and the waveform shape invariance. Preserving 
the phase coherence means avoiding the appearance of waveform 
discontinuities, which are usually related to the phases of the sinusoids. 
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In other words, the signal has to be modified in such manner that the 
instantaneous phase of the sinusoids after the modification evolves 
smoothly in time from one frame to the next. On the other hand, it is well 
known that maintaining the waveform shape after manipulating the 
speech signals is very important for high-quality speech modification. In 
the case of pitch-scale modifications, the frequencies of the sinusoids 
have to be manipulated without altering the shape of the vocal tract. 

In this section, the most relevant systems and their associated algorithms and 
methods are described in detail. 

 

3.2.1. Sinusoidal systems 
 

 
Figure 3.4: general scheme of a sinusoidal system. 

 

First sinusoidal systems 

     The sinusoidal model was first applied to speech coding tasks. Hedelin 
carried out one of the first works in which an explicit sine wave formulation 
was used. In [Hed81], he proposed to use a pitch independent sine wave model 
for coding the baseband signal (from 100 to 800 Hz) for speech compression. 
The amplitudes and phases were estimated using Kalman filtering techniques, 
and the phase of each sine wave was defined to be the integral of the associated 
instantaneous frequency. 

     In 1982, Almeida and Tribolet [Alm82, Alm83] developed a low-bit-rate 
high-quality speech coding system based on the idea of harmonic coding. In 
[Alm84], Almeida and Silva proposed a new synthesis scheme based on 
harmonic coding, in which the instantaneous amplitude along the synthesis 
segment was obtained by time-domain linear interpolation between the values 
found at both ends, and the phase evolution was given by a 3rd order 
polynomial whose coefficients were such that the phase and its derivative 
equalled the measured phases and frequencies at both ends of the segment. 
However, the problem of unwrapping the phases for a correct estimation of the 
cubic polynomial was not completely solved in this work. 
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McAulay and Quatieri 

     One of the most relevant contributions to the sinusoidal modeling of speech 
can be found in [Mca86a, Mca86b], where McAulay and Quatieri present a new 
system that uses a sinusoidal model for speech analysis and synthesis. The 
speech signal is modelled as 
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cosϕ  (3.1) 

The amplitudes, frequencies and phases of the sinusoids are measured at a 
constant frame rate, using a simple peak-picking algorithm over the STFT. Let 
us call {Al(k), wl(k), φl(k)} the parameters measured at a certain frame k. In the last 
step of the analysis, the spectral peaks detected in consecutive frames are 
grouped into different frequency tracks using a nearest neighbour criterion. The 
values labelled with the sub-index l are related to the lth frequency track. 

 
Figure 3.5: grouping of spectral peaks into frequency tracks. 

 

In order to reconstruct the speech signal, the instantaneous amplitude, 
frequency and phase of each sinusoid are interpolated at every time instant. For 
a given frequency track, the instantaneous amplitude is obtained by linear 
interpolation between the values measured at the center of the two adjacent 
frames. 
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N is the distance between the frame centers, measured in samples. On the other 
hand, the instantaneous phase is modelled by means of a cubic polynomial 
function φl[n], whose derivative corresponds to the instantaneous frequency, 
extending the original idea of Almeida and Silva. The coefficients of such 
polynomial are calculated using the phase and frequency values measured at 
the two adjacent frame centers, after having unwrapped the phases in order to 
make the interpolated curve maximally smooth. Figure 3.6 shows a graphic 
example of this. 
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Figure 3.6: modelling together the instantaneous phase and frequency through cubic 

polynomials. 

 

In [Mca92] the same authors present prosodic modification techniques that 
preserve the speech waveform shape, based on the assumption that the 
instantaneous amplitudes and phases can be split into the contribution of the 
vocal cord excitation and the vocal tract filter response: 
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M(w,t) and θ(w,t) represent the time-varying frequency response of the vocal 
tract. The time-scale modification of speech is carried out by changing the 
distance between the centers of the synthesis frames. However, by doing so, the 
excitation phases are not coherent anymore between adjacent frames. For this 
reason, the excitation phase Ωl(t) is assumed to be linear in frequency, so that a 
set of onset times can be established all along the signal at the instants in which 
the excitation phases are zero. The distance between two consecutive onset 
times is exactly the local pitch period, so a correct estimation of the pitch allows 
easily locating all the onset times in the original signal. Thus, the phases 
measured during the analysis step can be decomposed into a linear excitation 
term Ωl(k) and a vocal tract contribution θl(k), using the onset times as a reference. 
A new set of onset times is obtained from a time-scaled pitch contour, so the 
excitation phases of the time-scaled sinusoids can be referred to the closest 
onset time t0(k), yielding the new phase values: 
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For pitch-scale modifications, the vocal tract magnitude and phase envelopes 
have to be resampled at the new frequencies {w’l(k)}. First, the measured 
amplitudes Al(k) are split into excitation amplitude al(k) and filter contribution 
Ml(k) by homomorphic deconvolution. The SEEVOC estimator [Pau81] is used to 
obtain the continuous vocal tract amplitude envelope M(w,t) from its samples 
{Ml(k)}. The onset times are used again for the decomposition of phases, and then 
the vocal tract phase envelope θ(w,t) is estimated by linear interpolation of the 
complex amplitudes given by {Ml(k)exp(jθl(k)). Once the new vocal tract 
contributions {M’l(k)} and {θ’l(k)} have been obtained by resampling the envelopes 
at the new frequencies, the excitation amplitudes are left unaltered and the 
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excitation phases are readjusted using the set of onset times associated to the 
transformed pitch contour. Both the time-scale and pitch-scale modification 
factors can vary in time. 

 

Analysis-by-Synthesis/Overlap-Add 

     The Analysis-by-Synthesis/Overlap-Add (ABS/OLA) sinusoidal model 
proposed by George and Smith [Geo87, Geo92, Geo97] has some remarkable 
peculiarities with respect to others. The first one is that the amplitudes, 
frequencies and phases of the sinusoids are determined at a constant frame rate 
using an ABS procedure: assuming that l-1 sinusoids have been detected and 
subtracted from the original kth signal frame, the next sinusoid l is detected from 
the remaining residual by calculating the parameters {Al(k), wl(k), φl(k)} that 
minimize the energy of the estimation error. For a given candidate frequency 
wl(k), the optimal amplitude and phase can be calculated by least-squares 
optimization, so the best combination of parameters is chosen by evaluating the 
error at uniformly spaced candidate frequencies. The second particularity of the 
model is that the time-varying waveform is reconstructed by overlapping 
frames that contain sums of constant-amplitude constant-frequency sinusoids 
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where w[n] is the window used for OLA, σ[n] is a time-varying gain function 
and N is the number of samples that correspond to the analysis frame rate. In 
order to facilitate the prosodic modification of speech, a quasi-harmonic version 
of the previous model is used: the measured frequency wl(k) is split into a 
harmonic term, lw0(k), and a deviation term, ∆l(k). The time-scale modified speech 
is obtained by modifying the distance between frame centers, N. A graphic 
description is shown in figure 3.7. The samples of the time-scaled frames are 
given by the following expression, in which ρ(k) is the modification factor at 
frame k (ρ>1 means lengthening the signal and ρ<1 means shortening it): 
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The deviation from the ideal harmonic frequency ∆l(k) is divided by ρ(k) in order 
to avoid the excessive shape invariance when the frame length is increased. The 
parameter δ(k) expresses a linear phase correction that is necessary to ensure the 
inter-frame phase coherence despite the modification. For the pitch 
modification, the vocal tract filter H(k) is estimated at each frame and the vocal 
tract amplitude and phase contributions are removed from the signal, so that 
the excitation signal is isolated and represented by the residual amplitudes, al(k), 
and phases, Ωl(k). A continuous excitation spectrum is estimated by 
interpolating the complex phasor form of the excitation amplitude-phase pairs. 
Given a pitch-scale factor β(k), the excitation spectrum is then resampled at 
modified harmonic frequencies to generate new phasor values from which the 
target amplitudes a’l(k) and phases Ω’l(k) are extracted. The frequency deviation 
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terms ∆l(k) are interpolated in a similar way. Finally, the effects of the vocal tract 
H(k) are reintroduced so that new amplitudes A’l(k) and phases φ’l(k) are obtained. 
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At this point, what remains is to calculate the optimum δ(k) that guarantees the 
inter-frame coherence. For this task, the authors extended the method of onset 
times with a recursive formula that allows the estimation of δ(k) given δ(k-1). 

 

 
Figure 3.7: time-scale modification by a time-varying factor. 

 

     In [Mac96], the described ABS/OLA system is applied to concatenative 
speech synthesis. The concatenation procedure deals with two problems: the 
waveform discontinuities and the spectral discontinuities near the unit 
boundaries. The waveform mismatches are solved by adding linear-in-
frequency corrective terms to the phases. A spectral envelope smoothing 
procedure is applied to overcome the spectral discontinuities. Another 
extension to the ABS/OLA system is presented in [Mac97] to improve its 
performance in unvoiced sounds, trying to avoid the tonal noise that appears in 
unvoiced frames when certain modifications are applied. The procedure 
consists of subdividing the unvoiced frames into subframes and randomizing 
the phases inside each subframe. 

 

Rodríguez-Banga et al. 

     In the sinudoidal system proposed by Rodríguez-Banga et al. [Rod02], which 
is addressed to concatenative text-to-speech synthesis, a pitch-synchronous 
scheme is used in order to avoid the use of onset times, claiming that the 
inaccurate estimation of such time instants distorts the periodicity of the speech 
signal. Thus, a set of pitch marks placed at the local maxima of the signal 
periods (or each 10ms at unvoiced segments) are chosen as analysis instants. As 
a result of the pitch-synchronous analysis, the linear-in-frequency phase term is 
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assumed to be zero at every frame, so when pitch-scale modifications are 
applied, the vocal tract phase envelope can be estimated directly by linear 
interpolation of the measured complex amplitudes. The amplitude envelope is 
obtained by linear interpolation of the measured log-amplitudes. A new set of 
pitch marks derived from the desired f0-contour are used as onset times for 
synthesis. 

 

O’Brien and Monaghan 

     The harmonic analysis/synthesis system presented by O’Brien and 
Monaghan [Obr01] provides modification procedures that do not require the 
usage of pitch marks, onset times or pitch-synchronous schemes. Instead, the 
inter-frame coherence and shape invariance are ensured by an adequate 
manipulation of 3rd order polynomials representing the instantaneous phase. 
McAulay and Quatieri stated that the instantaneous phase of a given sinusoids 
can be modelled in an N-length interval by a cubic polynomial whose 
coefficients are calculated according to the phases and frequencies detected in 
both ends of the interval. According to the same formulation of expression (3.3), 
the instantaneous frequency is given by 

[ ] cbnannl ++= 23 2ϕ&  (3.9) 

For time-scaling the kth frame by a factor ρ(k), the instantaneous frequency is 
time-scaled to lie into the interval [0, Nρ(k)]. The new phase trajectory 
corresponds to the integral of the modified frequency trajectory, so the new 
phase values at k+1 can be calculated from those of k by the following recursion: 
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In order to keep the waveform shape invariant, the first harmonic is used to 
establish a single linear-in-frequency phase correction term for frame k+1: 
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The time-scaled speech signal is then synthesized directly from the modified 
parameters. A similar idea is followed for the pitch-scale modification of 
speech, but previously the Iterative Adaptive Inverse Filtering technique (IAIF) 
[Alk91] is applied to the original signal in order to isolate the LPC excitation 
component, which is then analyzed and parameterized according to the 
harmonic model. Assuming that the modification factor β is different for each 
frame, the frequency trajectory can be multiplied by a linearly-varying factor. 
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Again, the linear-in-frequency phase correction term δ(k+1) is calculated for the 
first harmonic and is then generalized to the rest. Finally, the new vocal tract 
contribution is added to the amplitudes and phases. The authors propose also a 
similar solution for the problem of concatenating units with phase mismatches, 



  Intra-lingual and cross-lingual voice conversion using harmonic plus stochastic models 

 53 

using linear correction terms based on an estimation of the frequency trajectory 
between the units that are to be concatenated. 

 

Chazan et al. 

     In [Cha06], Chazan et al. present a new sinusoidal model for synthesis and 
modification. During the analysis step, the pitch contour is detected with high 
resolution, and the spectral peaks that are closer to the harmonic frequencies 
are selected as sinusoids. The complex amplitudes of the quasi-harmonic 
sinusoids are calculated by means of a least squares optimization in the 
frequency domain. For high-quality synthesis, the noise component of the 
speech is simulated by adding a random frequency dither to the sinusoids 
above a time-varying threshold frequency that depends on the voicing degree. 
The prosodic modifications are performed separately on each frame. Then, in 
order to avoid discontinuities when reconstructing the speech signal from the 
modified parameters, a linear-in-frequency phase correction term is applied to 
the current frame so that the waveform cross-correlation with the previous one 
is maximized. In the case of pitch-scale modifications, the linear phase term, 
obtained by means of a weighted-by-amplitudes regression, is subtracted from 
the measured phases, so that the remaining vocal tract phase contribution can 
be used to estimate the phase envelope. 

 

3.2.2. Hybrid systems 
 

 
Figure 3.8: general scheme of a hybrid system. 
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First hybrid systems 

     In [Gri88], Griffin and Lim proposed a new system called Multiband 
Excitation Vocoder. In this model, the short-time spectrum of speech is 
modelled as the product of an excitation spectrum and a spectral envelope. The 
spectral envelope is a smoothed version of the speech spectrum, and the 
excitation spectrum is represented by a fundamental frequency, a 
voiced/unvoiced decision for each harmonic, and the phase of each harmonic 
declared voiced. This is one of the first studies in which the speech is treated as 
the sum of a harmonic component and a noise-like component. The model 
proposed by Abrantes et al. [Abr91] also represents the speech signal as a sum 
of harmonically related sinusoids and band-pass random signals. However, 
these models were used only in speech coding applications. 

 

Serra 

     In other works like those carried out by Serra [Ser89, Ser97], a deterministic 
plus stochastic model is used for analysis, modification and synthesis of 
musical sounds. In essence, the model is similar to that defined by McAulay 
and Quatieri, but a noise-like component is introduced to deal with excitation 
mechanisms and energy components that are not sinusoidal in nature. Thus, 
during the analysis, the sinusoidal component is regenerated from the 
measured parameters and is subtracted from the original waveform in order to 
isolate the stochastic component. As this residual component is well 
characterized by its power spectral density instead of its waveform, linear 
predictive coding (LPC) techniques are used for analyzing and synthesizing it. 
It is highly remarkable that in Serra’s system the phase information is not used 
for synthesis, so it can be discarded after the analysis process. The 
instantaneous phase of each sinusoid is interpolated assuming that the 
frequency evolves linearly from one frame to the next. As the synthesis phase 
values are calculated recursively, the first value of each frequency track is 
initialized with a random number. 
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Although this synthesis scheme was successfully applied to musical signals, it 
was also proved that the magnitude-only reconstructed speech has an 
unnatural tonal quality [Mca84, Mca86b]. In the speech coding field, some 
approaches were also proposed to avoid the need of preserving the measured 
phases: approximating the real phase envelope by the minimum-phase 
response of an all-pole filter, improving the minimum-phase response by means 
of corrective all-pass filters, etc. [Mar90, Mca95, Ahm98]. Although these 
techniques have some advantages for speech coding, they do not provide high-
quality synthetic speech. 
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Harmonic plus Noise Model 

     The Harmonic plus Noise Model (HNM) has become one of the most 
popular models for speech synthesis and modification [Lar93, Sty95, Sty96]. The 
model is based on the decomposition of the speech signal s(t) into a 
deterministic part d(t) and a stochastic part e(t). The deterministic component is 
a sum of harmonically related sinusoidal components with piecewise linearly 
varying complex amplitudes. It can be defined at specific time instants ti as 
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where {Cl} are the complex amplitudes of the harmonics, ∆T is the frame length 
and L(t) represents the number of harmonics, which is defined according to a 
time-varying maximum voicing frequency. The stochastic part is obtained by 
filtering a white gaussian noise n(t) by a time-varying all-pole filter H(t, z) and 
multiplying the result by an energy-envelope function w(t). 

( ) ( ) ( ) ( )[ ]tnztHtwte ∗⋅= ,  (3.15) 

During the analysis, once the w0-contour is estimated, the analysis time instants 
ti are set at a pitch synchronous rate on the voiced portions of speech, and at a 
fixed rate of 10ms on unvoiced segments. The harmonic parameters are 
estimated below the maximum voicing frequency by means of a weighted least-
squares method in the time domain. The deterministic part is then subtracted 
from the original signal and the residual’s spectral density function is modelled 
by fitting an all-pole filter H(ti,z). Finally, the temporal energy distribution of 
the stochastic component is modelled by a parametric triangular-like time-
domain envelope w(t). The reconstruction of the signal from the measured 
parameters is carried out as follows. The synthesis time instants, ti’, correspond 
exactly to those used for the analysis. The harmonic component is interpolated 
in the time domain, whereas the stochastic component is the result of passing 
white gaussian noise through H(t,z), high-pass filtering according to the 
instantaneous maximum voicing frequency, and finally applying the time-
domain envelope w(t) on voiced segments. 

     The prosodic modification procedures of HNM are based on the PSOLA 
technique. A set of synthesis time-instants is derived from the modified pitch 
contour, and a mapping is established between analysis and synthesis time 
instants. The time-scale modification is performed by deleting/duplicating 
frames and the pitch-scale modification consists of altering the distance 
between the analysis instants and resampling the amplitude and phase 
envelopes at the new harmonic frequencies. No correction is needed for the 
phases, since the frame rate is pitch-synchronous. The amplitude envelope is 
defined using discrete cepstral coefficients that are estimated by means of a 
frequency-domain least-squares criterion, whereas the phase envelope is built 
by linear interpolation of the unwrapped phases. 

     Two conceptually different versions of HNM, called HSM (harmonic plus 
stochastic model) and DSM (deterministic plus stochastic model), can be found 
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in [sty96], but although they entail more complicated analysis procedures, they 
do not lead to significant improvements in terms of perceptual quality. HNM 
was applied to speech synthesis [Sty01a] and voice conversion [Sty98] with very 
good results. Furthermore, in [Syr98] HNM was compared to TD-PSOLA from 
different points of view, concluding that HNM gives better overall performance 
because it allows smoothing the unit boundaries in concatenative synthesis, it 
yields more natural-sounding synthetic speech and it has better properties for 
compression and for voice conversion. 

 

Stochastic component manipulation 

     Regarding the aperiodic part of voiced speech, it was stated by Hermes 
[Her91] that the time-domain characteristics of the stochastic component are 
also important for the overall perceptual quality. For this reason, Stylianou’s 
HNM uses a pitch-synchronous triangular-like envelope to modulate the 
energy of the stochastic component inside each period, so that the maximum-
energy instants of the deterministic and stochastic components are 
synchronized [Sty96]. This condition is important when the stochastic 
component is modelled by means of high-pass noise, since listeners seem to 
perceive two independent audio sources when no time-modulation is 
performed. Theoretically, this approach is no longer valid when the stochastic 
component occupies the full analysis band (there is no reason to suppose that 
the harmonic bands do not contain aperiodic information [Sty96, Yeg98]), so in 
this case the synchronization problem requires using different specific 
techniques like formant waveforms [Ric96], applied after an accurate 
deterministic-plus-stochastic decomposition [Yeg98, Ahn97]. However, in 
practice, the stochastic model based on time-modulated filtered noise gives also 
satisfactory results in this situation: in [Bai01], a period-normalized parametric 
envelope is fitted to the stochastic component during analysis, and during the 
synthesis procedure the filtered noise frames are multiplied by the period-
adapted envelope. 

 

3.2.3. Discussion 
 

     According to the objectives of the thesis, the implemented system has to be 
suitable for generating converted synthetic speech, but also for converting 
natural speech signals. Some of the approaches described above are pitch-
synchronous, like Stylianou’s HNM or the system proposed by Banga et al. The 
motivation for using a pitch synchronous scheme is to facilitate the 
reconstruction of the signal from its periods without problems derived from the 
phase. In exchange, the signal periods have to be correctly separated during the 
analysis step, so an accurate control over the analysis instants is necessary. This 
limitation is not important in the case of TTS systems, where the synthesis 
databases are created off-line and thus the analysis can be validated, but in the 
case of real-time voice conversion systems, for instance, a pitch-synchronous 
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analysis may cause problems. On the contrary, a constant frame rate analysis 
simplifies the analysis process and makes the system compatible with such 
applications. Even if the system requires estimating the pitch at each frame, it is 
easier to estimate the pitch than to calculate exact pitch epochs appearing at a 
pitch-synchronous rate. In addition, this type of analysis allows the user to have 
a certain control over the number of analysis frames extracted from a given 
utterance, so the computational load and memory requirements can also be 
controlled, whereas in pitch-synchronous schemes the frame rate and the time 
resolution of the analysis is fixed by the local period length. The main drawback 
of analysis schemes that are not pitch-synchronous is that the inter-frame 
coherence and the intra-frame shape invariance are more difficult to preserve 
from degradation. For this reason, several pitch-asynchronous systems, like the 
one proposed by McAulay and Quatieri or the ABS/OLA system designed by 
George and Smith, follow an intermediate approach based on handling a set of 
onset times whose separation is the measured local pitch period, but the 
inaccurate estimation of such instants causes audible artifacts. From this point 
of view, O’Brien and Monaghan’s system is very interesting because it 
combines pitch-asynchronous analysis and phase modification without onset 
times. Unfortunately, it has other disadvantages like requiring inverse filtering 
techniques. The sinusoidal system of Chazan et al. uses phase correction based 
on cross-correlation maximization to make the adjacent frames (modified or 
not) coherent, but in the next section it is proved that a satisfactory performance 
is obtained by means of a much simpler approach. 

 

     Concerning the pitch modification algorithms, which are closely related to 
the estimation of amplitude and phase envelopes, important differences can be 
observed between the described systems. Some of them need an explicit 
decomposition into excitation signal and vocal tract contribution: McAulay-
Quatieri, ABS-OLA, and O’Brien-Monaghan. In the rest of the systems the 
amplitude and phase envelopes are treated as if they corresponded exactly to 
the vocal tract contribution, which is equivalent to supposing that the spectrum 
of the excitation signal has constant amplitude and linear-in-frequency phases. 
The performance of such systems is not affected by the simplification of the 
speech production model, so the procedures for vocal tract estimation and 
inverse filtering can be replaced by simple envelope estimation procedures with 
lower associated computational cost, without worrying about the quality. 
Extracting the amplitude envelope from the measured amplitudes is not 
problematic at all: linear interpolation is accurate enough. Extracting the phase 
envelopes from the measured phases is straightforward only in the case of 
pitch-synchronous systems like HNM, whereas in non-pitch-synchronous 
systems, as it has been mentioned above, it is more complicated to deal with 
phases without using onset times. Therefore, adopting a pitch-asynchronous 
scheme in order to simplify the requirements of the analysis step implies 
making the modification procedures more complicated, unless a simple 
procedure for cancelling the linear phase term is also provided. Chazan’s pitch-
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asynchronous system incorporates a solution for this problem. In the next 
section, another new solution is proposed. 

 

     Concerning the aperiodic components of speech, in pure sinusoidal systems 
the unvoiced bands are also modelled by means of sinusoidal parameters, but 
special techniques for phase manipulation or frequency dithering are necessary 
to preserve the noisy perceptual aspect of such components. Moreover, using a 
sinusoidal representation, the aperiodic component has to be restricted to the 
non-voiced bands. In hybrid systems like HNM, the aperiodic component of 
speech is described by a separate stochastic model, which is advantageous 
because it allows modelling wideband noisy components by means of few 
parameters. Although in a typical HNM implementation the voiced and 
unvoiced bands are separated by a time-varying cut-off frequency, there is no 
physical reason to suppose that they are non-overlapping components. It also 
has to be taken into account that in a voice conversion system it is desirable to 
use a constant maximum voicing frequency, so that the spectral envelopes 
(obtained from the parameters of the detected sinusoids) are defined within the 
same frequency range for all the frames and for every speaker. Nevertheless, 
modeling the time-domain characteristics of the wideband stochastic 
component is problematic, because the synchronization properties of time-
domain envelopes may disappear when voices are converted into other voices, 
unless the envelopes are also converted. Therefore, it seems advisable to look 
for an easier way of synchronizing the signal components if a hybrid model of 
speech with wideband stochastic component is adopted. 

 

3.3. Proposed algorithms for a pitch-asynchronous 
scheme 

 

     This section presents a speech model designed during this thesis to fit the 
specifications analyzed above. It has the following characteristics: 

 It is based on a harmonic plus stochastic decomposition. 

 In voiced frames, a fixed maximum voicing frequency is used to 
delimitate the harmonic band. A wideband stochastic component is 
used. 

 The system and algorithms are compatible with a non-pitch-synchronous 
frame rate analysis scheme. For this purpose, new procedures for time-
scale and pitch-scale modification of speech are provided. These 
procedures are conceptually simple and do not require calculating onset 
times for dealing with linear phase terms. 

 Simple procedures for estimating the amplitude and phase envelopes are 
also provided, instead of inverse filtering techniques. 
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 A procedure for concatenating units is also presented. It is based on the 
same ideas than the modification algorithms. 

Next, the new model is fully described according to the general scheme shown 
in figure 3.8: analysis of signals, waveform reconstruction from the HSM 
parameters, time-scale modification, estimation of spectral envelopes (it is a 
requirement for further transformations), pitch-scale modification, and finally, 
unit concatenation. 

 

3.3.1. Analysis 
 

     The simplest method for sinusoidal/harmonic analysis of sound signals 
consists of a peak-picking algorithm that detects the presence of sinusoids in the 
spectral domain from the STFT [Mca86a, Smi87, Ser97]. This method, which has 
been widely used for sound and music analysis with very good results, is based 
on the fact that when a periodic signal (a sum of sinusoids) is multiplied by a 
finite-length window w[n], the spectrum of the windowed signal contains 
replicas of the window Fourier transform W(f) centered at the frequencies of the 
sinusoids. Since the main lobe of W(f) has a maximum in its center, the 
candidate positions of the sinusoids are determined by locating the spectral 
samples where the magnitude spectrum is greater than in the two adjacent 
samples. As the precision is limited by the resolution of the STFT, a parabolic 
interpolation can be used to refine the peak search. Some authors use sinusoidal 
likeness measures to discard the spectral peaks that do not represent true 
sinusoids [Rod97], although this kind of coefficients are very sensitive to noise, 
recording conditions, reverberation, instantaneous frequency variation along 
the frame, etc. In order to make the peak-picking algorithm work well, it is 
desirable to use windows whose Fourier transform does not have powerful 
secondary lobes that can be erroneously interpreted as peaks, like for instance 
the Blackman or Blackman-Harris window. Unfortunately, such windows are 
also characterized by a very wide main lobe, which can cause that the different 
replicas of W(f) get overlapped and some small spectral peaks get hidden (see 
figure 3.9). That is why for a correct peak detection, the length of w[n] has to be 
at least 4T0, where T0 is the period of the lowest frequency contained in the 
signal (in periodic signals, T0 is the fundamental period). The main problem of 
the STFT-based method is that four periods (40ms for a harmonic signal with 
f0=100Hz) are excessive for speech analysis, due to the fact that the speech 
signal cannot be considered stationary within such a long interval, so the 
parameters of the sinusoids may have important variations inside the 
windowed frame. For this reason, it is important to use analysis methods 
capable of measuring the signal parameters from shorter frames, whereas in 
music signals, where there are long stationary segments and slower variations 
in time, the algorithm works well. 
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Figure 3.9: spectrum of a stationary harmonic synthetic signal with f0=102 Hz. a) Two periods 

using Blackman-Harris window. b) Four periods using Blackman-Harris window. c) Two 
periods using rectangular window. d) Four periods using rectangular window. 

 

     In previous works it was shown that it is possible to measure the amplitudes 
and phases of the sinusoids from a two-period-length windowed frame through 
a least squares optimization, assuming that the pitch has been previously 
estimated with enough accuracy. This can be done either in the time domain 
[Sty96] or in the frequency domain [Dep97]. 

     In the time-domain implementation, for a given frame k of length N+1 
containing L harmonics, the error to be minimized can be expressed as 
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where s[n] is the real speech signal, {Cl} are the complex amplitudes (which 
verify the condition C-l=Cl*) and w[n] is a certain weighting function whose 
maximum is located at the frame center. For simplicity, the frame center has 
been placed at n=0 and the super-index (k) has been omitted. The vector sh that 
contains the samples of the harmonic frame can be expressed as 
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The weighting function can be expressed by means of a square diagonal matrix 
W where the diagonal elements are the samples w[-N/2], …, w[N/2]. Thus, the 
final equation system to be optimized is the following. 

( ) WsWBxWBWBWsWBx HH
opt

HH =⇒=          (3.18) 

where s is the vector containing the speech samples of the current frame. The 
main advantage of the time-domain implementation is that (BHWHWB) is a 
Toeplitz matrix, so the solution can be reached efficiently by Levinson’s 
algorithm. Once xopt is calculated, the amplitudes and phases of the harmonics 
are given by 
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llllll CCCCA −− −==== argarg       ,22 ϕ  (3.19) 

[Lar93] includes a more complete version of the method in which a similar 
optimization leads to the estimation of the complex slopes of the complex 
amplitudes along the frame, which can be used also for the refinement of the 
pitch estimate. 

     In the frequency domain [Dep97], the measured short-time spectrum can be 
approximated as 
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where fl corresponds to lf0. This can be expressed as 

SxH =⋅  (3.21) 

where H is the matrix whose lth column is given by the spectrum Hl(f), defined 
as 
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S contains the STFT of the current frame, and x is defined as 

[ ]TLLLL AAAA ϕϕϕϕ sinsincoscos 1111 KK=x  (3.23) 

The optimum x is given by 

( ) SHHHx HH
opt

1−
=  (3.24) 

The amplitudes and phases are easily extracted from xopt. In both, the time-
domain and the frequency-domain implementation, a first estimate of the pitch 
has to be available before the optimization. In principle, any of the existing 
methods for pitch detection can be used for this task. In this case, the modified 
autocorrelation method presented in [Boe93] was chosen. Several objective 
experiments carried out with natural speech signals showed that both the time-
domain and the frequency-domain implementations have a similar 
performance in terms of accuracy. Both methods work well in a pitch-
asynchronous context for a two-period-length analysis window, regardless of 
the position of the analysis instants within the signal periods. Therefore, the 
only difference between them is that the frequency-domain implementation is 
characterized by a higher computational load. It can be concluded that the time-
domain method is better than the frequency-domain method. It was also 
checked that the ABS-OLA technique proposed in [Geo97], which optimizes the 
error for one only sinusoidal component at a time until the whole analysis band 
is covered, led to less accurate results. 
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     Once the sinusoidal part of the signal has been measured, for the analysis to 
be completed, the stochastic component has to be isolated and parameterized. 
There are two ways of doing this: 

1) By taking the error of the sinusoidal estimation as stochastic component. 
This error, which can be calculated either in the time-domain or in the 
frequency-domain, would be then analyzed so that the stochastic 
component is characterized locally at each analysis frame. 

2) By interpolating and regenerating the deterministic component from the 
parameters measured along the signal, and then subtracting it from the 
original waveform. The resulting stochastic signal would be then analyzed 
frame-by-frame. 

The first approach has one main problem: the methods for optimization of the 
sinusoidal parameters assume that the signal frequencies and amplitudes are 
steady. On the contrary, the second approach allows imitating the real 
evolution of the amplitudes, frequencies and phases, so in principle the effects 
of the time variation are minimized. Indeed, comparative experiments confirm 
that the energy of the resulting stochastic component is lower when the second 
strategy is followed. In order to examine the implementation details, let us 
consider the analysis frames k and k+1, centered at n=kN and n=(k+1)N, 
respectively. The instantaneous amplitude Al[n] and phase φl[n] of the lth 
harmonic can be interpolated between the frame centers using the equations 
proposed by McAulay and Quatieri in [Mca86a]: 
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The phase polynomial satisfies the following conditions: 
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The frequencies are integer multiples of the pitch w0(k). The phase unwrapping 
parameter M is the integer number that makes the instantaneous frequency 
maximally smooth: 
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Therefore, the polynomial coefficients are: 
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The interpolated deterministic waveform is reconstructed by summing together 
all the individual contributions, and the stochastic component is isolated by 
subtraction. 
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The resulting stochastic signal e[n] is filtered to eliminate the noisy components 
below 80 Hz and it is then analyzed using the LPC technique [Mak75]. The 
optimum filter coefficients are calculated at the analysis frames by applying the 
Levinson-Durbin algorithm to the autocorrelation sequence of the windowed 
frame. It has to be emphasized that the separation between periodic and noisy 
components is not perfect: some traces of the harmonic component persist after 
the subtraction, mainly due to the pitch estimation errors, the inaccuracy of the 
interpolations, the rapid time variation of the sinusoidal parameters, and even 
the fact that the signal is not strictly periodic. As it can be seen in figure 3.10, the 
time-domain aspect of the residual component e[n] is highly correlated with the 
analysis instants, rather than with the instantaneous period. Since separating 
the contribution of these phenomena from the noise itself is extremely difficult, 
it is desirable to minimize their effect on the stochastic analysis. For this 
purpose, the LPC analysis windows are centered at the instants of harmonic 
analysis, where the codification error is minimal, and their length is set to N, so 
that the regions of maximal error are attenuated by the analysis window (a 
Hamming window is used). Figure 3.11 illustrates this process. 

 

 
Figure 3.10: analysis of a real speech signal. a) Original waveform. b) Detected harmonic 

component. c) Residual after subtracting the harmonic component from the original signal.  
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Figure 3.11: analysis of the stochastic component. 

 

3.3.2. Reconstruction 
 

     After the analysis, the following parameters are available at each frame: 

 Fundamental frequency at the frame center (0 for unvoiced frames). 

 Amplitudes and phases of all the harmonics below 5 KHz (only at voiced 
frames). 

 LPC filter of the stochastic component. 

Both signal components are regenerated independently. The deterministic 
component can be interpolated at every time instant using first-order 
polynomials for the amplitudes and third-order polynomials for the phases and 
frequencies. On the other hand, the overlap-add (OLA) reconstruction method 
[Geo97] has several advantages: 

 It reconstructs the signal by overlapping and adding frames that contain 
steady sinusoids. The time variation is provided by the overlap-add 
procedure. Therefore, the current frame can be generated from the 
parameters measured only at that frame. 

 In contrast to the time-varying cosine functions, the steady cosine 
sequences can be synthesized by means of efficient techniques (inverse 
FFT, recurrence relation for cosine functions, etc.) [Rod92, Sty00]. 

 There are not perceptual differences between the deterministic 
component obtained by interpolation and that obtained by OLA. 

Taking advantage of the OLA scheme, the stochastic coefficient can be also 
generated by overlapping and adding the noise frames obtained by filtering 
white gaussian noise σ[n] through the LPC all-pole filters found during the 
analysis. It has been observed that the interference between adjacent noisy 
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frames does not modify the perceived sound. The reconstruction method is 
formulated as follows: 
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(3.32) 

As it can be seen, a triangular window is used for the overlapping process. The 
synthetic signals reconstructed from the harmonic and stochastic parameters 
are almost indistinguishable from the original. The perceptual quality is very 
good, even when no time-envelopes are used for the stochastic component in 
voiced frames. This is probably due to the fact that both signal components 
overlap in the frequency domain, so the streaming effect observed in other 
systems like HNM disappears. However, after some informal perceptual tests 
consisting of listening to signals in which the energy of the stochastic 
component had been strongly manipulated, it was concluded that a raised-
cosine-like window synchronized with the first harmonic (whose maximum lies 
near the high-energy regions of the period) helps to maintain the quality of the 
signal without altering the characteristics of the perceived sound. The main 
advantage of such a simple approach, apart from its simplicity, is that it is not 
necessary to determine the parameters of the window during the signal 
analysis. Instead, it is oriented to waveform generation, so it is also compatible 
with converted speech. Examples of synthetic signal components are shown in 
figure 3.12. 

 

 
Figure 3.12: Reconstruction of signals from the HSM parameters. a) Original signal. b) 

Regenerated harmonic component. c) Regenerated stochastic component. 
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3.3.3. Time-scale modification 
 

     The speech is analyzed at a constant frame rate, so the signal is characterized 
at n=kN by the harmonic and stochastic parameters. The time-scale modification 
of the signal can be implemented by modifying the distance N between the 
analysis frame centers. In the most general case, a time-varying modification 
factor ρ(k) may be applied to the segment located between the analysis instants 
k–1 and k. Following this idea, a variable synthesis frame rate is obtained when 
time-varying modification factors are applied. Furthermore, the triangular 
windows used for the overlapping process become asymmetric. 

 

 
Figure 3.13: a) Original frame distribution. b) Frame distribution after time-scale modification of 

the signal by a non-constant factor. 

 

As the pitch frequency f0 is fixed at the analysis instants, the reallocation of the 
analysis instants automatically adapts the pitch contour to the desired time 
scale. The same assertion is valid for the amplitude envelopes. In contrast, the 
phases have to be corrected to avoid destructive interferences. If the phases are 
kept fixed, when the analysis instants move to their new positions, phase 
mismatches appear at the points where the consecutive synthesis frames 
overlap. As a result, the instantaneous frequency is distorted by the incoherent 
overlapping, causing audible artifacts. In figure 3.14 an example for a single 
tone is shown. 

kk–1 k+1 k+2
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n
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Figure 3.14: a) Single tone analyzed at two instants. b) The frame centers are moved without 
correcting the phases. c) After OLA, the frequency has changed with respect to the original 

signal (dotted line). 

 

Therefore, an adequate linear-in-frequency phase term (which is equivalent to a 
time shift) has to be added to the measured phases in order to maintain the 
waveform coherence between every two consecutive frames. Let us assume that 
the phases of the harmonics φl(k) can be decomposed in two terms: a linear-in-
frequency phase term given by α(k), which varies from one sample to the next 
according to the local fundamental frequency, and the vocal tract phase 
contribution θl(k) at the frequency of the harmonic. 
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The phase response of the vocal tract is tied to its magnitude response. In our 
case, the magnitude response is represented directly by the amplitudes of the 
harmonics. Therefore, the phase values θl(k) should be kept invariant at the 
analysis instants despite the time reallocation, so that the vocal tract response is 
not affected by it. For this reason, the phase correction term has to be linear-in-
frequency. In most of the previous approaches, the linear term given by the 
parameter α(k) is determined by a certain reference point (onset times, pitch 
marks, etc) located near the analysis instant. However, assuming that the 
fundamental frequency varies linearly from one analysis instant to the next, a 
much more simple approach can be proposed. The linear phase increment from 
frame k–1 to k α(k) before the modification can be estimated as 
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which is a function of the pitch at both ends and the distance between them. Let 
us call this function ψ, which can be defined as the expected increment of α 
between two adjacent frames. If the distance between the analysis instants k–1 
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and k is multiplied by a certain factor ρ(k), the desirable increment would be 
given by 

( ))()1(
0

)(
0

)1()( ,, kkkkk Nww ρψαα −− ≅′−′  (3.35) 

Thus, the phase correction can be described by the following equations, in 
which it is not necessary to know the values of α. 
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As it can be seen, the linear-in-frequency phase correction term contains the 
increments calculated for all the previous frames. This is indispensable to 
maintain the coherence between the current frame and the already modified 
previous frame. Finally, the expression for the reconstruction of the time-scaled 
speech signal is 
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Only the phase values have been modified. The stochastic filter coefficients do 
not need to be altered. 

 

 
Figure 3.15: time-scale modification of a natural speech signal by factors (a) 0.8, (b) 1.0 and (c) 

1.25. 
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     The proposed method has several advantages with respect to other 
approaches described in section 3.2. First, pitch marks and onset times are not 
necessary for a correct signal manipulation. In addition, the usage of third order 
polynomials [Obr01] or cross-correlation-based phase corrections [Cha06] are 
also avoided, and very simple correction terms are used instead. For 
modification factors in the range from 0.5 to more than 2.0, this method does 
not introduce audible artifacts in the time-scaled synthetic speech signals. Some 
examples are shown in figure 3.15. 

 

3.3.4. Spectral envelope estimation 
 

     The spectral envelopes are important for a number of applications: pitch-
scale modifications, spectral smoothing between units for concatenative 
synthesis, transformation functions based on frequency-warping, etc. In some 
previous approaches, this task is accomplished by separating the vocal tract 
from the excitation signal, by means of homomorphic deconvolution [Qua92] or 
inverse filtering techniques [Obr01, Alk91]. In some other approaches [Sty96, 
Rod02], the spectral envelopes are extracted directly from the parameters of the 
sinusoids. This is equivalent to supposing that the excitation signal has constant 
amplitudes and linear-in-frequency phases. The results achieved by such 
systems prove that, although the underlying model is less realistic, this simpler 
way of estimation is adequate for speech manipulation. 

 

Amplitude envelope 

     The magnitude envelope is built by linear interpolation between the log-
amplitudes measured at the harmonic frequencies. Obviously, a higher 
resolution is obtained for low-pitched signals. 

 
Figure 3.16: linear interpolation of log-amplitudes. 

 

The range from 0 to f0 is problematic because there are no harmonics at 
frequencies lower than f0. A reasonable solution consists of adding a virtual 
harmonic at f=0 with the same amplitude than the first harmonic, A1. However, 
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when the pitch is very high this approach is not very realistic, as f0 may be close 
to the frequency of the first formant. For this reason, a new approach inspired 
by PSOLA techniques is proposed. The idea is simulating what occurs in 
PSOLA when dividing the pitch by a factor 2, as it is known that PSOLA works 
well for such factor. This is exactly the same as deleting one frame out of two. In 
figure 3.17 the pitch-halving process is illustrated. 

 
Figure 3.17: a) Harmonic signal reconstructed by TD-PSOLA. b) Pitch halving performed by 

TD-PSOLA: half of the frames are rejected. 

 

If the Hanning window is used, the resulting waveform is equivalent to 
multiply the original waveform x[n] by a cosine-like signal: 
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The parameter α allows adjusting the phase of the windowing signal, 
depending on where the pitch marks are placed. This modulation causes the 
appearance of new sinusoids between every two consecutive harmonics, whose 
amplitude depend on the amplitudes and phases of those harmonics, but also 
on the window phase α. In particular, a new sinusoid is created at half the 
fundamental frequency and its amplitude is exactly A1/2. If the process was 
iterated, the resulting amplitude at f0/4 would be A1/4, and so on. For this 
reason, the amplitude envelope between 0 and f0 can be obtained by linear 
interpolation between 0 and A1, instead of interpolating in a logarithmic 
amplitude scale. Nevertheless, it has been checked that using a constant value 
equal to A1 in the range 0-f0 is good enough for many different voices. 
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Phase envelope 

     When signals are analyzed at a constant frame rate, in contrast to the 
magnitude envelope, which is estimated directly from the amplitudes of the 
harmonics, the phase envelope cannot be calculated from the measured phases. 
This task is straightforward in pitch-synchronous systems, because the linear 
phase term of the measured phases is the same for all the frames, so there is no 
problem to assume that the vocal tract phase values θl(k) are exactly the 
measured phases φl(k), because although the linear term may be different to 
zero, the resulting interpolated curve is coherent with that of the adjacent 
frames (however, it was reported by Stylianou [Sty01b] that linear phase 
mismatches between consecutive frames can also be problematic in pitch-
synchronous systems). When a constant frame rate is used for the analysis, it is 
necessary to estimate the linear phase term α(k) (see equation (3.33)) at each 
frame in order to isolate the vocal tract phase contributions θl(k), from which the 
phase envelope can be interpolated. 
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There are not too many procedures to estimate α(k) from the sinusoidal 
parameters when no onset times or reference instants are available. Stylianou 
proposed two techniques based on differentiated phase data and on the concept 
of center of gravity [Sty01b]. In [Cha02] the linear phase negative increment that 
makes the complex amplitudes maximally smooth is chosen as α(k). In this thesis 
another hypothesis is established: when the linear phase term is zero, the 
phases of the harmonics (which are linked exclusively to the vocal tract) get 
maximally close to zero1. One possible solution would be to find the linear 
phase increment β that minimizes the error defined by the difference between 
the measured harmonics and the corresponding zero-phase harmonics: 
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However, this error criterion penalizes too much the contribution of the low-
amplitude harmonics. In order to avoid this, the following error criterion is 
used instead: 
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1 It is assumed that the polarity of the signal is positive. This means that the waveform has 
sharper positive peaks than negative peaks. If the polarity is negative, the phases are maximally 
close to π. 
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The super-index (k) has been omitted for simplicity. The optimal value of β is 
given by 
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Maximizing this sum of cosines is exactly equivalent to finding the maximum of 
the harmonic time-domain waveform (the angle β corresponds to w0n in the 
original notation). Thus, the proposed strategy is similar to that followed in 
some pitch-synchronous systems in which the two-period-length frames are 
separated using the signal maxima as reference, but the proposed method finds 
the exact maximum, whereas such pitch-synchronous systems use the highest 
sample instead. Anyway, in both cases the underlying assumption is that the 
waveform reaches its maximum when the phases of the harmonics are 
maximally close to zero (no linear phase term). 
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The resulting equation is nonlinear, but it can be simplified by means of the 
substitution x=cosβ and the Tsebyshev polynomials, defined recursively as: 
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These polynomials are useful because they verify the following conditions for 
|x|≤1: 
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After the substitution, the nonlinear sinusoidal equation is transformed into a 
polynomial equation: 

( ) ( ) 01 2 =−± xQxxP  (3.46) 

where the coefficients of P(x) and Q(x) result from the combination of T-type 
and U-type polynomials, respectively. The problem is solved more easily if the 
equation is transformed into 

( ) ( ) ( ) 01 222 =−− xQxxP  (3.47) 

Among all the real roots of the resulting polynomial, which are easily located 
by any typical root finding method between x=–1 and x=1, the one whose 
associated value of β verifies equation (3.42) is chosen as final solution xopt. In 
practice, not all harmonics need to be used for the calculation of the linear 
phase term. Only the most powerful harmonics are relevant for this task, so the 
complexity of the problem can be reduced by selecting only the harmonics 



  Intra-lingual and cross-lingual voice conversion using harmonic plus stochastic models 

 73 

found below a certain cut-off frequency. Looking at the definition of α(k), it is 
obvious that 
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Once the phases of the vocal tract are known, the phase envelope is obtained by 
linear interpolation between the complex amplitudes given by Al(k)exp(jθl(k)). For 
the frequency range below f0, a virtual harmonic is added at f=0 with the same 
amplitude than the first harmonic and phase zero. 

 

 
Figure 3.18: phase envelope obtained by linear interpolation of the complex amplitudes after 

removing the linear-in-frequency phase term. 

 

 

3.3.5. Pitch-scale modification 
 

     Now that the amplitude and phase envelopes can be estimated for a given 
frame, the pitch modification of speech signals can be carried out as follows. 
First, the pitch frequency is multiplied by the modification factor λ(k). Therefore, 
the new harmonics are located at integer multiples of the modified pitch below 
the maximum voicing frequency (5 KHz). Then, the amplitudes A’l(k) and the 
vocal tract phases θ’l(k) are obtained by resampling the magnitude and phase 
envelopes at the new harmonic frequencies. The energy of the whole harmonic 
component has to be kept invariant at each frame in spite of the different 
number of harmonics within the voiced band, so all the new amplitudes are 
multiplied by the same corrective factor (λ(k))½ . The resulting waveform is 
successfully pitch-converted at each frame, but the inter-frame coherence 
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disappears because the linear phase term, which has not been modified yet, 
may be incompatible with the new periodicity. An example of this can be seen 
in figure 3.19. In order to avoid such artifacts, the linear phase term has to be 
adapted to the new wavelength. 

 
Figure 3.19: a) Single tone analyzed at two instants. b) The pitch is modified at each frame 

without correcting the phases. c) After OLA, the pitch is different from the desired one (dotted 
line). 

 

The linear phase term is corrected as follows. 
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The total new phases are given by 
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The modified signal can be reconstructed by means of expression (3.32), where 
the frames to be overlapped are 
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The coefficients of the stochastic component are kept unaltered during the 
pitch-modification process. Figure 3.20 shows some examples of pitch-modified 
signals. 

As it can be observed, the modification procedures defined can be carried out 
simultaneously by adding both linear phase correction terms at the same time 
and redefining the new frame centers. As a cascade implementation leads to the 
same results, it is not necessary to provide expressions for the joint 
modification. 
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Figure 3.20: pitch-scale modification of a natural speech signal by factors (a) 0.8, (b) 1.0 and (c) 

1.25. 

 

3.3.6. Concatenation of units 
 

     In most of the existing high-quality speech synthesis systems, the synthetic 
utterances are built by concatenating different speech units selected from a 
database. The synthesis database is built from a set of sentences uttered by a 
skilled speaker, which are recorded and segmented. The text of the sentences is 
carefully designed before the recording process to cover all the phonetic 
possibilities that will be needed for synthesis. As a result of this, lots of 
instances of each phoneme can be found in the database in different contexts 
and with different prosodic attributes. Given a text to be spoken by the system, 
it is transformed into a correct phonetic transcription by the text processing 
module. The prosody generator obtains the pitch, duration and energy contours 
for that specific text. Then the most appropriate units for synthesizing it are 
selected among all the recorded units in the database by optimizing a certain 
cost function. Finally, the selected units are prosodically transformed according 
to the previously calculated contours, and they are concatenated together to 
build the output signal. The general scheme of a TTS system is shown in figure 
3.21. 
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Figure 3.21: general scheme of a TTS system based on unit selection. 

 

The speech model and associated procedures that have been described until 
now can be used for the implementation of a concatenative TTS system if the 
units of the database are analyzed and HSM-parameterized. The only 
remaining task consists of designing a procedure for concatenating the 
parameterized units without introducing artifacts. Two main problems appear: 

1) Waveform mismatches: the frames at the boundaries of the units to be 
concatenated have to overlap in phase to avoid the appearance of audible 
artifacts and visible discontinuities in the speech waveform. 

2) Spectral mismatches: although the phonetic content of the units to be 
concatenated is similar, they have been recorded in slightly different 
phonetic and prosodic contexts, so the central frequencies and bandwidths 
of the formants may have discontinuities at the unit boundaries. 

In practice, the first problem can be solved by an adequate phase processing, 
and the second one can be faced by means of spectral smoothing, which is 
linked to the amplitudes of the harmonics. 

 

     Let us suppose that q–1 is the last frame of unit A and q is the first frame of 
unit B. Although the typical notation is used for the amplitudes, frequencies 
and phases, it is also assumed that the prosody of both units has already been 
adapted to the specifications provided by the prosody generator. The idea for 
the phase-coherent concatenation consists of making the linear phase term 
increment from q–1 to q be exactly ψ(w0(q), w0(q–1), N(q)), where ψ is defined in 
(3.34). Thus, a linear corrective term is added to the phases of all the frames in 
B. 
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Note that α’(q–1) is used instead of  α(q–1) because its value was updated during 
the concatenation of the previous unit A. After having solved the problems 
related to the phases, the magnitude envelopes near the boundaries are 
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combined with those of frames q–1 or q for smoothing the spectral 
discontinuities. 

( ) ( ) ( ) ( )
( ) ( ) ( )





≥
<

−+

−+
=′

− qk
qk

fAfA
fAfA

fA
qkkk

qkkk
k

)1()()()(

)()()()(
)(

1
1

µµ

µµ
 (3.54) 

where µ=1 at the concatenation instant and it decreases linearly until a certain 
distance from it is reached. Satisfactory perceptual results are obtained if the 
distance is half the length of the current demiphone. The smoothed amplitudes 
are calculated by resampling the new weighted envelopes at the harmonic 
frequencies, and the energy of the harmonic component is preserved by means 
of a multiplicative factor. 

 

3.4. Validation of the system in a speech synthesis 
context 

 

      Experiments were carried out to validate the new algorithms for prosodic 
manipulation and concatenation of speech fragments. Speech synthesis by 
corpus is an adequate context for the validation of the system, because it is a 
combination between all these tasks. However, building a whole TTS system 
based on the described model and subjectively evaluating its performance has 
one main drawback: the opinion of the listeners may be influenced not only by 
the performance of the waveform generation method, but also by the 
naturalness of the generated prosody or the accuracy of the selected units. For 
this reason, in this section a comparative test is carried out between TD-PSOLA 
and the new technique, using the same TTS engine combined with the two 
different waveform generators. Most of the existing high-quality speech 
synthesizers are based on TD-PSOLA, so proving that the new HSM-based 
techniques outperform TD-PSOLA would confirm that the proposed techniques 
are suitable for high-quality speech synthesis.  

     Ogmios is the TTS system of the Universitat Politècnica de Catalunya (UPC), 
described in appendix A. In the standard version of Ogmios, whose waveform 
generator is based on TD-PSOLA, the synthetic utterances are built by 
modifying and concatenating units selected from a corpus. The sequence of 
units to be concatenated is determined by minimizing a cost function that takes 
into account the prosodic, phonetic and spectral properties of the units. The 
quality of the output speech decreases as the prosodic modification factors 
increase, so the system has been designed to modify only the frames where the 
required modification factor is higher than a certain threshold, which can be 
either estimated empirically for each phoneme or specified by the user. In order 
to better perceive the differences between both waveform generation methods, 
in this experiment the system was allowed to perform time-scale and pitch-scale 
modifications in all the speech frames to match the specifications provided by 
the prosody generation block of Ogmios. Under these conditions, the artifacts 
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introduced by both methods were more visible for the comparison, whereas the 
quality of the synthetic sentences was obviously lower. The fact that hybrid 
systems are preferred rather than TD-PSOLA systems in the described 
conditions was already proved in [Vio98], so the objective of the current test is 
just to validate the new implementation of a hybrid system. 

     A preference test was carried out according to the following experimental 
setup: 

 18 listeners participated in the test: 6 speech synthesis experts and 12 
volunteers. 

 4 different voices were used for the experiment: one female voice and 
one male voice characterized by a large database (around 10 hours of 
recorded speech), and one female voice and one male voice characterized 
by a small database (less than 1 hour). When the synthesis database is 
large, more units with the same phonetic content are available for 
selection, each of them with its own prosodic aspect, so for a given input 
sentence to be synthesized, the unit selection process yields a sequence of 
units whose prosodic contour is closer to the desired values. Therefore, 
lower modification factors are required and a higher quality is achieved.  
It is interesting to have an idea on how the database size influences the 
preference of the listeners. 

 All the listeners were asked to listen to 17 pairs of synthetic utterances. 
For each pair, whose components were played in random order, one of 
the sentences had been generated using TD-PSOLA and the other one 
had been generated using HSM, and the listeners were asked to choose 
one of the following options: “I prefer the first”, “I prefer the second” or 
“I can’t decide”. 

The results of the preference test are shown in figure 3.22. Figure 3.23 shows 
separately the results for large synthesis databases and for small synthesis 
databases. In figure 3.24 individual results for female voices and for male voices 
are displayed separately. As it can be seen, in the conditions of this experiment 
the new HSM waveform generation block obtains clearly better scores than 
Ogmios’s standard TD-PSOLA-based generator. This assertion holds for both 
expert and non-expert listeners, but the new method is slightly better scored by 
experts. Concerning figure 3.23, it can be observed that when the synthesis 
databases are small, the uncertainty increases and the scores are closer to each 
other. This fact can be a consequence of the different noise sources in each case. 
When the databases are large, all the phonemes are represented by a high 
number of instances. Thus, the prosodic modification factors needed are lower 
and the associated noise is less important than the artifacts coming from the 
concatenation of units. The concatenations obtained by means of the HSM 
algorithms are smoother because the spectral envelopes can be manipulated. 
On the contrary, when the synthesis database is small, the loss of quality caused 
by the prosodic modifications and by severe concatenation artifacts affects both 
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methods in a more similar way. Figure 3.24 shows that the scores reached by 
the HSM waveform generator are similar in both genders. 
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Figure 3.22: general results of the preference test. 
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Figure 3.23: particular results for (a) large and (b) small synthesis databases. 
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Figure 3.24: particular results for (a) female and (b) male voices. 

 

     The experiment described shows that the HSM method and the algorithms 
presented in this chapter are, at least, as suitable as TD-PSOLA for high-quality 
speech synthesis without voice conversion. The listeners’ choices seem to be 
more influenced by the concatenation properties than by the quality of the 
prosodic modification. However, the results may be different for other 
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configurations of the unit selection procedure that assign a lower weight to the 
prosodic aspects of the units and a higher weight to the spectral aspects. It must 
be taken into account that nowadays in a generic speech synthesis application 
the system tries to minimize the prosodic modifications as possible, whereas in 
this experiment the strategy was exactly the opposite in order to obtain 
information about the capability of modifying signals provided by each 
method. In speech synthesis by concatenation of recorded units without 
modification, the TD-PSOLA waveform generator can be expected to achieve 
higher scores because it works directly with the recorded speech samples, but 
speech synthesis with voice conversion involves important prosodic and 
spectral modifications, and for this reason the comparison has been carried out 
under strong modification conditions. 

 

3.5. Conclusions 
 

     In this chapter, a new speech model based on a harmonic plus stochastic 
decomposition has been presented. This model allows manipulating all kind of 
signal features with a high degree of flexibility, which is desirable for 
implementing a voice conversion system. 

     The novelty of the model lies in the algorithms for performing time-scale 
manipulations, pitch-scale manipulations, and concatenation of units, which are 
compatible with a non-pitch-synchronous analysis scheme. The reason for 
preferring a constant analysis frame rate rather than a pitch-synchronous rate is 
that the analysis procedure is simplified, because the accurate separation of the 
signal periods is not necessary. In exchange, in order to make artifact-free 
speech modification possible, the problem of estimating and manipulating the 
linear-in-frequency phase term of the speech frames without producing artifacts 
has been faced. In contrast to previous non-pitch-synchronous models based on 
sinusoidal or hybrid decompositions, it is not necessary to use onset times or 
pitch-synchronous epochs as a reference. The use of computationally expensive 
inverse filtering techniques is also avoided. Instead, amplitude and phase 
envelopes are used as estimators of the vocal tract, assuming a simplified 
speech production model in which the excitation spectrum has flat magnitude 
response and linear-in-frequency phase response. A new method for removing 
the linear phase term from a set of measured harmonics has been also 
proposed. 

     In order to validate the suitability of the new model for high-quality speech 
transformations, a waveform generator using the model and algorithms 
described here has been implemented and compared to an equivalent TD-
PSOLA-based waveform generator. They both have been integrated into the 
same TTS engine and a preference test has been designed for deciding which of 
them is better when the prosody of the synthetic speech is forced to be exactly 
similar to the specifications provided by the TTS system. The results show that 
listeners have a clear preference for the new system under the conditions of the 
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experiment. Since TD-PSOLA is used in standard high-quality synthesis 
systems, it is concluded that the speech model is also valid for high-quality 
speech transformation and concatenation. This does not mean that the new 
model and algorithms are better than TD-PSOLA: probably the quality 
provided by TD-PSOLA is better when the modification factors are close to 1. 
However, in voice conversion applications the speech modifications required 
may be strong. 

     Now that a very flexible high-quality speech model has been designed, it is 
time to start converting voices. 
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4. New techniques for high-
quality voice conversion 

 

 

     The analysis of the state of the art of voice conversion technologies carried 
out in chapter 2 shows that converting voices implies certain quality 
degradation in the synthetic speech. It can be observed that, regardless of the 
spectral manipulation method adopted by the voice conversion system, the 
similarity between the converted voices and the target voices is highly 
correlated to the quality loss with respect to the original signal, so it can be 
stated that in general, obtaining a higher converted-to-target similarity implies 
also obtaining higher quality degradation. There are two main reasons for this: 

 All kinds of artificial signal manipulations (including the prosodic 
modification of natural speech) entail degradation. The more conversion 
accuracy is required, the higher degree of spectral manipulation is 
necessary, and therefore the more noticeable degradation is produced. 

 A higher acoustic quality allows the listeners perceiving the differences 
between the converted and target speakers more clearly. For instance, 
one can easily imitate someone’s voice by telephone, because the low 
signal-to-noise ratio muffles the differences between voices and makes it 
more difficult for the listener to distinguish them. Also, it is known that, 
for the same reason, higher perceptual quality scores are obtained by a 
TTS system when its output is combined with a sweet musical melody. 

According to the objectives of this thesis, it is intended to research into voice 
conversion methods (see figure 4.1) capable of transforming the short-time 
spectrum of signals without significant quality loss. Since there is a trade-off 
between the quality and the conversion degree, in this chapter the objective is to 
design a voice conversion method that provides state-of-the-art performance in 
terms of converted-to-target similarity and reaches higher quality scores. 
Priority will be given to the quality of the converted speech, because the quality 
scores achieved so far by state-of-the-art voice conversion systems, particularly 
the systems that have a satisfactory performance in terms of converted-to-target 
similarity, are still low compared to those that could be suitable for real-life 
applications. 

 

     This chapter is structured as follows. 

     In section 4.1, the most relevant contributions to voice conversion 
technologies are mentioned and briefly described. 
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     In section 4.2, a state-of-art-performance GMM-based voice conversion 
system is implemented using the model described in chapter 3. 

     Section 4.3 introduces and discusses the evaluation a novel voice conversion 
technique whose goal is improving the similarity-quality balance of current 
voice conversion systems. 

     Section 4.4 contains the main conclusions of this chapter. 

 

 
Figure 4.1: parts of a voice conversion system involved in this chapter, inside the shaded area. 

 

4.1. Brief history of spectral envelope conversion 
 

     An exhaustive study of existing voice conversion methods and systems has 
been presented in chapter 2. Focusing on the spectral envelope conversion 
techniques, the history of voice conversion can be summarized as follows: 

 In 1988, the first voice conversion system was presented by Abe et al. 
[Abe88]. It was based on vector quantization and mapping codebooks. In 
[Shi91] Abe’s system was improved thanks to fuzzy vector quantization 
and fuzzy mapping method. The main disadvantage of Abe’s systems 
was the fact that the hard partition of the acoustic space and the different 
treatment given to each acoustic class, introduced discontinuities in the 
converted speech. Therefore, the next evolution of this kind of systems 
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consisted of changing the way of processing each acoustic class: in 
[Val92] the vectors inside each class were normalized and multiplied by 
a different transformation matrix; in [Miz94] each class was assigned a 
set of transformation rules to be applied to the formant parameters; in 
[Ars99, Tur06] a filter was calculated for each input vector by weighted 
combination of the codebook vectors, using a fuzzy classification to 
calculate the weights; in [Sal06], for a given source vector sequence the 
best sequence of codewords of the target speaker was found by dynamic 
programming. 

 In 1992, Valbret et al. proposed to use the dynamic frequency warping 
technique for voice conversion [Val92]. Other frequency-warping-based 
techniques were presented in [Sün03a, Ren04, Shu06]. All these systems 
had one thing in common: they provided high-quality converted speech, 
but the similarity scores between converted and target voices were not 
satisfactory because the formants were just moved to new frequencies 
without altering the spectral shape. 

 In 1994, it was proposed to combine different recorded voices to obtain 
the target voice through speaker interpolation [Iwa94, Iwa95]. Although 
this technique was not very successful, the same underlying idea was 
used some years later to build multi-speaker systems based on different 
transformation techniques [Tam01, Lat06, Tod06]. 

 In 1995, artificial neural networks were used for voice conversion 
[Nar95], but the immediate appearance of GMM-based systems put this 
method aside [Bau96]. 

 In 1996, Stylianou used gaussian mixture models for partitioning the 
acoustic space into overlapping classes, and he defined a continuous 
probabilistic transformation function for the acoustic vectors [Sty96, 
Sty98]. This method was improved by Kain in 2001 [Kai01]. Thus, the 
discontinuities that appeared in previous codebook-based methods were 
completely avoided, so high similarity scores and satisfactory quality 
scores were obtained. The main problem turned to be the over-
smoothing introduced by the new transformation method, so some 
solutions were proposed in [Tod01, Che03, Tod05, Ye06], but in essence 
the GMM-based approach remained similar to Kain’s. 

 Approximately at the same time, in 1996, speech synthesis by HMMs 
was born [Mas96]. In order to integrate voice conversion into this kind of 
synthesis systems [Mas97], adaptation procedures were used to modify 
the models of a given source speaker to fit the acoustic space defined by 
the observed vectors of the target speakers. The modified HMMs were 
used to synthesize utterances with the target voice. Some other HMM-
based methods were [Tam98, Mor03, Dux04]. 

 In 2001, when the vocal tract conversion scores reached satisfactory 
levels thanks to GMM-based systems, the research was focused on the 
transformation of residuals. Different strategies were adopted: residual 
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codebooks [Ars99, Kai01, Ye06], residual selection [Ye04a], selection and 
smoothing [Sün05], frequency-warping of residuals [Sün06a], etc. It was 
also proved that it was a better idea to predict residuals from converted 
vocal tracts than to convert the residuals of the source speaker [Dux06a]. 

It can be affirmed that GMM-based systems are still the most popular at 
present. Moreover, the fact that the research has been focused on residuals 
during the last years indicates that GMM-based voice conversion systems have 
achieved a satisfactory performance at converting the vocal tract of the involved 
speakers. 

 

4.2. Baseline system based on GMMs 
 

     The objective here is to implement a state-of-the-art voice conversion system 
to be used as a starting point for introducing improvements. This means 
choosing and combining the most adequate methods for signal 
analysis/reconstruction, alignment of source and target features, envelope 
parameterization and transformation, etc. In practice, the choice of the spectral 
envelope transformation technique is the most important one, because it 
directly influences the quality and similarity scores achieved by the whole 
system. According to the bibliographic analysis carried out in chapter 2 and 
summarized in the previous section, GMM-based statistical transformation 
method is the most reasonable choice. 

 

4.2.1. Fundamentals of GMM-based voice conversion 
 

     Gaussian mixture models are probability density functions built as a 
weighted sum of m gaussian components: 
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Each of the m Gaussian components are themselves gaussian probability 
density functions for p-dimensional vectors, described as follows: 
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where µi denotes the p-dimensional mean vector of each component and Σi is its 
p×p covariance matrix. For p(x) to be a probability density function, the weights 
of the combination {αi} have to be positive numbers verifying the following 
condition: 
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The GMM is completely defined by the weights, mean vectors and covariance 
matrices of its individual components {αi, µi, Σi}. Such model can be used to 
obtain a soft partition of the vector space, where the probability of a vector x to 
belong to the ith class (or gaussian component), pi(x), can be expressed as 
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Given a set of N vectors X={xk} and a certain GMM, the likelihood of the whole 
set with respect to the model is given by the product of all the individual 
contributions: 
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The way of estimating the parameters of the GMM that best fits a given set of 
vectors X consists of finding the model for which the global likelihood P(X) is 
maximal. This problem, which is equivalent to maximizing the log-likelihood 
function log P(X), does not have a straightforward analytical solution, but an 
increasingly good approximation can be obtained by the iterative Expectation-
Maximization (EM) algorithm. Given an initial model for X, {αi(r), µi(r), Σi(r)}, the 
EM algorithm calculates a new model {αi(r+1), µi(r+1), Σi(r+1)} with higher 
associated log-likelihood by maximizing an auxiliary function. The algorithm 
consists of the following steps: 

1. An initial estimate of the GMM parameters {αi(0), µi(0), Σi(0)} is calculated. This 
can be done by grouping the vectors of the set X into m clusters from which 
the mean vectors and covariance matrices are obtained. The weights of the 
gaussian components can be initialized by dividing the number of vectors 
inside each cluster by the total number of vectors, N. 

2. E-step: given the current estimate of the model parameters {αi(r), µi(r), Σi(r)}, 
the a posteriori classification probabilities pi(xk)(r) are calculated for all the 
vectors in X by means of equation (4.4). 

3. M-step: new model parameters {αi(r+1), µi(r+1), Σi(r+1)} are calculated from the 
probabilities pi(xk)(r) as follows: 
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4. The EM steps (2 and 3) are iterated until the log-likelihood improvement is 
not significant anymore. 
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The EM algorithm converges to a local maximum of the log-likelihood function, 
so the convergence is conditioned by the initialization. For this reason, it is 
adequate to use hard clustering of the vector space for estimating the initial 
model, instead of using other alternatives with higher randomness. It has been 
noticed that the numerical problems that appear when inverting the covariance 
matrices are important. In order to avoid them, a small perturbation is added to 
the successive covariance estimates. 

     In voice conversion systems based on GMMs, each vector xk contains an 
acoustic representation of the speaker’s vocal tract or spectral envelope. 
Cepstral coefficients and line spectral frequencies derived from all-pole filters 
are the most usual acoustic parameterizations used for translating the speech 
frames into constant-length acoustic vectors. The whole acoustic space of a 
given speaker can be represented by the GMM that better fits the set of acoustic 
vectors extracted from a training database. In this situation, different methods 
have been proposed for transforming source acoustic vectors into target vectors. 

     The first GMM-based transformation method was published by Stylianou 
[Sty96]. Given N source acoustic vectors X={xk} and their corresponding N 
target vectors Y={yk} obtained from a parallel training corpus, a GMM {αix, µix, 
Σixx} is estimated from X and the a posteriori probabilities pix(xk) are calculated. 
Stylianou proposes to apply the following transformation function: 
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where the p-dimensional vectors νi and the p×p-dimensional matrices Γi are 
determined by minimizing through the whole dataset the transformation error 
given by 
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This is equivalent to defining an optimal linear transformation for each of the 
gaussian components and building the global transformation by combining the 
m contributions. 

     The method proposed by Kain some years later [Kai01] consists of building a 
set of concatenated vectors Z={zk}, zk=[xkT ykT]T, and modeling the space of Z by 
a GMM {αi, µiz, Σizz}. The mean vectors and covariance matrices of this model 
verify the following relationships: 
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Therefore, implicit information about the individual acoustic spaces of X and Y, 
and also about the cross-covariance matrices, is obtained. Thus, the 
transformation function can be derived directly from the trained model, as 
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     As it has been explained in chapter 2, some other types of GMM-based 
transformation functions, designed to face the over-smoothing problem that 
appears in standard GMM-based systems, have been proposed [Che03, Tod05]. 
Anyway, in spite of the over-smoothing problem, this type of systems generally 
performs better than others. 

 

4.2.2. Description of the system 
 

     This section describes how the different tasks of the voice conversion process 
are implemented in the baseline system. Although the techniques applied here 
do not contain relevant novelties with respect to the state of the art, the way of 
implementing a GMM-based voice conversion system using the non-pitch-
synchronous Harmonic plus Stochastic model described in chapter 3 has some 
particularities that make it different from the others. In the next sub-sections, 
the implementation of the baseline system is detailed according to the structure 
of a generic voice conversion system, shown in figure 4.1. 

 

Speech model 

     The HSM represents the speech signal frames by the local pitch frequency, 
the amplitudes and phases of the harmonics below 5 KHz and the LPC 
coefficients of the stochastic component. All these parameters should be 
successfully transformed by the voice conversion system. The speech model has 
been described extensively in chapter 3, so no more details are given here. 

 

Parameterization 

     The task of converting voices directly from the HSM parameters 
(amplitudes, frequencies, phases and stochastic filters) is extremely 
complicated. The strategy usually followed in this situation consists of 
decomposing the whole voice conversion problem into different sub-problems 
that can be solved independently: 

 Pitch conversion. Parameterization of the f0 information is not necessary, 
since only its mean level is to be converted. 

 Harmonic conversion related to the amplitudes and phases. In previous 
voice conversion studies it was stated that the influence of the harmonic 
component in the listeners’ perception is much more decisive than that of 
unvoiced sounds [Ye04a]. However, the amplitudes and phases do not 
provide a suitable parameterization of the harmonic spectral envelope in 
terms of voice conversion for several reasons: (i) the number of 
harmonics is variable, whereas GMM transformations are applied to 
constant-length vectors; (ii) the number of harmonics is, in general, high, 
what makes the conversion process more complicated; (iii) the sinusoid 
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parameters do not have good interpolation properties. Therefore, an 
adequate harmonic parameterization is necessary. 

 Stochastic conversion, related to the LPC stochastic filters. In this case, 
the LPC coefficients used for modeling the signal aperiodic component 
constitute a valid parameterization by themselves. 

Therefore, the task is narrowed to finding the most appropriate 
parameterization for the harmonic component. In current voice conversion 
systems, two main types of coefficients are used for this purpose: 

 Cepstral coefficients (CC): they are defined as such coefficients {ci} that 
the log-amplitude spectrum can be modelled as 
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Given a set of harmonics, the optimum sequence of cepstral coefficients 
can be obtained through a least squares optimization [Sty96]. In general, 
c0 is discarded for voice conversion because it only represents the energy 
of the spectrum instead of its shape. 

 Line spectral frequencies (LSFs): given a pth order all-pole representation 
of the spectrum, 1/A(z), the LSF coefficients are the roots of the 
following (p+1)th order polynomials: 
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P is a palindromic polynomial and Q an anti-palindromic polynomial. 
P(z) and Q(z) have all their roots on the unit circle, so they can be 
completely characterized by the frequencies where the roots are located. 
As the roots of P and Q occur in symmetrical pairs at positive and 
negative frequencies (except for two roots that appear always at 0 and π), 
only p/2 frequencies need to be stored for each polynomial, so the 
output of the LSF search has dimension p. Given a certain set of LSFs, 
their associated A(z) is obtained easily as 0.5·(P(z)+Q(z)). When the roots 
of P(z) and Q(z) are interleaved, the stability of the filter 1/A(z) is 
ensured if and only if the roots are monotonously increasing. Moreover, 
the closer two LSFs are, the more resonant the filter is at the 
corresponding frequency. In voice conversion applications, LSFs are 
preferred rather than other types of parameterization for several reasons: 

i) All-pole filters are a good representation of the formant structure. 

ii) They have very good interpolation properties. 

iii) If one of the coefficients is erroneously converted, this affects only a 
small portion of the spectrum. 

In the context of this thesis, LSF coefficients have also some extra 
advantages: 
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iv) The cepstral coefficients associated to a certain LSF vector can be 
calculated in an efficient way from the coefficients of A(z), if 
necessary (see expression (4.46)). In other words, LSFs contain an 
implicit CC parameterization. This property will be exploited in 
chapters 4 and 5. 

v) When converted LSF vectors are translated back into all-pole filters, 
the minimum phase response of the filters is valid for estimating the 
phase envelope of the target speaker. 

vi) Since the stochastic component is represented by LPC coefficients, 
the same kind of parameterization would be used for the harmonic 
component and for the stochastic component. This is advantageous 
for prediction of one component from the other. 

It can be concluded that LSFs are the best option in this case. A particularized 
frequency-domain implementation of the LPC technique [Mak75] can be 
applied to obtain the optimal all-pole representation of a given set of 
harmonics. It is well known that the coefficients of an LPC filter of the form 

( ) p
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11
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can be calculated by solving the following system: 
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The sequence [R0 … Rp] corresponds to the first p+1 values of the 
autocorrelation sequence of the input signal x[n]. The system matrix is a 
Toeplitz matrix, so it can be inverted efficiently by means of the Levinson-
Durbin recursion [Lev47, Dur60]. In the case of harmonic signals given by the 
amplitudes, frequencies and phases of the sinusoids, the values of Rn are more 
easily calculated using the inverse Fourier transform of the power spectrum: 
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where the ½ factor can be omitted. Although this procedure is simple and 
efficient, a more precise all-pole representation of a given set of spectral points 
is obtained by minimizing the Itakura-Saito (I-S) error, given by the following 
expression: 
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where L is the number of harmonics, P represents the power spectrum of the 
signal at the specified frequencies (which is equivalent to the squared 
amplitude) and P* is obtained from the estimated all-pole filter. The Discrete 
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All-Pole Modeling (DAP) iterative technique proposed by El-Jaroudi and 
Makhoul [Elj91] leads to an increasingly accurate solution. It consists of the 
following steps (the theoretical aspects beyond the implementation of the 
method are detailed in the referenced paper): 

1. The L squared amplitudes Al2 are taken as P(wl). 

2. An initial estimation of the all-pole coefficients {ai} is obtained by solving the 
ordinary LPC system given by (4.16), using (4.17). 

3. The impulse response h* of the all-pole filter given by the current estimation 
of {ai} is calculated as 
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 where A(z) is the polynomial given in (4.15). It can be proved that the 
relationship between h* and the autocorrelation sequence of the estimated 
filter R* is 
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 Both R* and h* depend on {ai}, but if the I-S error in (4.18) is minimized with 
respect to the filter coefficients, it can be also proved that 
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 Thus, equation (4.20) can be expressed in terms of R instead of R*. 

4. A new estimation of the filter coefficients {ai} is obtained by solving the 
equation system derived from (4.20) and (4.21): 
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5. The I-S error in (4.18) is evaluated for the new coefficients {ai}. If the error 
reduction is still significant, steps 3, 4 and 5 are iterated once again. Note 
that the matrix in step 4 has to be inverted only once, because it remains 
unaltered during the whole process. 

6. Finally, when the error reduction is close enough to zero, the filter 
coefficients are multiplied by a constant factor so that 

( )
( )∑

=

=






L

l l

l

wP
wP

L 1
* 11  (4.23) 

Looking at figure 4.2, the main difference observed between the 
autocorrelation-based all-pole filters and those obtained by DAP is that DAP 
envelopes show lower distortion with respect to the harmonics, mainly at low 
frequencies. In addition, DAP results to provide better perceptual quality than 
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autocorrelation when the amplitude and phase envelopes of HSM-analyzed 
natural speech are substituted by the corresponding all-pole envelopes, 
especially for high-pitched speakers. For these reasons, the DAP method was 
chosen for parameterizing the harmonic component in spite of its higher 
computational load, so that quality took priority over efficiency. It can be 
remarked that it is not necessary to take into account the measured phases for 
this kind of parameterization. 

 

 
Figure 4.2: DAP (red line) and LPC (blue line) envelopes corresponding to the Spanish 

phoneme /a/ in the same phonetic context, uttered by 4 different speakers. 

 

     Two facts have to be considered when trying to determine the optimal order 
of the harmonic all pole-filters: 

 High-order filters provide higher resolution and therefore higher quality. 

 Low-order filters can be converted in a more reliable way. 

Thus, it is desirable to find the lowest filter order that provides high-quality 
speech reconstruction, taking into account that the analysis band is 0-5KHz. In 
this system, 14th order all-pole filters provide the best results. 

 

Alignment 

     Since this chapter focuses on voice conversion methods and algorithms in a 
general context, it can be assumed that parallel training corpora are available 
(the problem of non-parallel training will be faced in chapter 5). 

     In order to train voice conversion systems based on GMM like this one, a 
correspondence must be established between the speech frames of the source 
and target speakers. The method chosen for alignment of source and target 
frames consists of the following steps: 
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1. The boundaries of the phonemes are determined. The recorded training 
sentences are automatically segmented by forced alignment using the 
phonetic transcription provided in the database. 

2. The phoneme boundaries are used as anchor points to establish a piecewise 
linear time-warping function for the source-target pairs of parallel 
sentences. 

3. Each acoustic source vector is paired with the closest target neighbour in the 
warped time scale, as it is shown in figure 4.3. 

 

 
Figure 4.3: alignment of source and target frames. 

 

Despite its simplicity, this method gives very good results, as it was reported in 
[Dux06b]. 

 

Pitch level conversion 

     The pitch level is one of the most important features that are taken into 
account by listeners when rating the similarity between two voices. 
Nevertheless, a basic pitch level adaptation between speakers gives good 
enough results in most of the cases, especially when the speech is emotionally 
neutral or when mimic sentences are used for testing (see appendix B). In 
previous works, this adaptation was carried out by means of a linear 
transformation based on the statistical mean and variance of f0 [Ars99, Ina03, 
Dux06a], which were determined during the training phase. However, in figure 
4.4 it can be observed graphically that the log-f0 is better represented by a 
normal distribution than f0. In fact, using log-f0 instead of f0 seems more 
adequate from a physical point of view. Therefore, the pitch level is well 
converted by applying the following transformation: 
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Figure 4.4: histograms (blue bars) and associated normal distributions (red line) of f0 (a, c) and 

logf0 (b, d) for a male speaker (a, b) and a female speaker (c, d), calculated from 200 mimic 
sentences. 

 

Spectral conversion 

     The method used for spectral envelope conversion is a particularized 
implementation of the GMM-based solution proposed by Stylianou [Sty96] and 
Kain [Kai01]. 

     After the alignment, the acoustic mapping between the source speaker and 
the target speaker is given by a set of frame pairs of the form {xh, xs}↔{yh, ys}, 
where the sub-index h denotes the LSF vector of the harmonic component and s 
denotes the LSF vector of the stochastic component. From now on and for 
simplicity, xh and yh will be called simply x and y. It is known that the 
transformation of the voiced sounds (in which the harmonic component exists) 
is much more important for converting one voice into another than the 
transformation of the unvoiced sounds [Ye04a, Ye06]. As the benefits of 
transforming unvoiced frames in terms of converted-target similarity do not 
compensate the quality degradation, only the voiced frames are going to be 
transformed, so only the aligned frame pairs where both members are voiced 
are considered for training. Thus, the proposed voice conversion method 
consists of using a GMM-based transformation function for the harmonic 
component, followed by stochastic component prediction from the transformed 
harmonic envelope. 
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     The harmonic envelope transformation function is similar to that proposed 
by Kain (expression (4.12)). During the training phase, paired p-dimensional 
LSF vectors x and y are concatenated together to form 2p-dimensional vectors 
z=[xT yT]T. A joint GMM estimated from {z} provides complete information 
about the individual acoustic space of each speaker, given by the weights, mean 
vectors and covariance matrices of the m Gaussian components, {αi, µix, Σixx} 
and {αi, µiy, Σiyy}, but also about the cross-covariance matrices Σixy and Σiyx. 
During the conversion phase, given a source vector x, the corresponding 
converted LSF vector F(x) is obtained by applying equation (4.12). The inverse-
parameterization process is carried out by resampling the converted all-pole 
envelope H(k)(z) at the positions of the new harmonics (which are multiples of 
the converted f0). Thus, the converted amplitudes are obtained by multiplying 
the module of the spectral samples by a certain positive factor η so that the 
energy of the converted harmonics equals the energy of the source harmonics. 

( )0)()( jlwkk
l eHA η=  (4.25) 

The minimum phase response of the converted all-pole filter can be considered 
to be a valid estimation of the phase envelope. Although it may not coincide 
with the real phase envelope, due to its physical meaning, it provides phase 
values that are correlated with the converted amplitudes at every frame. The 
correlation between magnitude and phase is very important for obtaining 
realistic speech waveforms. Moreover, the quality loss produced by the 
minimum-phase approach is insignificant compared to that produced by the 
spectral conversion process. The linear-in-frequency phase term can also be 
artificially generated assuming that the pitch varies linearly from one voiced 
frame to the next, using the function ψ defined in chapter 3 (expression 3.34). 
Thus, the converted phases φl(k)are given by the following recursion: 
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The linear phase term α can be considered to be zero at the beginning of each 
voiced region. Since the phase information is extracted from the converted 
filter, the phases of the source frame do not take part in the spectral envelope 
conversion. Therefore, it is not necessary to apply pitch modification techniques 
for the pitch level adaptation between speakers. Instead, the converted pitch is 
calculated using equation (4.24) and the new amplitudes and phases are 
generated by equations (4.25) and (4.26). 

     Under the assumption that the stochastic component is highly correlated 
with the harmonic component in voiced frames, a stochastic envelope 
prediction function can be learnt using the training speech frames of the target 
speaker. Once the transformation function for the harmonic component is 
trained, all the harmonic-stochastic vector pairs of the form {y, ys} and the target 
speaker’s acoustic model {αi, µiy, Σiyy} can be used for calculating the m vectors 
νi and matrices Гi that minimize the error of the following prediction function: 
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A similar function was used by Stylianou for transforming the harmonic 
component [Sty96]. In this case it is used for stochastic prediction, instead. The 
problem can be solved by a least squares optimization: 
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The optimal solution is 
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where pinv(·) denotes the pseudo-inverse matrix. During the conversion phase, 
the prediction function is applied to the converted harmonic vector F(x). 

 

4.2.3. Tuning of the system 
 

     Although objective measures are not suitable for determining whether a 
voice conversion system is good or not, they can be used to find the most 
appropriate dimensioning of the system. For this purpose, an experiment was 
carried out under the following conditions: 

 Four different voices of two male (m1, m2) and two female speakers (f1, 
f2) were used. Thus, twelve conversion directions were possible. The 
sentences were the same for all the speakers, so a parallel corpus could 
be built for each conversion direction. 

 The parallel training corpus was split into two parts: the first one was 
used for training, and the second one, composed by 10 parallel sentences 
for each conversion direction, was used for testing. The number of 
training sentences, whose average duration was 4 seconds, is one of the 
variables of this experiment. The other variable is the order (number of 
gaussian components) of the GMM used for transforming parameter 
vectors. 
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 The objective measure is calculated as the mean squared error of the 
transformation, given by 
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where F is the transformation function estimated from the parallel 
training corpus, {xn, yn} are the N vector pairs of the parallel testing 
corpus, and CC{·} returns the equivalent cepstral representation of a 
given LSF vector, which is more adequate for measuring acoustic 
distances. This objective measure is related to the performance of the 
GMM-based transformation function that is applied to the harmonic 
envelope of the signal. Since the harmonic component is much more 
important than the stochastic component in terms of voice conversion, 
this measure gives an idea of the overall performance of the system. 
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Figure 4.5: mean squared cepstral distance between converted and target vectors, computed on 

a 10-sentence test parallel corpus for 12 different conversion directions. 
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Figure 4.5 displays the mean squared transformation error obtained for all of 
the conversion directions, using a varying number of training sentences (from 
10 to 80) and different GMM orders (from 1 to 16). Low error values indicate 
that the conversion accuracy is good. It has to be taken into account that the 
error values shown in the figure correspond to the dimensions and the specific 
implementation of the described system. Using diagonal covariance matrices or 
increasing the dimension of the parameter vectors would result in different 
error values. Looking at the surfaces defined by the error measure, several 
phenomena can be observed. In general, the distortion is diminished by 
increasing the GMM order and the number of training sentences, but: 

 Increasing the number of gaussian components while keeping the 
number of sentences low is harmful for the system. When a high-order 
GMM is fitted to very few data, the model learns the specific vectors seen 
during the training phase rather than the whole acoustic space. This 
phenomenon is called over-fitting. 

 Increasing the number of training sentences has a positive effect on the 
distortion, but the improvements are significant only if the order of the 
model is also increased according to the amount of training data. The 
effect of over-smoothing occurs when a low-order model is fitted to a 
large amount of data. 

 The surfaces obtained for different source and target speakers have also 
different behaviour, so it is difficult to determine the optimal GMM 
order for a given number of training sentences without considering 
speaker-dependent factors. Dimensioning is one of the main problems of 
GMM-based voice conversion, which can be solved by reserving some of 
the parallel training sentences for comparing a-posteriori several 
transformation functions with different orders, and choosing the one that 
provides minimal distortion. 

 Increasing the order of the trained models from 8 to 16 leads to obtaining 
slightly more accurate transformation functions if the number of training 
sentences is high enough, but it also implies a noticeable increment of the 
computational load. Informal tests indicate that such small 
improvements in the objective distortion measure are hardly perceived 
by the listeners, so in practice the benefit obtained from 16th order GMMs 
does not compensate the time required for their estimation. 

It can be concluded that in a standard voice conversion task, where only few 
minutes of audio are available for training, around 4 or 8 gaussian components 
should be used. 
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4.2.4. Subjective evaluation 
 

     Within the framework of the European integrated project TC-STAR, public 
competitive evaluations were organized annually in order to encourage 
significant advances in all the technologies involved in speech-to-speech 
translation. Independent evaluations were carried out for automatic speech 
recognition, spoken language translation and text-to-speech synthesis plus 
voice conversion, for three different languages: European English, European 
Spanish, and Mandarin Chinese. 

     During the second Evaluation Campaign of the TC-STAR project [Mos06], 
the first version of the system described above was subjectively evaluated by 
listeners, under the following conditions: 

 20 listeners were asked to listen to several sentence pairs in which one of 
the sentences had been converted by the system and the other one was a 
recorded utterance of the target speaker. The evaluators were asked to 
identify if both samples came from the same person or not, using a 5-
point scale (5=”definitely identical”, 4=”probably identical”, 3=”not 
sure”, 2=”probably different”, 1=”definitely different”). The scores were 
assigned without paying attention to the quality or the recording 
conditions. For the same pair of samples, in the next step, the listeners 
were asked to rate also the quality of the converted sentences from 
1=”bad” to 5=”excellent”. 

 4 different voices were used in this perceptual test: 2 male voices (m1, 
m2) and 2 female voices (f1, f2). One male and one female were chosen as 
source speakers and the two remaining voices were chosen as target 
speakers, and 4 different conversion directions were considered: male to 
male (m1-m2), male to female (m1-f2), female to male (f1-m2) and female 
to female (f1-f2). For a given conversion direction, an average score was 
calculated from the listeners’ individual scores. 

 All the speakers involved were bilingual: for each speaker, around 150 
sentences in Spanish and 150 in English were available for training. The 
average duration of the sentences was 3 or 4 seconds. 10 sentences 
unseen during the training process were used for the perceptual test. The 
sentences uttered by all the speakers were the same, so that a parallel 
corpus could be created. All of them were mimic sentences, so there were 
no significant prosodic differences between speakers. 

The characteristics of the evaluated systems (for privacy, they are given 
fictitious names here) were the following: 

 Proposed system: the one described above. The system was configured 
to use 8th order GMMs and 14-dimensional LSF vectors. Since the system 
was not yet optimized for this evaluation, the stochastic component was 
not modified at all (in further versions, the stochastic prediction 
procedure was incorporated to the system). With regard to the 
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alignment, the use of parallel corpora was avoided in order to prove that 
non-parallel training was also possible. Instead, for each training 
sentence of the target speaker, a pseudo-parallel source sentence was 
generated by concatenating units taken from the training database of the 
source speaker, using a TTS [Dux06b]. It is important to take this fact into 
account when interpreting the results. 

 X1 applied GMM-based linear transformations to the LSF-parameterized 
envelopes, and VTLN to the LPC residuals. It was trained with parallel 
corpora. 

 X2 was a TTS system built from the training sentences of the target 
speaker, so it was theoretically impossible to convert voices better than 
X2. In practice, the quality of the synthetic sentences was degraded by 
the concatenation artifacts and this fact had certain influence on the 
similarity perception. It was not exactly a voice conversion system, so it 
can be considered to be just a reference 

 X3 used decision trees based on phonetic information for choosing the 
transformation function to be applied. It was trained with parallel 
corpora. 

 X4 converted voices by applying a constant frequency warping function 
semi-automatically designed. 

 X5 was based on GMMs and required parallel corpora for training. 

The resulting scores shown in table 4.1 were extracted from the public 
evaluation report in [Mos06]. In figure 4.6, each of the evaluated systems is 
represented by a point whose coordinates correspond to its similarity and 
quality scores. 

 

a) Voice Conversion in English 
Converted-to-target similarity Quality  

f1-f2 f1-m2 m1-f2 m1-m2 average average 
Proposed 2.88 3.17 2.57 3.07 2.92 2.23 

X1 
X2 
X3 
X4 
X5 

2.73 
3.63 
3.47 
2.22 
3.10 

2.02 
4.30 
3.60 
2.07 
3.05 

2.38 
3.67 
3.57 
1.47 
2.20 

2.15 
3.70 
3.27 
1.73 
1.77 

2.32 
3.83 
3.48 
1.87 
2.53 

3.12 
1.61 
1.78 
4.09 
2.09 

Source 2.47 1.83 1.60 1.87 1.94 4.80 
b) Voice Conversion in Spanish 
Converted-to-target similarity Quality  

f1-f2 f1-m2 m1-f2 m1-m2 average average 
Proposed 3.12 3.60 3.10 2.88 3.18 2.38 

X1 
X2 
X3 

2.48 
3.20 
3.13 

2.08 
3.80 
3.95 

2.32 
3.65 
2.93 

2.28 
2.73 
3.85 

2.29 
3.35 
3.47 

3.03 
3.20 
2.25 

Source 2.47 1.83 1.60 1.87 1.94 4.80 

Table 4.1: results of the 2nd TC-STAR evaluation campaign. 
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Figure 4.6: results of the 2nd TC-STAR evaluation in a quality vs. similarity diagram. 

 

In terms of similarity between converted and target speakers, the proposed 
method had satisfactory performance, taking into account that the only systems 
obtaining better scores were X2, which is not a voice conversion system, and X3, 
which requires phonetic knowledge and has the advantage of parallel training. 
With regard to the quality, the performance of the proposed system was 
average compared to the rest of participants. From figure 4.6, it can be observed 
that the proposed system obtained similar results in both languages. That is 
important for the versatility of voice conversion systems. The overall 
performance of the system depends on the weights assigned to the individual 
similarity and quality scores. Nevertheless, considering the relative distance 
between the points representing the different systems and the ideal 
performance point (5, 5), the results can be considered good, especially for 
Spanish. 

     Besides, the main general conclusion obtained from the evaluation was that 
there is a trade-off between the quality scores and the similarity scores reached 
by state-of-the-art voice conversion methods. This led to the proposal of a new 
method with better score balance: Weighted Frequency Warping. 
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4.3. A new spectral conversion method 
 

     According to the objectives set at the beginning of this chapter, this section 
presents a new spectral envelope conversion method whose goal is to provide 
more natural converted sounds without loosing the degree of similarity reached 
by GMM-based transformations. 

     As it was mentioned above, frequency warping transformations are 
characterized by producing smaller quality degradation than the rest of existing 
methods. However, the converted-target similarity achieved by means of 
frequency warping is also low compared to that of other conversion methods. 
Weighted Frequency Warping is a new spectral envelope conversion method 
based on time-varying frequency warping transformations combined with 
GMMs. This combination brings together the advantages of both approaches. 

 

4.3.1. Fundamentals of frequency warping transformations 
 

     The statistical transformation methods described in previous sections are 
suitable for all types of situations in which it is necessary to transform vectors. 
In the case of voice conversion, the problem is solved from a mathematical 
point of view, without considering the specific characteristics of the speech 
signals. In that sense, the frequency warping methods are more closely related 
to the acoustic theory of speech production, as they rely on the assumption that 
changes in the vocal tract length may produce a non-linear transformation of 
the formant frequencies. 

     Given two spectra X(f) and Y(f) for f in the range [0, fmax], the optimal 
frequency warping function w(f) can be defined as the non-linear continuous 
function of f that minimizes the error given by 

( ) ( )( )( )∫ −= max

0

2loglog
f

dffwYfXε  (4.32) 

The goal of voice conversion methods based on frequency warping is to 
transform the frequency axis of the source spectra by means of an adequate w(f) 
so that the converted spectra are maximally similar to the target spectra. 
Moreover, w(f) should not be constant: different phonemes may require 
different transformations. As it was explained in chapter 2, several 
implementations of this idea can be found in the literature. 

     The most important one is called Dynamic Frequency Warping (DFW) 
[Val92], and it operates with sampled short-time spectra obtained by STFT. Let 
us consider that x and y are p-dimensional vectors that contain the samples of 
two different magnitude spectra, log|X(f)| and log|Y(f)|, respectively. The 
DFW procedure determines the warping trajectory w={(i0, j0), (i1, j1), …, (iM, jM)} 
for which the following distance measure is minimized: 
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where x[i] denotes the ith component of x, d(·) is a distortion measure between 
two given spectral samples, and cq represents the cost of moving from (iq-1, jq-1) 
to (iq, jq). In order to obtain a meaningful warping function, the warping 
trajectory follows several constraining conditions. The transitions are restricted 
to: 

( ) ( )
( )
( )
( )



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
+= −−

1 ,0
1 ,1
0 ,1

,, 11 qqqq jiji  (4.34) 

The local slope of the warping trajectory and the number of consecutive 
horizontal and vertical moves are also limited to avoid unrealistic curves. 
Before searching for the optimal path, the effects of the spectral tilt are 
eliminated from the envelope samples by subtracting from it a least-square 
regression line. This operation is important for estimating a correct warping 
trajectory, because the most relevant features to be warped are the formant 
frequencies. 

     During the training phase, given a parallel corpus containing aligned 
spectral frames, a warping trajectory is calculated for each pair by DFW.  If the 
vectors of the source speaker are separated in clusters, it can be observed that 
the vectors that belong to each of the classes are assigned very similar warping 
trajectories, so a single warping function can be established for each acoustic 
class. The spectral tilt information provided by the target vectors paired with 
the source vectors inside each class is also stored. During the conversion phase, 
the source vectors are classified and transformed according to the 
corresponding warping function and spectral tilt. 

 
Figure 4.7: dynamic frequency warping of two spectra. 

(p-1, p-1) 

f 

f 

log|X(f)| 

(0, 0)

log|Y(f)| 
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     There are other types of frequency warping techniques where parametric 
warping functions are estimated for each of the acoustic classes, like for 
example Vocal Tract Length Normalization (VTLN) [Sün03]. After having 
studied different types of warping function (power, quadratic, bilinear, 
piecewise linear), the author concludes that there is no need of using frequency 
transformations more complicated than 

( )
α
f

fw =  (4.35) 

The optimum value of α is found for each of the acoustic classes, and during the 
conversion phase a smoothing technique is applied to the time-domain α-
contour so that the transition between classes does not introduce 
discontinuities. 

     These techniques are very appropriate for modifying the gender or age of the 
speaker and for obtaining different voices from a single synthesis database 
efficiently. Nevertheless, they are reported to be weak for transforming voices 
into a specific target speaker’s voice. The most interesting property of such 
transformations is that they preserve very well the quality and naturalness of 
the synthetic converted speech. That is the reason why they have served as 
inspiration for designing the new transformation method proposed in the next 
section. 

 

4.3.2. Weighted Frequency Warping (WFW) 
 

Previous observations: phoneme classification by GMMs 

     The new spectral conversion method that is to be proposed in this section 
combines GMM-based and frequency-warping-based methods. In general, 
methods that use frequency warping functions consist of two main tasks: 

 Classification of the input frame. 

 Application of the warping function that corresponds to the assigned 
class. 

The main disadvantage of clustering-based classification is that the transition 
between classes throughout the signal is abrupt, so discontinuities appear in the 
converted signal when the classes are assigned different transformation 
functions. Therefore, smoothing techniques are used to make the 
transformation function evolve slowly in time [Sün03a]. Instead of hard 
partitioning the acoustic space into m non-overlapping classes, GMMs perform 
a soft classification: each acoustic vector is assigned a certain probability of 
belonging to each of the m Gaussian components of the trained model. This 
property can be very interesting for improving frequency-warping systems and 
avoiding discontinuities. The question is how good GMMs are at classifying 
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vectors. In order to answer this question, the following experiment was 
designed. 

     The experiment consisted of estimating joint GMMs from parallel corpora 
corresponding to different speaker pairs, and then determining the acoustic 
class where each phoneme resided. The final purpose was to prove that similar 
phonemes belonged to the same class. Using 40 parallel sentences pronounced 
by 4 different Spanish speakers (m1, m2, f1, f2), 8th order joint GMMs were 
trained for all the possible conversion directions. For each speaker pair, the 
probability that a certain phoneme belonged to the ith class of the joint model 
was estimated as 

( ) ( )∑
Θ∈Θ

=Θ
 

1
z

zii p
N

p  (4.36) 

where Θ was the set of NΘ joint vectors z whose phonetic label, given by a 
previous segmentation, corresponded to that phoneme. The probabilities {pi(z)} 
were those given by the GMM. Finally, the phoneme was assigned to the 
acoustic class with highest mean probability. Table 4.2 shows the lists of 
phonemes that were assigned to each class. 

 

Conversion 
direction Phonemes inside each acoustic class 

m1-m2 
1) D, T, k, s, z, tS, f, d, t, b, g, p, x, B 
2) G, u, w, o 
3) e, a 
4) i, j, jj, L 

5) rr, r, l 
6) N, n, m, J 
7) 
8) 

m1-f2 
1) D, T, k, G, s, l, z, tS, f, d, t, b, g, p, x, B 
2) u, w, o 
3) e, a 
4) i, j, jj, L 

5) rr, r, _ 
6) N, n, m, J 
7) 
8) 

f1-m2 
1) D, k, rr, G, r, s, z, tS, f, d, t, b, p, x, B, T 
2) o 
3) u, w 
4) e, a 

5) i, j, jj, L  
6) l 
7) N, n, m, J, g 
8) 

f1-f2 
1) D, k, rr, G, r, s, z, tS, f, d, t, b, g, p, x, B, T 
2) u, w, o 
3) a 
4) e 

5) i, j, jj, L 
6) l 
7) N, n, m, J 
8) 

m1-f1 
1) D, T, k, G, s, l, z, tS, _, f, d, t, b, g, p, x 
2) u, w, o, B 
3) e, a 
4) i, j, jj, L 

5) rr, r 
6) N, n, m, J 
7) 
8) 

m2-f2 
1) D, T, rr, l, z, d, s, _, x, f, tS 
2) k, J, L, g, p, t 
3) u, w, o, B 
4) a 

5) i, j, e, jj, G 
6) R 
7) N, n, m, b 
8) 

Table 4.2: hard classification of phonemes using joint GMMs. The Spanish phonemes are 
represented by their corresponding SAMPA symbols. 
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As it can be observed from table 4.2, some phonemes that are theoretically 
unvoiced in nature appear among the voiced training frames. This can be due to 
coarticulation effects or segmentation inaccuracies. In almost all the cases, such 
sounds are assigned the same class. In general, the vowels are separated into 
three or four different classes, and two more classes contain nasal and liquid 
phonemes, respectively. The fact that the remaining classes do not contain any 
phoneme derives from the design of the experiment, because only the average 
probabilities of each phoneme were considered. Since these observations were 
made for different combinations of voices, it can be concluded that phonemes 
with similar formant structure are linked to the same Gaussian component of 
the trained joint source-target model. 

 

Previous observations: shape of mean envelopes 

 
m1-m2 

 

m1-f2 

 
f1-m2 

 

f1-f2 

 
Figure 4.8: spectral envelopes associated to the mean vectors of an 8th order joint-GMM for 4 

different conversion directions. Red line: source speaker; blue line: target speaker. 
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     When a joint GMM is trained from LSF vectors of two specific source and 
target speakers using a parallel corpus, a high correlation can be observed 
between the envelopes given by the mean vectors of each gaussian component, 
µix and µiy. After estimating 8th order GMMs for 4 different voices and 4 
different conversion directions, the resulting pairs of source-target mean LSF 
envelopes are plotted in figure 4.8. Looking at the position of the formants, it 
can be observed that a simple frequency-warping transformation of the source 
envelopes would yield good estimates of the target envelopes. 

 

Description of the method 

     Considering the mean vectors of the ith Gaussian component of a trained 
GMM, µix and µiy, the positions of the formants found in their corresponding 
all-pole envelopes can be used to define a piecewise linear frequency-warping 
function Wi(f). This process, illustrated in figure 4.9, is possible because the 
similar formant structures of the source and target mean LSF vectors reveal a 
clear correspondence between formants. For a GMM of m Gaussian 
components, m different functions {Wi(f)} are obtained.  

 
Figure 4.9: piecewise linear frequency warping function for the ith acoustic class, defined by the 

formants of the mean source and target vectors. 

 

It can be assumed that phonemes with similar formant structures, which are 
linked to the same gaussian component of the GMM as it was observed before, 
should be associated with similar frequency-warping trajectories. On the other 
hand, given a source frame represented by the LSF vector x, the probability that 
x belongs to the ith gaussian component of the model, pi(x), is given by 
expression (4.4). The central idea of WFW consists of estimating a different 
frequency-warping function for each input source frame as a linear combination 
of the m basis functions {Wi(f)}, using the probabilities {pi(x)} as weights: 

( ) ( ) ( )∑
=

⋅=
m

i
ii fWpfW

1
, xx  (4.37) 

µi
x 
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y 

 

f 

Wi(f) 
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The main advantage of such frame-dependent frequency-warping function is 
evident: it does not contain important discontinuities, because the soft 
classification given by the GMM probabilities produces a smooth time-
evolution of the transformation function. Therefore, the usage of further 
smoothing techniques is avoided. The spectrum of the current frame has to be 
transformed once its corresponding warping function W(x, f) has been 
calculated, so converted amplitude and phase envelopes, A’(f) and θ’(f), are 
obtained by applying it to the source envelopes: 

( ) ( )( ) ( ) ( )( )fWffWAfA ,     ,  , 11 xx −− =′=′ θθ  (4.38) 

The source amplitude and phase envelopes can be extracted from the HSM 
parameters using the procedures detailed in chapter 3. Finally, the converted 
amplitudes {Aj’(k)} and vocal tract phases {θj’(k)} are obtained by resampling the 
warped envelopes at the harmonic frequencies1. It must be emphasized again 
that obviously this kind of transformation is applied only to voiced frames, 
where the harmonic component exists. 

     If the algorithm stopped here, the source voice would not be completely 
converted into the target voice, because the weighted frequency-warping 
procedure only reallocates the formants in the frequency axis, whereas their 
intensity, their bandwidth and the spectral tilt remain almost unmodified, 
yielding a different energy distribution in frequency. Manipulation of this kind 
of features directly on the warped spectra may negatively affect the naturalness 
of the converted signal. Fortunately, the information provided by the GMM 
estimated during the training phase allows a simple solution for this problem: 
the converted LSF vector F(x), obtained by means of the classical GMM 
conversion function (4.12), can be used to obtain a slightly different set of 
converted amplitudes {Âj’(k)}. Obviously, if such amplitudes were taken as final 
converted amplitudes, there would be no difference between the system being 
described and a GMM-based baseline system, and this would imply loosing the 
benefits of frequency warping. However, an energy-correction filter can be 
defined by smoothing the gain filter defined by the discrete values 
{Gj(k)}={Âj’(k)/Aj’(k)} in the frequency domain. The final converted amplitudes are 
obtained by multiplying {Aj’(k)} by the smoothed set of gain values. The energy 
of the total harmonic component is maintained with respect to the source frame. 
If the smoothing applied to the gain points is strong enough, the spectral tilt 
and the general energy distribution are slightly corrected without altering the 
small spectral shape details, so that there is not significant degradation of the 
naturalness of the resulting amplitude envelope. 

     With regard to the stochastic component, the same prediction method used 
in the baseline GMM-based system, given by expression (4.27), is adopted for 
WFW. The general block diagram of the new WFW method is shown in figure 
4.10. 

 
                                                 
1 Here, the implementation of WFW is described according to the parameters of HSM, but the 
method is also compatible with many other speech models. 
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Figure 4.10: block diagram of WFW.  

 

Automatic estimation of basis frequency warping functions 

     It is highly desirable that the estimation of optimal piecewise linear 
frequency warping functions Wi(f) for each of the m Gaussian components of 
the trained model is done automatically. Although there is a high correlation 
between the formant structures of the source and target mean LSF envelopes 
(see figure 4.8), in general there is no one-to-one formant correspondence, and it 
has to be taken into account that some of the filter poles do not represent real 
formants. Furthermore, the spectral tilt differences between speakers may 
distort the spectral distance measures that are to be automatically minimized, in 
such way that strange warping trajectories may seem to be optimal unless the 
effect of the spectral slopes is cancelled. In the next paragraphs, an automatic 
method for obtaining the basis frequency warping functions from the mean LSF 
vectors is proposed. From now on, this method will be called AMF (automatic 
mapping of formants). 

     Given two spectral envelopes X(w) and Y(w) represented by p-dimensional 
LSF vectors x and y, respectively, the positive pole frequencies of their 
corresponding all-pole filters are calculated and stored in increasing order. 
These frequencies are to be paired in a suitable way in order to define the 
desired piecewise linear warping function. The proposed algorithm searches for 
the combination of frequency pairs whose corresponding warping function 
minimizes a certain spectral distortion measure D(·). The optimal number of 
frequency pairs, n, is also unknown, so it is one of the variables to be considered 
during the search procedure. For n=1 to n=p/2, D is measured for all the 
combinations of n frequency pairs, and the lowest-distortion combination is 
chosen as optimal. 
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     Let us now define the spectral distortion measure D for a certain set of n 
frequency pairs. The sub-indices 1…n are used for simplicity, although they do 
not necessarily correspond to the number of the pole they belong to {(w1(x), 
w1(y)), …, (wn(x), wn(y))}. This combination has valid physical meaning only if wi(x) 

> wi–1(x) and wi(y) > wi–1(y) for every i, so it can be directly discarded if this 
condition is not satisfied. First, the pairs (0, 0) and (π, π) are added at both ends 
of the sequence. The associated warping function can be expressed as 
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The parameters Ai and Bi verify 
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where w0(x) = w0(y) = 0 and wn+1(x) = wn+1(y) = π. The problem of computing the 
spectral distortion D can be solved separately for each interval: 
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The reason for including the derivative of the magnitude spectrum is that the 
resulting function is less sensitive to the differences in spectral tilt. The factor 
(1+Ai) was included in expression (4.41) for optimizing simultaneously not only 
the spectral distortion between X(w) and Y(W(w)) but also the distortion 
between X(W-1(w)) and Y(w). As the warping function is linear within the ith 
interval, the ratio between both distances is exactly Ai. It is easy to prove that 
the following general statement is true: 
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It is possible to obtain analytical expressions for the spectral distortion using the 
magnitude response of the involved all-pole filters, but the problem is much 
more easily solved if the magnitude spectra are modelled through cepstral 
decomposition. Ignoring the first cepstral coefficient, which contains only the 
energy, they can be expressed as 
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Therefore, 
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The cepstral representation associated to the all-pole filter 1/(1+a1z-1+…+apz-p), 
{cj}, is given by the following recursion: 
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If the coefficients of X’m and Y’m are multiplied by the factor that equalizes the 
energy of the harmonic sums X’m and Xm, the parameter α in (4.41) can be set to 
1. Now, D can be expressed analytically by integrating sums of products of 
cosine and sine functions, and it is possible to evaluate D for a large number of 
n-length pole frequency combinations in a reasonable time. Table 4.3 contains 
some integration rules that are useful for calculating D. 
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Table 4.3: useful integration rules. 
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Automatic estimation of basis frequency warping functions (ii) 

     Although the automatic method described above imitates the manual pairing 
of poles, it relies on the assumption that the mean vectors characterizing each of 
the acoustic classes, apart from their mathematical meaning, have certain 
physical meaning. In order to obtain more realistic frequency warping curves 
for each acoustic class, it would be interesting to establish the optimal mapping 
by considering the characteristics of all the vectors inside the class, not only of 
the mean vectors. For this reason, the following method based on weighted 
histograms (from now on, WH) was also investigated. Given the training 
vectors of the source and target speakers, {x} and {y}, and the parameters of 
their individual mth-order GMMs obtained from a joint-density model, the idea 
of the WH method is to estimate the FW basis functions from m source 
histograms {hix} and their corresponding m target histograms {hiy}, one source 
and target histogram per class, representing the probability of finding a pole 
inside a certain frequency region if the current frame belongs to that class. Next, 
the procedure for calculating the source histograms {hix} is described: 

1. All the histograms are initialized by assigning a zero value to all the 
frequency regions. In this case, the analysis band (0-5 KHz) is divided into 
50Hz-wide regions. 

2. For each LSF vector x, the pole frequencies of the corresponding all-pole 
filter are calculated and stored. It is assumed that all the poles have the same 
importance for the calculation of the histograms, regardless of their intensity 
or bandwidth. 

3. For each x, the m probabilities {pi(x)} are calculated by means of equation 
(4.4) using the individual GMM of the source speaker (remember that pi(x) 
represents the probability of x to belong to the ith class). 

4. For i=1 to i=m and for every x, the regions of hix containing the poles of x are 
incremented by pi(x). Thus, the contribution of x affects all the histograms in 
a weighted manner. 

5. Finally, each histogram is normalized so that its sum is 1. 

The target histograms are calculated in a similar way. Once all the histograms 
have been obtained, the warping functions Wi(f) to be used for transformation 
are determined by aligning hix and hiy through DFW. One of the main 
disadvantages of applying DFW directly to spectra is that strong spectral tilt 
differences have a harmful effect on the resulting warping paths. In this case, 
the spectral tilt has no influence on the histograms, so the resulting trajectories 
are reliable. 

     In order to decide which of the described automatic methods was better for 
determining the basis frequency warping functions, an objective test similar to 
those of the previous sections was carried out. It consisted of computing the 
mean cepstral distance between converted and target envelopes for a 10-
sentence-length parallel test corpus. 4 voices and 40 sentences per voice were 
used for automatically training the 12 possible voice conversion functions. 
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Instead of using the complete WFW method, the last step (the step in which the 
energy distribution of the warped envelopes is corrected) was disabled, so that 
the accuracy of the frequency warping functions could be captured with more 
clarity. Obviously, the distortion values obtained by means of the modified 
WFW method were much higher than those of the baseline GMM-based 
method, which were also included in the comparison as a reference. Apart from 
AMF and WH, a manual version of the AMF algorithm was tested. The mean 
cepstral distance obtained for all the conversion directions and for all the 
methods is plotted in figure 4.11. 
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Figure 4.11: mean cepstral distortion between converted and target vectors, calculated for 12 

different conversion directions and for 3 different frequency warping function estimation 
methods, using frequency-warping-only version of WFW. 

 

Figure 4.11 shows that, in general, the WH method (yellow colour) led to better 
results than the rest. However, informal perceptual tests indicated that the 
results were not the same for the full WFW method, so the objective test was 
repeated after enabling the energy correction function. In this second case, 
displayed in figure 4.12, it can be observed that the performance of the WH 
method was worse than that of the AMF method, confirming the doubts seeded 
by the perceptual tests. It is due to the interaction between frequency warping 
and statistical transformations: the full WFW method works better when the 
frequency warping functions Wi(f) are correlated with the mean vectors for 
which the linear transformations are optimal. On the other hand, when WFW is 
configured so that no linear transformations are performed for correcting the 
energy distribution of the warped amplitude envelopes, the WH method shows 
higher accuracy due to its deeper physical meaning. The second conclusion that 
can be made is that, although correcting the energy of the warped envelopes 
through GMM-based transformations diminishes the distortion, there is still a 
significant gap between GMM and WFW. However, the practical importance of 
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this gap is to be determined by subjective tests. Finally, it can be also concluded 
that the performance of AMF is basically similar to that of its manual version. 
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Figure 4.12: mean cepstral distortion between converted and target vectors, calculated for 12 

different conversion directions and for 3 different frequency warping function estimation 
methods. In this case, the energy correction block of WFW is enabled. 

 

4.3.3. Subjective evaluation of WFW 
 

Experiment 1 

     The first perceptual test presented in this section consisted of rating the 
performance of the WFW system (the converted-to-target similarity and the 
quality) in a 1-to-5 MOS scale. The experimental conditions were the following: 

 15 listeners were asked to listen to several converted-target sentence 
pairs. They were asked to determine if both samples came from the same 
person or not in a scale from 5=”definitely identical” to 1=”definitely 
different”, without paying attention to the quality or the recording 
conditions. For the same pair of samples, in the next step, they were 
asked to rate the quality of the sentences from 1=”bad” to 5=”excellent”. 

 4 different voices (2 male voices, m1 and m2, and 2 female voices, f1 and 
f2) were used. One male and one female were chosen as source speakers 
and the two remaining voices were chosen as target speakers, so 4 
different conversion directions were considered: male to male, male to 
female, female to male, and female to female. 

 Around 150 Spanish sentences per speaker were available for training 
(the text of the sentences were the same for all the speakers). Their 
average duration was 3 or 4 seconds. 10 sentences unseen during the 
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training process were used for the perceptual test. The recordings were 
made in such manner that there were no significant prosodic differences 
between speakers (mimic sentences) [Bon06b]. 

In order to extract more useful conclusions from this experiment, three different 
methods were compared: 

 The baseline GMM-based system described in section 4.2. 

 The new WFW system. 

 A TTS system built from the training sentences of the target speaker, 
used as a reference. 

Table 4.4 and figure 4.13 display the results of the test. 

 

a) Converted-to-target similarity 
 f1-f2 f1-m2 m1-f2 m1-m2 Average 

TTS 3.67 3.93 3.93 3.87 3.85 
GMM 3.13 3.27 2.47 3.07 2.98 
WFW 3.00 2.53 3.27 2.93 2.93 

b) Quality 
 f1-f2 f1-m2 m1-f2 m1-m2 Average 

TTS 2.53 2.87 2.47 2.67 2.63 
GMM 3.13 3.33 2.53 2.73 2.93 
WFW 4.20 3.60 3.00 3.27 3.52 

Table 4.4: results of the perceptual test. Systems compared: TTS, GMM and WFW. 
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Figure 4.13: MOS scores for a) similarity and b) quality. 

 

     The conversion score obtained by the TTS system can be considered the 
maximum score reachable for the training data. However, in practice the 
opinion of the listeners is strongly influenced by the concatenation artifacts. The 
same artifacts degrade the quality of the synthetic speech up to the point that 
the quality score of the TTS system is lower than the rest. That is why the 
similarity score is not equal to 5 as expected. This gives an idea of how difficult 
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it is to reach a similarity score higher than 4. Now, concerning the voice 
conversion methods, a small loss of conversion accuracy from GMM to WFW 
can be observed. This is a consequence of the fact that small spectral details of 
the source speaker persist when the frequency warping procedure is applied, 
and also that the quality increment achieved by WFW makes the differences 
between speakers more visible. Looking at the different conversion directions it 
can be seen that the main significant differences are located in the cross-gender 
conversion cases. In particular, WFW fails when converting from female to 
male. The reason is the strong contrast in f0 between these specific speakers, 
because the source spectral envelopes are defined by few harmonics, whereas a 
high number of target harmonics have to be extracted from them. Looking at 
the quality scores, it can be seen that the quality increment from GMM to WFW 
is very significant. Furthermore, the improvements are visible and consistent in 
every conversion direction. Some other informal tests have been carried out to 
evaluate the WFW system using less training data, and the results are similar to 
those displayed in table 4.4. As a conclusion, it can be stated that WFW 
successfully accomplishes the objectives proposed at the beginning of this 
chapter. 

 

Experiment 2 

     The implemented WFW system was one of the competitors that participated 
in the third Evaluation Campaign of the European project TC-STAR [Mos07]. 
The evaluation conditions were basically the same as in the second evaluation 
campaign (section 4.2): 

 The converted-to-target similarity and the quality were rated by 20 
listeners using a 1-to-5 MOS scale. 

 4 different conversion directions were considered again: male to male, 
male to female, female to male, and female to female. 

 All the speakers involved were bilingual: for each speaker, around 150 
Spanish sentences and 150 English sentences were available for training. 
The average duration of the sentences was around 3 or 4 seconds. 10 
sentences unseen during training were used for the perceptual test. The 
same sentences were uttered by all the speakers, so that a parallel corpus 
could be created. The recordings were made in such manner that there 
were no significant prosodic differences between speakers (mimic 
sentences) [Bon06b]. 

The WFW system was configured to use 8th order GMMs for the evaluation. The 
results of the evaluation are shown in table 4.5, which has been extracted from 
the public report in [Mos07]. The rest of the systems participating in the 
evaluation are given fictitious names here (which may not correspond to those 
used in section 4.2). The same results are displayed in figure 4.14, where each 
system is represented by a point whose coordinates correspond to its similarity 
and quality scores. 
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a) Voice Conversion in English 
Converted-to-target similarity Quality  

f1-f2 f1-m2 m1-f2 m1-m2 average average 
Proposed 2.10 3.67 2.17 3.57 2.88 2.50 

X1 
X2 
X3 
X4 
X5 

2.10 
3.20 
2.67 
1.64 
2.62 

2.56 
3.00 
2.50 
1.50 
3.67 

1.92 
2.57 
1.60 
1.44 
2.33 

2.71 
2.25 
1.89 
2.40 
2.60 

2.32 
2.76 
2.17 
1.75 
2.81 

3.63 
2.71 
1.45 
3.11 
2.00 

Source 1.90 1.00 1.00 1.63 1.38 4.32 
b) Voice Conversion in Spanish 
Converted-to-target similarity Quality  

f1-f2 f1-m2 m1-f2 m1-m2 average average 
Proposed 2.90 2.90 2.20 3.00 2.75 2.85 

X1 
X2 
X4 
X5 

2.10 
2.40 
1.10 
1.90 

2.30 
3.10 
2.00 
2.20 

2.50 
2.00 
1.10 
2.00 

1.90 
1.90 
1.30 
1.80 

2.20 
2.35 
1.38 
1.98 

3.48 
2.92 
3.30 
2.35 

Source 1.75 1.00 1.00 1.43 1.30 4.72 

Table 4.5: results of the 3rd TC-STAR evaluation campaign. 
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Figure 4.14: results of the 3rd TC-STAR evaluation in a quality vs. similarity diagram. 

 



  Intra-lingual and cross-lingual voice conversion using harmonic plus stochastic models 

 119 

Although the quality scores obtained by the proposed WFW-based system are 
not as high as in experiment 1 (they seem to be biased by the score distribution 
of all the evaluated systems), in figure 4.14 it can be seen that the point 
representing the proposed method lies in the closest region to (5, 5), which 
corresponds to an ideal voice conversion system. In fact, for Spanish, the WFW-
based system is the one who has minimum distance to the ideal-performance 
point. On the other hand, the results in English are slightly worse, probably as a 
consequence of the fact that the alignment technique used during the training 
phase, based on locating the phoneme boundaries through HMMs, was 
optimized for Spanish. In comparison with the rest of the competitors, WFW 
provides average quality scores and the highest similarity scores. 

 

Experiment 3 

     In [Sün06a], Sündermann et al. tried to improve conventional GMM-based 
systems by applying frequency-warping functions to residuals (from now on, 
this method will be called GMM+RFW for simplicity). In this context, the term 
residual denotes the spectral components of the signal that are not captured by 
the envelope parameterization. Some of them may be due only to codification 
inaccuracies, and others are caused by actual high-resolution spectral peaks or 
valleys that low-order parameterizations are unable to model. This means that 
moving in frequency this kind of components does not have full physical 
meaning, but it was reported that it helps to increase the quality of the 
converted speech and also the perceptual distance between the source speaker 
and the converted speaker. Although they are conceptually different, WFW and 
GMM+RFW result in significant quality improvements and a slight decrement 
in the converted-to-target similarity scores with respect to GMM systems (see 
experiment 1). The aim of this experiment was to compare both approaches by 
means of a perceptual test, trying to determine the optimal manner of 
combining GMM-based and FW-based transformations. For this purpose, both 
systems were implemented using a common speech model and were trained 
under the same conditions with similar dimensioning parameters, so that the 
differences observed could be attributed directly to the methods. It was 
observed that the same transformation functions applied in WFW could be also 
used for GMM+RFW: 

 First, the LSF vector x associated to the current frame is calculated. The 
contribution of the all-pole filter represented by x is eliminated from the 
amplitude and phase envelopes. The residual is given by the remaining 
signal components. 

 Then, the GMM probabilities {pi(x)} are obtained from expression (4.4). 
The current FW function W(x, f) (expression (4.37)) and the current 
converted LSF envelope F(x) (expression (4.12)) are calculated from the 
GMM probabilities and the trained models and FW functions. 
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 Finally, W(x, f) is applied to the residual, and the resulting warped 
residual is passed through the filter given by the converted envelope 
F(x). 

Although the implementation of GMM+RFW was adapted to the training 
conditions of WFW, the underlying idea was the same that had been proposed 
in [Sün06a]. The comparison was carried out by means of a perceptual test 
where the converted-to-target similarity and the quality of the converted speech 
were rated by listeners. The experimental conditions were exactly the same as 
in experiment 1, except for the number of listeners: 30 in this experiment. The 
results are shown in figure 4.15. 
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Figure 4.15: results of the perceptual test. MOS scores for similarity (a) and quality (b). 

 

     The main differences are found in the quality scores. Although at first sight 
the naturalness of the utterances converted by GMM+RFW is not far from that 
of WFW, the presence of small artifacts introduced by the first method seems to 
be annoying for the listeners. These artifacts can be caused by the interaction 
between small resonances contained in the residual and the poles of the 
converted LSF filters. This is probably the main disadvantage of GMM+RFW: it 
is very difficult to avoid this kind of harmful interactions because the small 
spectral peaks of the residuals can be result of codification inaccuracies, so their 
position is quite unpredictable. On the other hand, as it was expected before 
carrying out the test, the conversion scores are slightly better for GMM+RFW, 
but the differences are less significant in this case. It is interesting to observe 
that, although WFW should achieve, in principle, worse similarity scores than 
GMM+RFW due to the predominance of the frequency warping technique, the 
results show that in average there is not a big difference. 

     From a global point of view, as the scores are consistent for all the conversion 
directions, it can be stated that WFW outperforms GMM+RFW. Furthermore, 
the average quality level achieved by WFW in this experiment is 3.64, which is 
acceptable for real voice conversion applications. It is important to stress out 
that the similarity scores are always biased according to the relative 
performance of the methods being evaluated and also to the listeners’ 
expectations. This explains the slight differences observed between the absolute 
scores obtained by WFW in experiments 1, 2 and 3. 
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4.4. Conclusions 
 

     In this chapter, the problem of increasing the quality of the converted speech 
without worsening the conversion performance has been faced. 

     As a starting point, a state-of-the-art voice conversion system based on 
GMMs and harmonic-stochastic speech modeling has been implemented and 
evaluated. The performance of the system is satisfactory in terms of similarity 
between converted and target voices, but the results obtained in the 2nd 
evaluation campaign of the TC-STAR project show that the quality scores are 
low compared to other competitors. 

     It was observed that each of the acoustic classes modelled by a GMM 
contains vectors coming from phonemes with similar spectral characteristics. In 
addition, it was also observed that if a joint GMM is trained from aligned 
vectors of two different speakers, the mean vectors inside each acoustic class 
also have a similar formant structure, up to the point that their relationship 
seems to be well captured by a piecewise linear frequency warping function 
estimated from the formant frequencies. Therefore, a new method for 
converting spectral envelopes called Weighted Frequency Warping was 
proposed. WFW assigns an optimal frequency warping function Wi(f) to each of 
the acoustic classes, so during the conversion step a frame-dependent time-
varying frequency warping function is obtained by combining the set of basis 
functions {Wi(f)} according to the probability of the current frame to belong to 
each of the acoustic classes. Finally, conventional statistical methods based on 
GMM transformations are applied to correct the energy of the warped spectra, 
so that not only the position of the formants is modified, but also their intensity. 

     The experiments carried out for evaluating the new voice conversion method 
prove that a good balance between similarity and quality scores is obtained. 
The similarity scores of WFW and those of the baseline GMM-based system are 
almost the same, whereas in WFW there is a significant improvement in the 
quality of the converted utterances. The results of the 3rd evaluation campaign 
of the TC-STAR project confirm that WFW has a very good performance 
compared to the rest of competitors, especially in Spanish, which is the 
language for which the system was optimized. On the other hand, WFW has 
better overall performance than other techniques that combine GMM-based and 
FW-based transformations. The absolute quality scores that characterize WFW 
allow using this method for real-life applications. 

     The main limitation of the new voice conversion system is that it needs 
parallel corpora to train the transformation functions, and so far it is 
incompatible with, for instance, cross-lingual applications. Is there any 
convincing solution for this problem? The next chapter gives an answer to this 
question. 
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5. Alignment of frames for non-
parallel training 

 

 

     Most of the relevant spectral conversion methods found in the literature are 
designed for training conversion functions from a set of paired phonetically-
equivalent acoustic vectors obtained from the source and target speakers, 
respectively. For instance, all the systems that are based on GMMs, including 
those presented in chapter 4, require a set of paired source-target vectors from 
which the optimal transformation is learnt. The process responsible for pairing 
of the vectors from a given speech database is called alignment (see figure 5.1). 

     The alignment procedure strongly influences the versatility of the whole 
voice conversion system. It is easy to obtain a valid alignment if the involved 
speakers are asked to pronounce the same training sentences. In this situation, 
we say that a parallel training corpus is available, and, as it was explained in 
chapter 2, the acoustic vectors can be paired by techniques like DTW or HMM-
based automatic segmentation. Nevertheless, in real-life situations it is not 
possible to record parallel training corpora for any random pair of speakers. 
Cross-lingual voice conversion poses even a greater challenge, since the 
sentences uttered in different languages cannot be parallel. Furthermore, one of 
the languages can have some basic sound units or phonemes that do not exist in 
the other one. The procedure of training conversion functions from non-parallel 
corpora is referred to as non-parallel training and, for right now, there was no 
satisfactory solution proposed. 

 

     This chapter presents a new frame alignment method that is compatible with 
intra-lingual and cross-lingual voice conversion under non-parallel-training 
conditions. The chapter is structured as follows. 

     In section 5.1, some previous solutions to the non-parallel training problem 
are reviewed and discussed, included some preliminary results obtained during 
the elaboration of this thesis. 

     In section 5.2, a new iterative frame alignment method is proposed. Different 
aspects about convergence, optimization and performance of the method are 
carefully analyzed and discussed. 

     In section 5.3, the method is evaluated under intra-lingual and cross-lingual 
conditions by means of perceptual tests. 

     In section 5.4, the main conclusions of this chapter are summarized. 
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Figure 5.1: parts of a voice conversion system involved in this chapter, inside the shaded area. 

 

5.1. Previous approaches 
 

     Four ways of aligning speech frames when a parallel corpus is not available 
are described below. 

 

Class mapping [Sün04] 

     The source and target vectors are separately classified into clusters. A first-
level mapping is established between each source acoustic class and one of the 
target acoustic classes by searching the closest frequency-warped centroid. 
Finally, the vectors inside each class are mean-normalized and the frame-level 
alignment is performed by finding the nearest neighbour of each source vector 
in the corresponding target class. 

     This technique was evaluated using objective measures and it was found that 
for certain spectral distortion measures the performance of the text-independent 
voice conversion system was between 15 and 25% worse than the performance 
of the system trained on parallel corpus. This method was used as a starting 
point for further improvements that lead to the development of the dynamic 
programming method, described later in this section. 
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Speech recognition [Ye04b] 

     A speech recognizer based on speaker-independent HMMs is used to label 
all the source and target frames with a state index. Given the state sequence of 
one speaker, the alignment procedure consists of finding longest matching state 
sub-sequences from the other speaker until all the frames are paired. 

     The HMMs used for this task are valid for intra-lingual alignment. Although 
multilingual HMMs were also used in polyglot voice conversion systems 
[Lat06], the suitability of such models for cross-lingual alignment tasks has not 
been proved yet. 

 

Pseudo-parallel corpus created by a TTS 

     This technique consists of using a TTS system to generate the same sentences 
uttered by the target speaker by concatenating speech units of the source 
speaker [Enn05, Dux06b]. The pseudo-parallel corpus obtained allows using 
standard frame alignment methods such as DTW. However, this solution can be 
put into practice only under certain conditions: 

 The TTS system uses linguistic knowledge to generate artificial 
sentences, so the language of the desired output sentence has to be the 
same as the language of the recorded units. Therefore, this kind of 
technique is restricted to intra-lingual context, unless at least one of the 
involved speakers is bilingual. 

 The size of the training corpus has to be large enough to build a TTS 
system. Otherwise, if only few minutes of audio are available for 
building the TTS that acts as source speaker, the resulting low-quality 
synthetic speech leads to a distorted conversion function that introduces 
artifacts into the converted speech. 

     During the 2nd evaluation campaign of the European TC-STAR project, 
several voice conversion systems were evaluated by means of perceptual tests. 
As mentioned in section 4.2, the baseline voice conversion system developed in 
this thesis was one of the participants of the evaluation. In this system, a TTS 
was applied to obtain pseudo-parallel corpora instead of using parallel corpora 
for training. Furthermore, the system participated in the cross-lingual 
evaluation. All the speakers recorded for the evaluation database were 
bilingual, so in order for the system to operate in cross-lingual mode, the 
transformation functions were trained for one language and then were applied 
to convert sentences uttered in the other language. The results of the evaluation 
are shown in table 5.2 (the results of the intra-lingual categories and the 
fictitious names given to the systems are exactly the same as in chapter 4). In 
figure 5.2, all the systems that participated in the evaluation, whose 
characteristics are summarized in table 5.1, are represented in a similarity vs. 
quality diagram. 
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System Conversion method Type of training 
Proposed 
X1 
X2 
X3 
X4 
X5 

GMM 
GMM + VTLN (residuals) 
TTS (no conversion) 
CART + residual selection and smoothing 
Frequency warping and filtering 
GMM 

Pseudo-parallel by TTS 
IVC: parallel; CVC: non-parallel 
- 
Parallel 
Manual 
Parallel 

Table 5.1: characteristics of the evaluated systems. 

 

 

a) Intra-lingual Voice Conversion in English (IVC-Eng) 
Converted-to-target similarity Quality  

f2f f2m m2f m2m average Average 
Proposed 2.88 3.17 2.57 3.07 2.92 2.23 

X1 
X2 
X3 
X4 
X5 

2.73 
3.63 
3.47 
2.22 
3.10 

2.02 
4.30 
3.60 
2.07 
3.05 

2.38 
3.67 
3.57 
1.47 
2.20 

2.15 
3.70 
3.27 
1.73 
1.77 

2.32 
3.83 
3.48 
1.87 
2.53 

3.12 
1.61 
1.78 
4.09 
2.09 

Source 2.47 1.83 1.60 1.87 1.94 4.80 
b) Cross-lingual Voice Conversion in English (CVC-Eng) 

Converted-to-target similarity Quality  
f2f f2m m2f m2m average Average 

Proposed 2.63 2.63 2.58 2.52 2.59 2.13 
X1 
X3 

2.20 
2.53 

1.78 
2.25 

1.87 
1.48 

2.23 
2.57 

2.02 
2.21 

3.40 
1.58 

Source 2.47 1.83 1.60 1.87 1.94 4.80 
c) Intra-lingual Voice Conversion in Spanish (IVC-Spa) 

Converted-to-target similarity Quality  
f2f f2m m2f m2m average Average 

Proposed 3.12 3.60 3.10 2.88 3.18 2.38 
X1 
X2 
X3 

2.48 
3.20 
3.13 

2.08 
3.80 
3.95 

2.32 
3.65 
2.93 

2.28 
2.73 
3.85 

2.29 
3.35 
3.47 

3.03 
3.20 
2.25 

Source 2.47 1.83 1.60 1.87 1.94 4.80 
d) Intra-lingual Voice Conversion in Spanish (CVC-Spa) 

Converted-to-target similarity Quality  
f2f f2m m2f m2m average Average 

Proposed 3.00 2.78 2.87 2.50 2.79 2.33 
X3 3.50 3.45 2.60 3.27 3.21 1.63 

Source 2.47 1.83 1.60 1.87 1.94 4.80 

Table 5.2: results of the 2nd TC-STAR evaluation campaign. 
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Figure 5.2: results of the 2nd TC-STAR evaluation campaign in a similarity versus quality 

diagram. 

 

     The performance of the proposed voice conversion system was already 
discussed in chapter 4. Focusing on the topic of this chapter, two main 
conclusions can be made: 

 In spite of non-parallel training conditions, the overall performance of 
the proposed intra-lingual system is comparable with the performance of 
other intra-lingual systems trained under parallel conditions (X1, X3 and 
X5). 

 The similarity scores obtained by the cross-lingual system are slightly 
lower than those of the intra-lingual system. This is probably due to the 
fact that Spanish and English have different phoneme sets. 
Consequently, the transformation functions trained for one of these 
languages are not capable of converting the phonemes of the other 
language with the same accuracy. Nevertheless, the quality scores of the 
proposed cross-lingual system are quite similar to those of the 
corresponding intra-lingual system. 

The evaluation results confirm that using a TTS for non-parallel alignment and 
bilingual training for cross-lingual voice conversion leads to satisfactory results. 
The problems associated with such approaches are already known: first, it is not 
always possible to build a TTS system from the training data of the source 
speaker, and second, the need of bilingual speakers is an important limitation 
for a cross-lingual voice conversion system. 
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Dynamic programming [Sün06a] 

     This method is based on the unit selection paradigm. Given a set of N source 
vectors {sk}, dynamic programming is used to find the sequence of N target 
vectors {tk} that minimizes the cost function calculated as follows: 

{ }( ) ( ) ( ) ( )∑∑ = −=
−+=

N

k kk
N

k kkk ddC
2 11

,1, tttst αα  (5.1) 

where d( ) represents the acoustic distance between two vectors, and the factor α 
is empirically adjusted depending on the relevance of each term. 

     The dynamic programming technique seems to be the very suitable for 
facing the problem of non-parallel training from a language-independent point 
of view. The cost function used for finding the most appropriate sequence of 
target vectors is conceptually similar to the one typically applied to unit 
selection in TTS systems. From this point of view, the alignment system could 
be seen as a TTS system in which the unit database contains the signal frames of 
the target speaker. However, in TTS systems the target cost considers the 
distance between the acoustic, prosodic and phonetic characteristics of the 
target units and those predicted by the TTS itself according to previously 
trained models, whereas in this alignment system the target cost considers only 
the acoustic distance between the vectors of the source speaker and those of the 
target speaker. 

     One important advantage of the alignment technique based on dynamic 
programming is that, as it establishes the correspondence between vectors (or 
frames) using only acoustic information, its performance is satisfactory even for 
cross-lingual applications [Sün06b]. In exchange, the technique has an 
important limitation: when the training databases are large, the selected target 
vector sequence is too similar to the initial source vector sequence. Figure 5.3 
illustrates this problem in the case of two-dimensional vectors. The acoustic 
spaces of the source and target speakers are represented by the red and blue 
areas, respectively. The red lines represent a certain sequence of source vectors, 
and the blue lines represent the corresponding sequence of target vectors, 
according to the cost function defined above. In (b) the size of the training 
database is greater than in (a), so there are more vectors available for selection 
and the final target sequence results to be much closer to the initial source 
sequence. Therefore, after applying the trained transformation functions, the 
converted vectors will be close to the source vectors. Besides, the vectors of the 
target speaker located far from the acoustic space of the source speaker will 
never be selected by the system. 
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Figure 5.3: limitation of the alignment technique based on dynamic programming. As the 

amount of training data increases, the selected target vectors are closer to the source vectors. 

 

     In order to achieve a better performance, all the training vectors should take 
part in the alignment, so that no phonetic areas are left uncovered in the 
acoustic spaces of the speakers. With regard to the computational cost, an 
algorithm more efficient than dynamic programming would increase the 
applicability of the voice conversion system to real-life environment. In the next 
section, a new alignment technique is proposed in order to cope with the above 
mentioned difficulties. 

 

5.2. A new frame alignment method 
 

5.2.1. Description 
 

     The underlying idea of the new alignment procedure proposed in this thesis 
is based on the following observations: 

 The simplest alignment procedure in which all the training vectors are 
involved consists of finding the nearest neighbour of each source vector 
in the target acoustic space, and the nearest neighbour of each target 
vector in the source acoustic space, allowing repetitions (one-to-many 
and many-to-one alignments). If a voice conversion function is trained 
under these alignment conditions, it can be observed that an 

a) 

b) 
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intermediate converted voice is obtained: it is different from the source 
voice but also different from the target voice. There is not enough 
similarity between the converted voice and the target voice to consider 
that the conversion is successful, but improvements could be expected if 
the source voice was substituted by the intermediate voice and the 
alignment was repeated. 

 If a linear voice conversion function based on GMMs is estimated from 
vector pairs aligned by nearest neighbour search, the over-smoothing 
helps to minimize the effect of misaligned vectors and one-to-many 
alignments. Although such an excessive smoothing was found to be 
problematic for voice conversion functions trained from parallel corpora, 
it is advantageous if the alignment between acoustic vectors is not 
perfect. 

 

 
Figure 5.4: idea of the new alignment method. 

 

     Thus, the observations point to the hypothesis that an iterative refinement of 
the basic nearest neighbour method combined with voice conversion would 
lead to a progressive improvement in the alignment. The underlying idea is 
illustrated in figure 5.4: the intermediate voice obtained after the first nearest 
neighbour alignment can be used as the source voice during the next iteration. 
The process can be repeated until the current intermediate voice is close enough 
to the target voice. This algorithm can be formulated as follows. Let X={xk} and 
Y={yj} be the set of acoustic vectors of the source and target speaker, 
respectively. The new alignment algorithm consists of the following steps: 

1. One more auxiliary vector set X’ is defined: X’={xk’}. It is initialized as 
xk’=xk. 

2. For each vector xk’ in X’, the index of its nearest neighbour in Y is found 
and stored as p(k). Similarly, the nearest neighbour of each vector yj is 
found in X’, and its index is stored as q(j). 

3. An auxiliary GMM-based linear transformation function F is trained 
from the paired vectors {xk, yp(k)} and {xq(j), yj}. Note that the vectors used 

Interm.

Source 

Target Target Target Target

Interm.
Interm.

Iter.0 Iter.1 Iter.2 Iter.3 



  Intra-lingual and cross-lingual voice conversion using harmonic plus stochastic models 

 131 

to train the function F are always those belonging to X and Y, whereas 
the ones belonging to X’ are used only to refine the nearest neighbour 
alignment. Each vector in X is allowed to be paired with more than one 
vector in Y, and vice versa. Only the repeated pairs are eliminated. It is 
assumed that the continuous probabilistic function F smoothes the effect 
of the one-to-many or many-to-one alignments. The way of training the 
function F was already described in chapter 4: the paired vectors are 
concatenated together, and a joint GMM, given by the weights {αi}, the 
mean vectors {µi} and the covariance matrices {Σi} of the m gaussian 
components, is fitted to the resulting joint vector space by applying the 
EM algorithm (see section 4.2 for more details). The matrices and vectors 
necessary for the transformation can be extracted directly from the 
model parameters: 
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where pi(x) denotes the probability of an acoustic source vector x to 
belong to the ith gaussian component of the model. 

4. The auxiliary vector set X’ is updated according to the new 
transformation function F: 

( ) kF kk ∀=′ ,xx  (5.4) 

5. Back to step 2 until convergence is reached. 

     The whole process is illustrated in figure 5.5 for a simple fictitious case of 
five two-dimensional vectors. Initially, the nearest neighbour alignment is not 
perfect, but some of the source vectors are paired with more than one target 
vector, and vice versa. When the first estimate of the auxiliary transformation 
function F is trained, the multiple alignments are smoothed and the source 
vector space is moved to an intermediate position. As the number of iterations 
increases, the alignment becomes more and more accurate. In figure 5.6, the 
algorithm is applied to align and convert two sets of two-dimensional vectors. 
The vectors were randomly generated according to the distributions with mean 
vectors equal to [0 0]T and [0 10]T, using unit covariance matrices. After 10 
iterations, the converted source vectors are quite close to the target vectors. It is 
remarkable that the greatest improvements occur during the first iteration. 
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Figure 5.5: graphical description of the new iterative alignment method. 

 
1st iteration 

 

2nd iteration 

 
5th iteration 

 

10th iteration 

 
Figure 5.6: applying the alignment algorithm to artificial two-dimensional vector sets. 

 

     With regard to the implementation of the iterative method, two main 
considerations have to be taken into account: 
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 The algorithm works well when the voice conversion function F used for 
refining the alignment is based on GMMs. Theoretically, any other type 
of vector transformation could be used instead, but the appearance of the 
over-smoothing effect is important for minimizing the alignment errors. 

 As F is a voice conversion function, it is desirable that the 
parameterization used for the vectors in X and Y is adequate for 
conversion purposes. As mentioned in chapter 2, the most popular 
parameterizations used in voice conversion systems are cepstral 
coefficients and line spectral frequencies. In this case, it is necessary to 
use such a parameterization that the distance between the vectors makes 
reliable the nearest neighbour search. Although the voice conversion 
methods described in chapter 4 are designed for LSF vectors, there is a 
problem associated with this type of parameterization. It is illustrated in 
figure 5.7. The two spectra displayed in the figure are quite similar, but 
when an all-pole filter is fitted to them, one of the poles is placed in a 
different position (inside the circled area). Since the two line frequencies 
associated to a given pole are located at both sides of the pole frequency, 
the LSF vectors of the two spectra, which contain the sequence of LSFs in 
increasing order, are very different in terms of Euclidean distance. This 
means that the application of LSFs may be problematic when trying to 
determine the nearest acoustic neighbour of a given vector, unless a 
suitable distance criterion is defined. Instead, a cepstral representation 
may be more suitable for alignment tasks, because the Euclidean distance 
between two cepstral vectors is a reliable measure of their actual acoustic 
distance. Taking into account that the voice conversion methods 
proposed in chapter 4 require LSF vectors, instead of choosing typical 
parameterizations like MFCCs, widely used in many other areas of 
speech technologies, it is better to work with the LPC-cepstrum, which 
can be calculated directly from all-pole filters by recursion (4.46). 

 

 
Figure 5.7: two similar spectra with very different LSF vectors. 

 

     One of the advantages of the new iterative method is that all the training 
vectors are paired with “something”, so there are not uncovered phonetic areas 

f 

f 

dB 

dB 



Chapter 5. Alignment of frames for non-parallel training 

 134 

in the acoustic space of any of the speakers. This fact is illustrated graphically in 
figure 5.5. Although initially there are source vectors that do not have target 
vectors in their vicinity, the smoothed contribution of all the vector pairs to the 
estimated voice conversion function makes the problem disappear in a number 
of iterations. 

     It can be argued that there can be significant spectral differences between the 
speakers, so if the vectors are aligned using spectral distance criteria, without 
any phonetic knowledge, vectors containing different phonemes may be 
erroneously aligned. In fact, this phenomenon occurs in practice, but informal 
experiments show that the distance between vectors representing the same 
phoneme uttered by different speakers is, in general, smaller than the distance 
between different phonemes uttered by the same speaker. Anyway, the 
convergence of the method has to be studied properly. 

 

5.2.2. Four different variants of the method 
 

     During the second step of the algorithm described above, the nearest 
neighbour of the vectors in X’ is found in Y, and vice versa. X’ contains the 
vectors of X converted by the current auxiliary transformation function F. 
Nevertheless, it is possible to define three more variants of the same method by 
introducing small changes at step 2. Table 5.3 shows the four possible variants, 
denoting X’ as F(X) and defining another auxiliary vector set Y’=F-1(Y) when 
necessary. The difference between them lies in the combination of vector sets 
used for the nearest neighbour alignment. Two of the variants, including the 
one described above (called asymmetric-1 in the table), are asymmetric, because 
if the source speaker and the target speaker are interchanged, the result of the 
alignment is not the same. The two remaining variants are symmetric. In 
principle, all the possibilities are valid for the implementation of the idea 
described at the beginning of this section. 

 
Variant Description of step 2 

Asymmetric-1 Nearest neighbour of F(X) in Y + nearest neighbour of Y in F(X). 

Asymmetric-2 Nearest neighbour of X in F-1(Y) + nearest neighbour of F-1(Y) in X. 

Symmetric-1 Nearest neighbour of F(X) in Y + nearest neighbour of F-1(Y) in X. 

Symmetric-2 Nearest neighbour of X in F-1(Y) + nearest neighbour of Y in F(X). 

Table 5.3: name and description of the four variants of the new alignment method. 

 

     Due to the complexity of the problem, it is very difficult to carry out a 
mathematical study that proves the convergence of the method and determines 
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the best variant of the algorithm. Instead, some objective experiments are 
conducted in order to prove that a true convergence occurs when the number of 
iterations is increased. The experimental conditions are the following: 

 Recordings from 4 different speakers are used: two male speakers (m1, 
m2) and two female speakers (f1, f2). Thus, 12 different conversion 
directions are possible. 

 For each conversion direction, 40 parallel sentences (approximately 2 
minutes of audio) are used for training transformation functions based 
on 8th order GMMs (the experiment is based on objective measures, so 
GMM-based linear transformations are preferred above other methods 
characterized by lower objective scores like WFW). The fact that the 
sentences are parallel is ignored during the alignment process. 

 The order of the final transformation functions is fixed to 8, and the 
order of the auxiliary function F used for alignment purposes is one of 
the variables of the experiment (the over-smoothing effect, needed by the 
alignment system to work well, depends on the order of F). The number 
of iterations of the alignment method varies from 1 to 25 for all the 
variants of the method. 

 A set of 10 parallel sentences unseen during training is used for testing 
the accuracy of the trained functions by measuring the mean cepstral 
distance between the converted source vectors and their corresponding 
aligned target vectors, given by expression (4.31). 

Figure 5.8 displays the mean distance values obtained by averaging the 
contribution of the 12 conversion directions for each of the variants of the 
method. From figure 5.8 we can observe that: 

 The four variants of the method provide lower mean distance scores 
when the number of iterations is increased, so in principle they point to 
convergence. Nevertheless, the discussion about the convergence will be 
taken up again in the next subsections. 

 Although there are slight differences between the 12 conversion 
directions, it can be seen that the variant called asymmetric-1 is clearly 
better than the rest. Therefore, the asymmetric-1 variant will be the one 
adopted in the experiments carried out from now on.  

 In average, the best results are obtained for an auxiliary transformation 
function of order 1, whose estimation is computationally less expensive 
and which produces stronger over-smoothing than higher-order 
functions. Considering only the asymmetric-1 variant, the individual 
scores obtained for each conversion direction, shown in the first column 
of figure 5.9, indicate that 1st order functions are not the best for all the 
conversion directions, but even when they are not, the distance scores 
provided by 1st order functions are very close to the lowest values. 
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Figure 5.8: performance of the four different variants of the method. 

 

5.2.3. Convergence of the method 
 

     Figure 5.8 indicates that, in general, the alignment algorithm converges, but 
it is necessary to analyze its behaviour in more detail. For this purpose, two 
different objective measures, shown in the first and second columns of figure 
5.9 respectively, are studied for a variable number of iterations and for 12 
different conversion directions: (i) the normalized mean cepstral distance 
between converted and target vectors, and (ii) the percentage of phonemes that 
are correctly paired (note that the vertical scale is different for each figure). The 
third column of figure 5.9 will be described later. The normalization of the 
distance measure consists of dividing it by the value obtained when the 
transformation function is estimated by means of parallel training. In other 
words, if the normalized distance is 1.0, the accuracy of the alignment is the 
same as in the case of parallel training. The phonetic information that allows 
calculating the correct phonetic alignment curves was obtained from the 
segmentation of the training sentences. 
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Figure 5.9: convergence of the method for 12 different conversion directions. First column: 
mean cepstral distance between converted and target vectors. Second column: phonemes paired 

correctly. Third column: mean distance to the nearest neighbour. 

 

Several remarks can be made after observing the curves: 

 During the first iterations, the distance measure decreases as the number 
of iterations grows. However, in almost all of the cases the 
improvements are not significant after 10 or 15 iterations. Moreover, 
there are some cases where the distance starts to increase after the point 
of stability. Therefore, it is necessary to design an adequate stop criterion 
for the algorithm to interrupt the iterative process when the point of 
maximum stability is reached, avoiding the phase when the alignment 
worsens. 

 The curve displaying the percentage of correct phonetic pairs is highly 
correlated with the distortion curve, confirming that the most significant 
improvements are reached during the first 15 iterations. It has to be 
taken into account that each of the iterations involves searching for the 
nearest neighbour of every training vector and fitting a GMM by means 
of the EM algorithm, so the whole alignment process is time consuming. 
Therefore, a stop criterion is also necessary from this point of view. 

 The convergence is not perfect. The minimal normalized distance values 
reached through the iterative alignment method are, in some cases, much 
higher than 1.0. This occurs especially in cross-gender voice conversion. 
However, only subjective measures can help to decide whether this level 
of convergence is acceptable or not. 

 These remarks hold for different orders of F. However, it is difficult to 
make conclusions about the optimal order for a given conversion 
direction, because there are important differences between speaker pairs. 
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     It may be argued that the convergence of the method in terms of objective 
measures does not guarantee that the similarity between converted and target 
voices increases. In fact, only perceptual tests like those presented at the end of 
this chapter can help to prove the effectiveness of the proposed method. 
Nevertheless, although the subjective scores cannot be predicted from the 
objective scores, significant objective improvements have a positive impact on 
the listeners’ perception. 

     Apart from the phonemes correctly aligned during training, it is interesting 
to explore how the algorithm aligns the rest of the phonemes. In figure 5.10 four 
different matrices linked to different voice conversion directions are 
represented. The element (i, j) of each matrix is the number of times that the ith 
phoneme was aligned with the jth phoneme, divided by the total number of 
occurrences of the ith phoneme. Thus, the ith row of the matrix is the alignment 
histogram of the ith phoneme. The figure corresponds to the alignment after 10 
iterations. 

 

m1-m2 

 

m1-f2 

 
f1-m2 

 

f1-f2 

 
Figure 5.10: alignment histograms for 4 different conversion directions. The phonemes are 

represented by their corresponding SAMPA symbols. 
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Ideally, if all the phonemes were aligned correctly, identity matrices would be 
obtained. In practice, the matrices are not diagonal for several reasons: 

 The segmentation is not perfectly accurate, so some of the phonetic labels 
used for calculating the alignment histograms are incorrect and thus 
introduce small errors into the histograms. In fact, the presence of 
fricatives, plosives and other theoretically unvoiced phonemes among 
the voiced frames used for training is mainly due to segmentation 
inaccuracies. Since the number of frames belonging to such phonemes is 
too low to obtain statistically valid histograms for them, they were not 
included in the figure. 

 One phoneme may be often paired with a different phoneme because of 
coarticulation effects. For example, the Spanish phoneme /e/ is often 
paired with /i/ because, in certain coarticulation conditions, they are 
acoustically very similar. This phenomenon is not harmful for the 
performance of the system. The same happens to /u/ and /o/, /N/ and 
/n/, etc. 

It can be concluded that, although the alignment is not perfect from a phonetic 
point of view, it is good from a spectral point of view. 

 

5.2.4. Design of a stop criterion 
 

     The alignment method should stop iterating when there are no significant 
improvements from one iteration to the next one. Designing a stop condition 
means finding a variable that serves as the alignment accuracy indicator while 
the algorithm is running. Obviously, if the training corpus is non-parallel, it is 
not possible to measure objective distances like in the experiments above. 
Therefore, other solutions have to be explored. One possible strategy consists of 
measuring the similarity between the converted source vector space and the 
target vector space at the end of each iteration, and stopping the algorithm 
when they are close enough. Nevertheless, such a strategy requires an adequate 
modeling of the acoustic spaces at every iteration, and that is time consuming. 
That is why it is desirable to estimate the similarity between acoustic spaces 
directly from the training vectors. Using the notation from section 5.2.1, the idea 
proposed here consists of computing the distance between all the transformed 
source vectors in X’ and their nearest neighbour in Y, and vice versa, and then 
summing them together. The resulting global distance can be used for 
determining whether or not the current distance between X’ and Y is smaller 
than the previous one. The underlying idea is simple: the algorithm should stop 
when all the training vectors of one speaker are maximally close to the training 
vectors of the other speaker. 

     The third column of figure 5.9 shows the values of the mean nearest 
neighbour cepstral distance for 12 different voice conversion directions. 40 
sentences were used for training. The number of alignment iterations was fixed 



Chapter 5. Alignment of frames for non-parallel training 

 142 

to 25. As it can be seen, the resulting curves are highly correlated with those of 
the first and second column of figure 5.9. Thus, it can be concluded that the 
proposed global distance measure is useful for designing a stop condition. 
Looking at the stable part of the curves, we can observe some fluctuations 
around the mean value. Taking benefit from that, it can be proposed to stop 
iterating when the global distance measure stops decreasing. Surprisingly, the 
behaviour of this stop condition is quite similar for all the conversion directions: 
stability is reached between the 10th and 15th iteration, as in the case of correct 
phonetic alignment curves. 

 

5.2.5. Initialization of the method 
 

     The auxiliary vector set X’, which is iteratively used for nearest neighbour 
alignment and then updated according to the estimated function F, is created at 
the first step of the method. Initially, X’ is copied from X (trivial initialization). 
However, other types of initialization may be more suitable for a faster 
convergence of the method. In this study, three different initializations for X’ 
are compared by means of objective measures: 

 Trivial initialization. 

 Linear initialization: X’ is given by 

{ } ( )x
k

xxyyy
kkX µxΣΣµxx −+=′′=′

−1   ,  (5.5) 

where µx, Σxx, µy and Σyy, are mean cepstral vectors and diagonal 
covariance matrices calculated separately from the source and target 
vector sets X and Y, respectively. 

 Non-linear initialization: before translating the source frames into 
cepstral vectors (contained in X), their spectral envelope is warped in 
frequency according to the warping function calculated automatically 
from the mean LSF vectors of the source and target speakers (see section 
4.3.2 for more information about automatic estimation of frequency 
warping functions). 

     The specifications of the objective experiment are the following: 4 different 
speakers (12 conversion directions), 40 training sentences per speaker, 10-
sentence-long parallel testing corpora for computing the mean cepstral distance 
between converted and target vectors, 1st order auxiliary functions for 
alignment and 4th order voice conversion functions. The results are displayed in 
figure 5.11. It can be observed that, on the average, the best results are given by 
the linear initialization. However, the individual scores reveal that the 
improvements are visible only when the involved speakers are m2 and f2. The 
linear initialization does not work so well for the rest of conversion directions. 
Although the non-linear initialization based on frequency warping gives better 
results than the trivial initialization for 7 out of 12 conversion directions, the 
improvements are small compared to the computational load increment 
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derived from it. To sum up, there is no strong reason for substituting the trivial 
initialization by a more complicated one. 
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Figure 5.11: mean cepstral distance for different initializations of the alignment method. 

 

5.2.6. Varying the number of training sentences 
 

     The purpose of the following objective experiment is to evaluate the 
performance of the alignment (plus conversion) algorithm for a variable 
number of non-parallel training sentences. The average duration of the 
sentences is equal to 4 seconds. After estimating the transformation functions, 
the mean cepstral distance between converted and target vectors is computed 
on a 10-sentence-long parallel corpus. In this case, the order of the auxiliary 
function F used for alignment is set to 1, whereas the order of the final 
transformation functions is varied from 1 to 8. The resulting distance values are 
shown in figure 5.12 for 12 different voice conversion directions. The average 
values of the 12 voice conversion directions are plotted and compared to the 
parallel-training case in figure 5.13. Note that the vertical scale is different for 
each figure. 
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Figure 5.12: performance of the method for a varying number of training sentences and 12 
different conversion directions. 
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b) Parallel training 
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Figure 5.13: average performance of the method for a varying number of training sentences (a), 
compared to the parallel-training results (b). 
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     The individual curves are more irregular than those obtained in chapter 4 for 
parallel training, since they are a consequence of combining the effects of over-
smoothing, over-fitting, convergence of the iterative method and differences 
between speakers. In general, it can be observed that: 

 In almost all of the cases, the best results are obtained when the number 
of training sentences is maximal. On the average, the distance measure 
decreases when the number of training sentences is increased. The 
irregularities that can be observed individually for each conversion 
direction are probably due to the fact that the alignment algorithm is 
sensitive to the phonetic content of the training sentences. 

 In the non-parallel-training case, the order of the optimal transformation 
function for a given number of training sentences is always lower than in 
the parallel-training case. That is not surprising, because the over-
smoothing effect is one of the reasons why the alignment algorithm 
works, and even when convergence is reached after a number of 
iterations, there are still some misalignments to be compensated by over-
smoothing. Therefore, increasing the order of the transformation 
functions does not guarantee a more accurate conversion, even for a high 
number of training sentences. In general, 8th order transformation 
functions require at least 80 training sentences (around 5 minutes of 
audio). 

 

5.2.7. Perceptual evaluation 
 

Experiment 1 

     The alignment algorithm described along this chapter was integrated into a 
cross-lingual WFW-based voice conversion system that participated in the 3rd 
evaluation campaign of the European TC-STAR project. The evaluation 
conditions were the same as in the case of intra-lingual evaluation (section 4.3.3, 
experiment 2), except for the fact that the training sentences were cross-lingual. 

 The converted-to-target similarity and the quality of 2 converted 
sentences per system were rated by 20 listeners using a 1-to-5 MOS scale. 

 4 different conversion directions were considered again: male to male, 
male to female, female to male, and female to female. 

 All speakers were bilingual: for each speaker, around 150 Spanish 
sentences (source) or 150 English sentences (target) were available for 
training. The average duration of the sentences was around 3 or 4 
seconds. 10 sentences unseen during the training process were used for 
the perceptual test. 
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The WFW transformation function was configured to use 8th order GMMs. In 
this evaluation, the order of the auxiliary transformation function used for 
alignment tasks was also set to 8. The results of the evaluation, extracted from 
the public report in [Mos07], are shown in table 5.4 and are also represented in 
a similarity vs. quality diagram in figure 5.14, including those of the intra-
lingual voice conversion systems as reference. For privacy, the systems 
participating in the evaluation (except for the proposed one) are given fictitious 
names here. 

 

 

a) Intra-lingual Voice Conversion in English 
Converted-to-target similarity Quality  

f1-f2 f1-m2 m1-f2 m1-m2 average average 
Proposed 2.10 3.67 2.17 3.57 2.88 2.50 

X1 
X2 
X3 
X4 
X5 

2.10 
3.20 
2.67 
1.64 
2.62 

2.56 
3.00 
2.50 
1.50 
3.67 

1.92 
2.57 
1.60 
1.44 
2.33 

2.71 
2.25 
1.89 
2.40 
2.60 

2.32 
2.76 
2.17 
1.75 
2.81 

3.63 
2.71 
1.45 
3.11 
2.00 

Source 1.90 1.00 1.00 1.63 1.38 4.32 
b) Intra-lingual Voice Conversion in Spanish 

Converted-to-target similarity Quality  
f1-f2 f1-m2 m1-f2 m1-m2 average average 

Proposed 2.90 2.90 2.20 3.00 2.75 2.85 
X1 
X2 
X4 
X5 

2.10 
2.40 
1.10 
1.90 

2.30 
3.10 
2.00 
2.20 

2.50 
2.00 
1.10 
2.00 

1.90 
1.90 
1.30 
1.80 

2.20 
2.35 
1.38 
1.98 

3.48 
2.92 
3.30 
2.35 

Source 1.75 1.00 1.00 1.43 1.30 4.72 
c) Cross-lingual Voice Conversion in Spanish 

Converted-to-target similarity Quality  
f1-f2 f1-m2 m1-f2 m1-m2 average average 

Proposed 2.70 2.30 1.70 3.80 2.63 2.80 
X1 
X4 
X5 

2.10 
1.40 
2.60 

2.00 
1.20 
1.40 

1.40 
1.50 
2.00 

1.60 
1.40 
1.70 

1.78 
1.38 
1.93 

3.52 
3.23 
2.02 

Source 1.75 1.00 1.00 1.43 1.30 4.72 

Table 5.4: results of the 3rd TC-STAR evaluation campaign. 
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Figure 5.14: results of the 3rd TC-STAR evaluation campaign in a similarity versus quality 

diagram. 

 

     Focusing uniquely on the results obtained by the proposed system, the 
reported average scores indicate that the performance of the proposed cross-
lingual system is almost similar to the performance of its equivalent intra-
lingual system. Therefore, at first sight, the perceptual test confirms the 
effectiveness of the alignment algorithm. Nevertheless, if the individual 
similarity scores are examined more carefully, it can be observed that there are 
significant variations between the intra-lingual system and the cross-lingual 
one. In fact, the average similarity score of the cross-lingual system remains 
high because there is a surprising improvement in the m1-m2 direction, 
whereas the individual scores decay for the rest of conversion directions. This is 
due to the configuration of the system: the use of 8th order auxiliary functions 
for alignment provides very good results for certain voices, mainly when the 
gender of the speakers is the same. However, 1st order functions are more 
adequate for optimizing the performance of the system, as it was proved in 
previous sections by means of objective measures. Besides, as the performance 
of the systems for a given conversion direction was evaluated only by 10 
listeners (each listener rated only 2 sentences per system, even though there 
were 4 different conversion directions), the results may lack from statistical 
significance. 

     Considering the relative performance of all of the evaluated cross-lingual 
systems, the proposed one gives the best results. Although this is partially due 



Chapter 5. Alignment of frames for non-parallel training 

 148 

to the WFW method, other cross-lingual systems like X1 and X5 show more 
significant score decrements than the proposed one with respect to the intra-
lingual case, which indicates that the new alignment method works well. X4 
seems to be almost insensitive to the alignment conditions, but its similarity 
scores are very low in all cases. 

 

Experiment 2 

     A new perceptual test was carried out in order to evaluate the performance 
of the alignment technique when it is configured to use 1st order auxiliary 
functions. In this experiment, the algorithm was tested also in intra-lingual 
voice conversion by the same listeners in the same conditions, so that the results 
could be comparable. With regard to the experimental conditions, two things 
were changed with respect to experiment 1 in order to obtain more significant 
statistical values and thus more solid conclusions: the number of listeners was 
raised to 30, and the number of sentences per system rated by each listener was 
raised to 4. Table 5.5 and figure 5.15 contain the results of the test. The 
corresponding similarity vs. quality diagram is shown in figure 5.16. 

 

a) Converted-to-target similarity 
 f1-f2 f1-m2 m1-f2 m1-m2 average 

Parallel 3.17 3.17 3.00 3.57 3.23 
Non-parallel 3.20 3.27 2.77 3.10 3.08 
Cross-lingual 2.83 2.43 2.47 3.00 2.68 

b) Quality 
 f1-f2 f1-m2 m1-f2 m1-m2 average 

Parallel 3.73 3.27 3.07 3.80 3.47 
Non-parallel 3.63 3.33 3.17 3.63 3.44 
Cross-lingual 3.63 2.73 2.83 3.43 3.16 

Table 5.5: results of the perceptual test. 
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Figure 5.15: results of the perceptual test. 
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Figure 5.16: results of the perceptual test in a similarity versus quality diagram. 

 

     As it can be observed, the overall performance of the system trained with 
non-parallel corpora is almost the same than that of the system using parallel 
training corpora. The similarity and quality results are now shown to be 
consistent for all the conversion directions. Nevertheless, the results of the 
cross-lingual system are significantly lower than those of the intra-lingual 
systems, probably because Spanish and English have different phonesets. 
Nevertheless, the experiment proves the efficiency of the new alignment 
algorithm either in an intra-lingual context or in a cross-lingual context where 
the involved language pairs have similar phonesets, like Spanish-Catalan or 
Spanish-Italian. 

 

5.3. Conclusions 
 

     In this chapter a new frame alignment method for non-parallel training was 
proposed. It is based on the observation that, if a voice conversion function is 
trained after pairing the speech frames of two speakers by nearest neighbour 
alignment, an intermediate voice can be obtained. Thus, the idea is to iteratively 
repeat the nearest neighbour alignment between the intermediate voice and the 
target voice, so that a new intermediate voice closer to the target one is 
obtained. It was shown that this idea works in practice: the successive 
intermediate voices get closer to the target voice as the number of iterations 
increase. The method was studied by performing objective experiments for 
different configurations and conversion directions. Its objective performance is 
not far from that of parallel alignment in most of the cases. Furthermore, 
although the speech frames are aligned using only the information extracted 
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directly from the signal, it was proved that the alignment is acceptable from a 
phonetic point of view. A stop criterion was designed for the system to decide 
automatically when the convergence is reached. Different types of initialization 
were also considered. Finally, it was demonstrated that, in contrast to other 
existing frame alignment methods, the proposed one gives better performance 
when the number of training sentences is increased. 

     The new alignment method was integrated into a cross-lingual voice 
conversion system based on WFW, which participated in one of the public 
evaluation campaigns organized in the framework of the European TC-STAR 
project. The results were excellent compared to the rest of the competitors, even 
though at the time of the evaluation the alignment method was not optimized 
yet. 

     Other carefully designed perceptual tests were carried out during the 
elaboration of this thesis. Their results indicate that, in an intra-lingual context, 
the performance of a WFW-based voice conversion system combined with the 
new alignment method is very good in absolute terms. In fact, the resulting 
scores are similar to those obtained by an equivalent voice conversion system 
trained on a parallel corpus. The scores worsen slightly when the system is 
trained in cross-lingual conditions, but the method is expected to be suitable for 
language pairs with similar phonesets. 

 

Related publications 
 

D. Erro, A. Moreno, “Frame Alignment Method for Cross-lingual Voice 
Conversion”, Interspeech 2007, Eurospeech. Antwerp, Belgium. August 2007. 
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6. Text-to-converted-speech 
synthesis 

 

 

     Until now, all the voice conversion methods and algorithms proposed in this 
thesis have been tested using natural speech recordings. Nevertheless, they can 
also be applied to converting synthetic speech. In fact, one of the main 
applications of voice conversion is customizing the voice of TTS systems, so this 
chapter is devoted to present new experiments in which a TTS system with a 
fixed synthesis unit database is asked to talk using different voices. In such an 
application, the resulting similarity scores should not differ from those obtained 
when converting natural utterances, whereas the quality of the converted 
signals is limited not only by the transformation method but also by the 
synthesis process itself. 

     At present, the two main types of systems that generate synthetic speech are 
based on unit selection and on hidden Markov models, respectively. The 
integration of voice conversion into a HMM-based synthesizer is quite easy and 
does not introduce complexity into the system: during the training phase, the 
acoustic models from which the system generates the output acoustic vectors 
are transformed by adaptation techniques. Thus, the synthesis-plus-conversion 
procedure is exactly the same than the pure synthesis procedure, as it has been 
explained in chapter 2. However, at the time of writing this thesis, TTS systems 
based on unit selection are still the best option in terms of quality and 
naturalness. That is the reason why unit selection synthesis is preferred for the 
experiments carried out in this chapter. In such systems, the integration of voice 
conversion into the waveform generation module requires paying some 
attention to how the synthesis and the conversion process interact. This topic is 
deeply analyzed in section 6.1. In section 6.2, a complete synthesis system with 
voice conversion is described and evaluated by listeners. Finally, in section 6.3 
the conclusions of this part of the dissertation are summarized. 

 

 

6.1. Integration of voice conversion into a synthesizer 
 

     In principle, the synthetic speech signals are also valid for being analyzed, 
converted and reconstructed in the same manner than natural recorded signals. 
A non-interactive combination between speech synthesis and voice conversion 
should provide results that depend on the individual performance of each 
block. The non-interactive converted-speech synthesis system is schematized in 



Chapter 6. Text-to-converted-speech synthesis 

 152 

figure 6.1. In such system, the waveform generation block of the TTS system 
and the voice conversion system are completely independent: the output signal 
coming from the TTS is used as input signal for the voice converter. 

 

 
Figure 6.1: non-interactive combination of TTS synthesis and voice conversion. 

 

     The non-interactive approach has some disadvantages that may result in 
noticeable quality loss. The most basic one is that reconstructing the waveform 
and analyzing it again for converting voices is unnecessary, taking into account 
that the same speech model (like the one defined in chapter 3, for instance) can 
be used for synthesis and for voice conversion. Obviously, it is advisable to 
place the voice conversion system between the prosodic modification block and 
the waveform reconstruction block in figure 6.1, so that the voice conversion 
system has access to the speech model parameters and can operate directly on 
them. 

     With regard to not so basic aspects, one of the most important limitations of 
the non-interactive approach is the one related to the prosodic modification of 
speech: the prosody of the units selected for synthesizing a given utterance are 
modified to match the specifications given by the prosody generator of the TTS 
system, and after having obtained the synthetic signal, the voice conversion 
device adapts the mean pitch level to the physical characteristics of the target 
voice. Therefore, two different prosodic modifications are performed instead of 
one, and the consequence is that the quality degradation is higher than strictly 
necessary. The most pathological situation is that in which the pitch of the 
recorded unit, f0, is transformed into f0’ by the synthesizer and then it is 
transformed back to f0 by the converter. The same phenomenon can occur with 
durations if the voice conversion system performs any duration modification. 

     Although the unit selection process is optimized for obtaining synthetic 
speech as natural as possible without significant discontinuities, the fact that the 
resulting speech signal is to be transformed by means of certain voice 
conversion function should be taken into account in any way. Ideally, the cost 
function used by the system for selecting the most appropriate unit sequence 
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should be capable of penalizing the choice of units that are difficult to convert. 
Nevertheless, it is not easy to design a criterion for determining whether a unit 
is suitable for conversion or not. 

 

 
Figure 6.2: interactive combination of TTS synthesis and voice conversion. 

 

     Figure 6.2 shows an interactive system in which all the limitations 
commented above are not present anymore. First, voice conversion aspects are 
taken into account by the unit selector. Second, all the modifications (spectral 
and prosodic) are performed by a single block so that the signal characteristics 
are modified only once. Third, the concatenation and reconstruction of the 
synthetic speech signal are performed after having converted the source voice 
into the target voice. 

 

 

6.2. Description and evaluation of a Text-to-Converted-
Speech (TTCS) synthesis system 

 

     The TTCS synthesis system evaluated in this section is based on Ogmios, the 
UPC TTS synthesis system. Appendix A is devoted to the detailed description 
of Ogmios, so no more information is included here. Ogmios is in charge of the 
text analysis and prosody generation tasks, whereas the waveform generation 
module is redesigned according to the following specifications: 

 The unit selection block is taken from Ogmios. In order to minimize the 
discontinuities between the selected units, which may be amplified by 
voice conversion, the weights of the cost function to be optimized for 
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selecting the most adequate unit sequence are adjusted so that the 
concatenation cost takes priority over the target cost. 

 The synthesis databases used for unit selection contain around 10 hours 
of audio. Two Ogmios voices are available: one female voice and one 
male voice. From now on, they will be called F and M, respectively. 

 The model chosen for reconstructing and modifying the prosody and the 
spectrum of the speech waveforms is the HSM presented in chapter 3. If 
the objective of the system was to obtain natural-sounding synthetic 
speech, the signal modification should be as little as possible. In this case, 
since the distortion introduced by prosodic manipulation is much lower 
than that introduced by voice conversion (including mean pitch level 
adaptation), the pitch contour of the selected unit sequence is forced to 
match exactly the specifications provided by the prosody generation 
block. The durations are modified only when the required factors are 
greater than a phoneme-dependent threshold (this strategy is usually 
applied by Ogmios). 

 A voice conversion system based on WFW is integrated into the 
waveform generator following an interactive scheme (figure 6.2). 
Nevertheless, it has to be clarified that no voice conversion constraints 
are taking into account by the unit selector. 

     For evaluating the performance of the TTCS system, several Spanish 
sentences were generated trying to imitate 4 different voices: f1, f2, m1 and m2, 
which are described in appendix B and have been already used in previous 
chapters. The transformation functions were estimated using parallel corpora 
built from around 150 sentences (the average duration of the sentences is 4 
seconds). After some informal trials, it was observed that there were significant 
differences in the behaviour of F and M: F showed a very good behaviour in 
terms of WFW-based voice conversion, whereas M provided better synthetic 
speech than F but it was found to be more difficult to convert. For this reason, F 
was selected to be the basis voice of the system. 30 listeners were asked to rate 
the similarity between the converted-target sentence pairs (converted synthetic 
sentences versus natural speech recordings), and also the overall quality of the 
converted sentences, using a 5-point scale (in which the best score is 5). 

     Figure 6.3 shows the results of the perceptual evaluation. Apart from the 
average scores for each conversion direction and the total average scores 
(denoted as “avg”), the results of comparing the non-converted synthetic voice 
of the system with natural utterances of the same voice are also included 
(denoted as “self”). Such are helpful for determining how the synthesis process 
affects the similarity between voices and the quality of the signals. 
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Figure 6.3: results of the perceptual evaluation for voice F. 

 

     The first remarkable fact to be commented is that the average similarity 
score, around 3.1, is very close to the one obtained in previous chapters when 
converting natural speech instead of synthetic speech, even in presence of 
artifacts due to the synthesis procedure. Indeed, this score is only 0.8 points 
below the maximum expectable score, which indicates the similarity between 
the natural basis voice F and its corresponding synthetic voice. In this case, the 
maximum score is approximately 3.9. The individual similarity results obtained 
for each conversion direction are consistent with respect to the mean value. 

     With regard to the quality of the converted sentences, it can be observed that 
the scores are not far from that of the non-converted synthetic speech. It can be 
asserted that the quality loss introduced by voice conversion is approximately 
0.5 points in a 1-to-5 scale. The absolute quality scores obtained lead to the 
conclusion that the artifacts coming from the synthesis process (concatenation 
discontinuities, prosodic modification, artificial prosody, etc.) seem to be an 
important limitation for the quality. However, it has to be emphasized that the 
TTCS system was optimized for voice conversion (for instance, the system was 
allowed to perform strict pitch modifications to follow exactly the artificially 
generated contours), so the quality score that would have been obtained by the 
TTS if this work was focused on obtaining high-quality synthetic speech would 
be much higher than the one used as reference here. If the quality scores shown 
in the figure are compared with those reported in previous chapters (around 
3.5), it can be asserted that the synthesis artifacts make the score decrease 
approximately 1 point. 

     If the same experiment is repeated using M as basis voice of the TTCS 
system, the resulting scores, plotted in figure 6.4, are low, whereas the scores 
related to the non-converted synthetic speech are slightly higher than those of 
F. This observation leads to a very important conclusion: not every voice can be 
used as basis voice of a TTCS system. In this case, the difference between F and 
M is that M has some peculiarities that are not completely erased when WFW-
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based voice conversion is performed. Of course, one of the reasons for that is 
the WFW method itself: the use of frequency warping functions increases the 
quality of the resulting converted speech with respect to other transformation 
methods, but in exchange there are some spectral details that persist after voice 
conversion. The problem is that this type of peculiar voices, which are not 
suitable for voice conversion, use to be very attractive for speech synthesis due 
to their expressivity. This phenomenon should be taken into account when 
designing a TTCS system from an existing TTS system. 
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Figure 6.4: results of the perceptual evaluation for voice M. 

 

 

6.3. Conclusions 
 

     In this chapter, a TTCS synthesis system has been built by combining the 
UPC TTS system with a voice conversion system based on the methods and 
algorithms presented throughout this thesis. The full system has been evaluated 
by means of perceptual tests. As expected, the scores indicating the similarity 
between converted and target voices are very close to those obtained when 
converting natural speech utterances, approximately 3.1 in a 1-to-5 scale. The 
quality of the converted synthetic signals is affected by both synthesis and 
conversion, so the resulting average score is 2.5, approximately 1 point below 
the one obtained for converted natural speech and 0.5 points below the one 
obtained for non-converted synthetic speech. 

     The results obtained reveal that the choice of the basis voice has a direct 
influence on the performance of the TTCS system, especially when the WFW 
method is applied to converting voices. An automatic method for determining 
the suitability degree of a given voice should be designed in future works. 
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7. Conclusions and future work 
 

 

     The general objective of this thesis was to research into voice conversion 
systems and methods in order to improve their quality and versatility. First of 
all, the state of the art of voice conversion technologies has been studied in 
detail. Considering the improvable aspects detected in current voice conversion 
systems, this thesis has focused mainly on three courses of action: increasing 
their similarity-versus-quality balance by means of new spectral envelope 
conversion methods, making them compatible with all possible training 
conditions (even cross-lingual), and integrating them properly into a speech 
synthesizer. 

     The contributions to the voice conversion technology presented in this thesis 
can be grouped in four categories: speech model, spectral envelope conversion, 
alignment and design of a TTCS system. As shown in figure 7.1, contributions 
have been made in almost all the parts of a voice conversion system. Next, 
separate conclusions are presented for each of the categories. 

 

 
Figure 7.1: block diagram of a voice conversion system. The contributions presented in this 

thesis involve the blocks located inside the shaded areas. 
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7.1. Harmonic plus stochastic model 
 

     In order to improve the analysis/synthesis part of the voice conversion 
system, a new speech model based on a harmonic plus stochastic 
decomposition has been presented in chapter 3. The harmonic component 
consists of a set of harmonically related sinusoids in the band 0-5KHz, given by 
their fundamental frequency, their amplitudes and their phases, whereas the 
stochastic component, which is assumed to occupy the full analysis band, is 
modelled by an all-pole filter estimated through LPC analysis. Novel 
algorithms for prosodic modification of speech signals, unit concatenation and 
phase envelope extraction have been also proposed. The main characteristic of 
such algorithms is that they are capable of operating on signals analyzed either 
at a constant or at a variable frame rate, so they provide a high degree of 
flexibility, even though they are based on conceptually quite simple ideas. The 
suitability of the new model and algorithms for speech synthesis under strong 
modification conditions (voice conversion implies strong modifications) has 
been proved by means of a comparison with TD-PSOLA. 

     Future work should be focused on the accuracy of the model. Since the 
objective in this first step of the thesis was building the analysis/synthesis part 
of a voice conversion system, the research has been focused on increasing the 
flexibility of the model, rather than on maximizing its accuracy. Therefore, 
although the model provides a good framework for speech analysis, 
modification and synthesis, there are several points where improvements can 
be made. The most remarkable one is the fact that the separation between the 
harmonic component and the stochastic component is not perfect. Any attempt 
of improving the harmonic-stochastic separation may benefit the model. 
Moreover, although the choice of a fixed value for the maximum voiced 
frequency is advantageous for spectral envelope extraction and thus for voice 
conversion, a more realistic model that allowed manipulating this parameter 
without losing voice conversion properties could be designed. In addition, a 
very simple method for synthesizing the stochastic component without 
considering its temporal structure has been used here, because the resulting 
quality is perceptually good, so an accurate modelling of the time behaviour of 
the noise-like part of the waveform would improve the quality of the 
reconstructed signals. However, the temporal parameters would have to be also 
transformed when converting voices. 

 

7.2. Spectral envelope conversion 
 

     In chapter 4, the problem of increasing the quality of the converted speech 
without worsening the conversion performance has been faced. First, a baseline 
state-of-the-art system has been implemented. Then, a new spectral envelope 
conversion method called Weighted Frequency Warping has been proposed. 
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WFW is a combination between statistical transformation methods and 
frequency warping techniques. The training procedure of WFW consists of 
estimating a joint GMM from paired source-target acoustic vectors (like 
conventional GMM-based systems) and then calculating optimal frequency 
warping functions for each gaussian component of the model. During the 
conversion phase, these functions are combined to form a frame-dependent 
time-varying frequency warping function that is applied to the amplitude and 
phase envelopes, and after that, the energy distribution of the amplitude 
envelope is corrected using statistical linear transformations. The new spectral 
envelope conversion method results in much better quality scores than the 
baseline method (around 3.5 points in a 1-to-5 scale), whereas the conversion 
scores are kept almost invariant (around 3.0), so a good similarity-quality 
balance is achieved. 

     Future works addressed to improving WFW should start by studying certain 
voices that are not well converted by this method. For example, voices 
characterized (in a physical sense) by a low maximum voiced frequency 
(breathy voices, for instance) may be problematic when being transformed into 
other voices with higher maximum voiced frequency, because WFW extracts 
the original amplitude and phase envelopes from the harmonics detected 
between 0 and 5 KHz (the analysis procedure assumes that all the harmonics 
within this band exist, and forced detection is performed, so the amplitudes and 
phases detected above the physical maximum voiced frequency may not have 
true physical meaning), and then it calculates the target harmonics from the 
frequency-warped version of these envelopes. In order to extend WFW to 
expressive voices, the maximum voiced frequency should be included as a 
feature to be converted. 

     Furthermore, the combination between GMM-based statistical 
transformations and frequency warping transformations is made in the 
amplitude domain, whereas the phases are left unmodified after applying the 
frequency warping function to the original phase envelope. In principle, this 
does not have a noticeable negative impact on the quality of the resulting 
signals, but a solution should be proposed for keeping the amplitude and phase 
envelopes coherent. 

 

7.3. Alignment for non-parallel training 
 

     A new frame alignment method has been also proposed in order to make the 
voice conversion system compatible with all possible training conditions, 
especially when a parallel training corpus is not available. The new method is 
based on using nearest neighbour alignment for obtaining an intermediate 
voice between the source and target voices, and then using the intermediate 
voice as source voice during the next iteration. After a number of iterations, the 
intermediate voice is close enough to the target voice. One of the main 
advantages of the method is that it does not require extra phonetic or linguistic 
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information for a correct performance, but only the same acoustic vectors used 
for voice conversion, so it is also compatible with cross-lingual applications. In 
an intra-lingual context, the performance of the whole alignment plus 
conversion method is similar to that of an equivalent system trained under 
ideal conditions, whereas in a cross-lingual context, the similarity and quality 
scores are slightly worse. 

     One of the aspects of the alignment method to be improved in a future work 
is the computational load: at each iteration, the system performs lots of nearest 
neighbour searches and then it estimates an adequate linear transformation 
from the paired vectors, so the overall process is time-consuming if the number 
of vectors is large. Apart from that, a way of improving the performance of the 
alignment system in cross-lingual conditions should be also investigated. 

 

7.4. Text-to-converted-speech synthesis 
 

     A TTCS synthesis system has been built by combining Ogmios (the UPC TTS 
system) with a voice conversion system based on WFW. The similarity scores 
achieved by the system are very close to those obtained when converting 
natural speech utterances, around 3.1 in a 1-to-5 scale, whereas the quality 
scores, which are affected by both synthesis and conversion, are around 2.5, 1 
point below the one obtained for converted natural speech and 0.5 points below 
the one obtained for non-converted synthetic speech. 

     The design of an automatic method for determining the suitability of a given 
voice for a TTCS system is proposed as future work. It has to be emphasized 
that the best option in terms of converted-speech synthesis may not coincide 
with the best option in terms of speech synthesis. 

     This thesis does not provide a method for including voice conversion 
constraints into the cost function of the unit selector of a TTS system. The 
performance of the system would be better if the cost function was redesigned 
to assign a higher selection probability to the units that the system is capable of 
converting well. This is one of the main challenges for future work. 

     All the methods and algorithms presented throughout this dissertation were 
designed to be text- and language-independent as possible. Nevertheless, when 
voice conversion is integrated into a TTS system, the phonetic information is 
available without an extra effort, so it is possible to configure the system so that 
only certain phonemes are converted while others are left unmodified or 
partially converted in order to preserve their quality. A carefully designed 
experimental procedure would help to determine the most relevant phonemes 
or phoneme groups for the similarity scores. 
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7.5.2. Remarkable results in public evaluation campaigns 
 

 Albayzin06 Evaluation, IV Jornadas en Tecnologías del Habla, Zaragoza, 
Spain, 2006: winner in “speech synthesis” (imitating voices for cheating a 
biometric system). Evaluation report: D. Erro, A. Moreno, “Conversión de 
voz con muy pocos datos en evaluación automática”. More information: 
http://www.rthabla.es. 

 3rd Evaluation Campaign of the integrated European project TC-STAR, 2007: 
winner in cross-lingual voice conversion. More information: [Mos07]. 
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Appendix A 

Ogmios, the UPC text-to-speech 
synthesis system 
 

     Ogmios is the multilingual Text-to-Speech synthesis system created at the 
Universitat Politècnica de Catalunya [Bon06a, Bon07]. Ogmios was designed in 
such manner that the algorithms are to some extent language-independent, 
whereas language-dependencies are kept in the data as possible. In order to 
reduce the development cost, most of the techniques are either language-
independent (e.g. acoustic modules) or data-driven (e.g. prosody generation, 
phonetic transcription). The system was originally developed in Catalan and 
Spanish, and later it was extended to other languages like French, Portuguese 
and English. The core of the system is a C++ set of modules with a common 
interface based on highly structured data describing linguistic relationships at 
different levels, ranging from a shallow description of the syntax until acoustic 
features of the speech segments to be concatenated. 

     Ogmios contains many modules, each one devoted to a specific function. 
They can be classified in three main areas: text analysis, prosody generation and 
waveform generation, as formally defined in [Per06]. 

 Text analysis. First, it tokenises the input text and classifies each token 
(punctuation, acronyms, abbreviations, cardinal and ordinal numbers, 
time and data expressions, Internet locators, etc.) and they are expanded 
into full orthographic forms. The input to this module is plain text, 
which can be optionally marked with the SSML language. The text is 
labelled with part-of-speech tags using a statistical tagger. For Spanish, 
shallow parsing is also added. Finally, the pronunciation of words is 
obtained from a dictionary. A grapheme-to-phoneme converter predicts 
the pronunciation of unknown words, if necessary. 

 Prosody generator. This is the principal agent in obtaining natural 
sounding quality of synthetic speech. There are several tasks: phrasing, 
f0-contour generation, segmental duration assignment and intensity 
contour generation. Each of these tasks is performed by a single module. 

 Waveform generation. The synthesis is performed by concatenating 
recorded segments selected from a large database. The basic units are 
context-dependent semi-phones. Acoustic and phonological features are 
used to select the most appropriate sequence of segments. Phrase 
selection is introduced to get all the units from phrases which are 
completely present in the database, so that the requirements in terms of 
prosodic modification are minimized. 
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In the next sections, each of these blocks is described separately. 

 

 
Figure A.1: block diagram of Ogmios, the UPC text-to-speech synthesis system. 

 

 

Text and Phonetic Analysis 
 

     The first task of the system is detecting the structure of the document and 
transforming the input text into words. This task was initially optimized for 
Spanish and Catalan, but it has been also extended to other languages like 
English, since in general the rules for tokenizing and classifying non-standard 
words are similar to those used for Spanish and Catalan. The rules for 
expanding each token into words are language dependent but are based on a 
few simple functions (spellings, natural numbers, dates, etc.). 

     Ogmios includes also a basic statistical part-of-speech tagger based on n-
grams. 

     Once the input text has been normalized, the words are transformed into a 
sequence of phonemes. The phonetic transcription of words is obtained from a 
dictionary (or from a fusion of dictionaries [Pol07]). If any of the words to be 
transcribed are not contained in the dictionary, Ogmios calculates the most 
probable phonetic transcription using a data-driven grapheme-to-phoneme 
conversion system, which is based on finite state transducers and is trained 
using the original system dictionary. Recently, learning-from-errors techniques 
have been applied to improving the basic grapheme-to-phoneme conversion, 
with very good results [Pol06]. 

     Furthermore, Ogmios offers the possibility of applying a set of phonotactic 
hand-crafted rules at the end of the phonetic transcription process, in order to 
introduce different phenomena that can be found in natural continuous speech: 
aspired plosives, consonant assimilation and elision, etc. 
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Prosody generation 
 

     The prosody generation process can be decomposed into several tasks, which 
are carried out sequentially by different modules of Ogmios: phrasing, duration 
estimation, intensity prediction and intonation contour generation. 

 

Phrasing 
     Phrasing is one of the key topics in the linguistic part of text-to-speech 
technologies, which consists of dividing long sentences into smaller prosodic 
phrases, whose boundaries are acoustically characterized by a pause, a tonal 
change or a certain lengthening of the last syllable. Phrase breaks have strong 
influence on the naturalness, the intelligibility and even the meaning of the 
sentences. In Ogmios, phrasing is carried out by means of a finite state 
transducer that translates the sequence of part-of-speech tags of the sentence 
into a sequence of tags with two possible values: break and non-break [Bon04a]. 
Although the method uses very few features, the results are comparable to 
those given by CART, which uses more explicit features. 

 

Duration 
     Phone duration strongly depends on the rhythmic structure of the language. 
For example, English is stressed-timed while Spanish is syllable-timed. Ogmios 
predicts phone duration in two steps: prediction of syllable duration, and 
prediction of phone duration inside each syllable. The syllable duration is 
predicted by a CART, using features like the structure of the syllable, 
represented by articulatory information of the phonemes inside it (phone 
identity, voicing, articulation point and manner, vowel/consonant), the stress, 
the position of the syllable in the sentence and inside the intonation phrase, etc. 
Once the duration of the syllable is calculated, a set of factors is applied to share 
out the total duration amongst its phonemes. These factors are predicted using 
a set of features extracted from the text, such as articulatory information of the 
phoneme itself and the preceding and succeeding ones, position in the syllable, 
in the word and in the sentence, stress, and whether the syllable is pre-pausal or 
not. 

 

Intensity 
     The intensity of the phonemes is predicted by means of a CART. The features 
are again articulatory information of the current, the previous and the next 
phone, the stress, and the position in the sentence relative to punctuation and 
phrase breaks. 
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Intonation 
     Ogmios has two available intonation models: a superpositional polynomial 
model and a newly devised unit selection model. In the superpositional 
approach, the influence of two prosodic units is combined: accent groups, 
which model local effects at the level of the stressed syllable, and minor 
phrases, which model a long-term effect of the intonation contour. Each 
component of the intonation model is approximated by means of a Bèzier 
curve. The intonation model is trained using JEMA (Join feature Extraction and 
Modelling Approach), a new approach that combines parameter extraction and 
model generation into a single loop [Agü04a, Agü04b]. This approach does not 
require continuous pitch contours and increases the parameterization 
consistency. It has been successfully applied to several languages and models 
(Tilt, Fujisaki, Bèzier) [Roj05, Agü05]. The parameters of the Bèzier curve are 
predicted using a set of features extracted from text, such as position of the 
prosodic unit in the sentence, number of words and syllables in the unit, 
position of the stressed syllable, punctuation mark, etc. In some cases, the use of 
the superpositional approach results in over-smoothed intonation contours 
with low expressiveness. For this reason, the system includes also a module for 
intonation contour generation based on cases: for each accent group, a real 
contour is selected from the database taking into account the target cost 
(position in the sentence, syllabic structure, etc.) and the concatenation cost 
(continuity). The final result is a more expressive intonation contour, but in 
some cases the contour is not natural for the sentence. 

 

Speech waveform generation 
 

     The unit selection system of Ogmios runs a Viterbi algorithm in order to find 
in the inventory the sequence of units u1…un that minimizes a certain cost 
function with respect to the target values t1…tn. This function is composed by a 
target cost and a concatenation cost, which are both computed as a weighted 
sum of individual sub-costs as shown below: 
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where wt and wc are the weights of the global target and concatenation costs 
(wt+wc=1); Mt and Mc are the number of target and concatenation sub-costs, 
respectively; Cmt(·) is the mth target sub-cost, which is weighted by parameter 
wmt, and Cmc(·) is the mth concatenation sub-cost weighted by wmc. Table A.1 
shows the features used for defining the sub-cost functions. There are two types 
of sub-costs: the binary ones, whose value is either 0 or 1, and the ones that take 
continuous values. In continuous sub-costs, a distance function is defined and a 
sigmoid function is applied in order to restrict their range to [0, 1]. 
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Target costs 
Feature Type 
Phonetic accent Binary 
Duration difference Continuous 
Energy difference Continuous 
Pitch difference Continuous 
Pitch difference at sentence end Continuous 
Pitch derivative difference Continuous 
Pitch deviate sign is different Binary 
Accent group position Binary 
Triphone Binary 
Word Binary 

Concatenation costs 
Feature Type 
Energy Continuous 
Pitch Continuous 
Pitch at sentence end Continuous 
Spectral distance at boundary Continuous 
Voiced-unvoiced concatenation Binary 
Table A.1: features taking part in the cost function for unit selection.  

 

     All the cost weights have to be adjusted a priori. In the case of target sub-
costs, a similar approach to the one proposed in [Hun96] is applied. First, the 
MFCC parameters plus energy and pitch are extracted every 5ms. The distance 
between two units is considered to be the mean Euclidean distance between all 
the feature vectors across the units, which are linearly aligned before 
computing the distance. Let d be the vector of all distances for each pair of units, 
C a matrix where C(i, j) is the jth sub-cost for the ith unit pair, and w the vector 
containing the weights to be estimated. Assuming that Cw=d, it is possible to 
compute w by means of a linear regression. This automatic adjustment can only 
be applied in the case of target sub-costs, whereas the weights for the 
concatenation sub-costs have to be adjusted manually. Although the linear 
regression method supplies reasonable values, little manual adjustment may be 
necessary even in the case of target sub-costs. 

     Concerning the physical waveform generation process, the TD-PSOLA 
technique is applied to modifying the prosody of the recorded units and 
reconstructing the synthetic speech signals. Since the listeners usually assign 
higher quality scores to the synthetic utterances with minimal artificial 
manipulation, the prosodic modification of units is avoided when the required 
modification factor is lower than a certain phoneme-dependent threshold. This 
threshold is empirically determined in such manner that, for instance, plosive 
consonants remain unaltered, whereas vowels are allowed to have a wider 
modification range. Therefore, most of the units selected for building the 
synthetic utterances are simply concatenated without prosodic manipulation, so 
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the information provided by the prosody generation block is used almost 
exclusively for unit selection. The glottal closure instants are used as reference 
for concatenating units without introducing artifacts related to phase mismatch. 

 

Text analysis 
Task Implementation 
Tokenizing and expanding Rules 
Part-of-speech tagging N-gram statistics 
Phonetic transcription Dictionary lookup 
Grapheme-to-phoneme conversion Finite state transducers 
Phonotactic correction Rules 

Prosody generation 
Task Implementation 
Phrasing Finite state transducers or CART 
Duration estimation CART (syllables) + factors (phonemes) 
Intensity prediction CART 
Intonation contour generation JEMA+Bèzier or selection 

Waveform generation 
Task Implementation 
Unit selection Viterbi search 
Prosodic modification of units TD-PSOLA or no modification 
Concatenation of units GCI-based 

Table A.2: tasks involved in text-to-speech synthesis and their implementation in Ogmios. 

 

Building synthetic voices 
 

     The voices created for Ogmios follow the TC-STAR specifications for 
producing high-quality language resources for speech synthesis [Bon04b]. 
These specifications, which are reviewed briefly in the following paragraphs, 
include corpus design, speaker selection, recording platforms and annotation. 

     For each baseline voice, 90K words are recorded (around 10 hours of speech). 
The corpus domain contains novels, parliamentary transcriptions and 
application words (such as numbers, dates, etc.). Three channels are recorded 
(sampling frequency: 96 KHz, precision: 24 bits): close talk microphone, 
membrane microphone, and laryngograph. For all the data, the phonetic 
transcription and basic prosody are manually annotated. Furthermore, pitch 
labels and phonetic segmentation of 20% of the data are supervised manually. 

     The speaker selection process consists of the following steps. First, five 
professional speakers are selected for each voice, and approximately twenty 
minutes of speech are recorded from each of them in order to create a small 
synthesiser. Afterwards, a MOS test is carried out to evaluate the quality of the 
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five synthesizers. The final choice depends on several factors, such as the 
pleasantness of the voice, the articulation and also the result of the MOS. Only 
the selected speaker records the whole database. 

     For the baseline voices, a preliminary phonetic segmentation is computed 
using the UPC speech-recognition toolkit (in the forced-alignment mode) 
[Ade04, Ade05]. Speaker dependent models where estimated for context-
dependent semi-phones. The likelihood provided by the HMM-forced 
alignment is used to select 20% of the sentences which have to be checked 
manually. The segmentation is also used by the prosody and phonetic labelling 
toolkit to ease the navigation through the files. After the phonetic transcription 
has been supervised, the files are automatically segmented again and a pruning 
strategy is followed to detect problematic units [Ade06]. This reduces the size of 
the database in 10%, but 90% of undesired units are successfully removed. The 
prosodic models used during synthesis are trained from the resulting database. 

     Pitch labels are obtained following the method described in [Per05]. The 
pitch epochs used for synthesis are the glottal closure instants, which are 
extracted from the laryngograph signal by locating the minima of the 
laryngograph signal derivative. Since the laryngograph signal is often noisy, 
pitch marks are post-processed in order to obtain a cleaner estimation. A 
further correction is also required to compensate the delay between the 
laryngograph signal and the speech signal: a low-pass filtered version of the 
speech signal comprising only the first harmonic is used to locate the preceding 
zero-crossing point, and the final pitch mark is placed on the position of the 
waveform minimum before the crossing-by-zero. 

 

Performance evaluation 
 

     Ogmios participated in the 2nd TC-STAR evaluation campaign [Mos06], 
which intended to rate the performance of the whole TTS system in several 
aspects that are relevant for the assessment of the quality of speech synthesis. 
During the evaluation process, which was carried out via web, each subject was 
asked to rate, using a 5-point scale (where 1 is the worst score and 5 is the best 
score), different characteristics of the system. Table A.3 shows the evaluation 
results for several voices, including natural speech as a reference. 

     The scores obtained for Spanish are quite close to those of natural speech. 
This indicates that the performance of Ogmios in Spanish is very good. The 
scores obtained for English are lower because the system is optimized for 
Spanish and Catalan, whereas no language-specific work had been done for 
English before the evaluation. Taking that into account, these scores are also 
reasonable and prove that Ogmios can be used for building new voices in 
different languages in a short time. 
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Voice LE Pr C A SR N EL Pl A OQ 

Spanish male 4.28 4.00 4.44 4.11 4.17 3.36 3.47 3.67 3.25 4.00 
Spanish female 4.36 4.14 4.56 3.64 4.08 3.25 3.17 3.56 2.97 3.89 
English female 2.92 3.02 3.49 3.25 3.83 2.26 2.13 2.82 2.28 2.84 
Natural speech 4.89 4.89 4.94 4.67 4.97 4.58 4.36 4.28 4.33 4.61 

Table A.3: results of the 2nd TC-STAR evaluation campaign: listening effort (LE), pronunciation 
(Pr), comprehension (C), articulation (A), speaking rate (SR), naturalness (N), ease of listening 

(EL), pleasantness (Pl), audio flow (A) and overall quality (OQ). 
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Appendix B 

Language resources 
 

     The characteristics of the language resources used in the experiments carried 
out in this dissertation are summarized in table B.1. This material was made 
available by UPC for the evaluation campaigns of the TC-STAR project. More 
information about these language resources and also about the public 
evaluation campaigns can be found in [Bon06b] and [Mos06, Mos07], 
respectively.  

 

Number of voices 2 male voices: m1, m2 
2 female voices: f1, f2 

Language Spanish and English (bilingual speakers) 

Amount of data Spanish: ~200 sentences, ~4 sec average duration 
English: ~170 sentences, ~4 sec average duration 

Type of utterances Mimic parallel sentences 

Sampling frequency Recorded at 96 KHz 
Working copies at 16 KHz 

Precision Recorded at 24 bits/sample 
Working copies at 16 bits/sample 

Channels 3 channels: close talk microphone, membrane 
microphone, laryngograph 

Recording conditions Noise: SNRA > 40 dBA 
Reverberation: RT60 < 0.3 sec 

Orthographic 
annotation 100% supervised 

Prosodic annotation 
Minor and major phrase breaks 
Normal and emphatic pitch accents 
100% supervised 

Phonetic annotation SAMPA 
100% supervised 

Segmentation 
annotation 

Phoneme segmentation 
5% supervised 

Pitch annotation Pitch marking 
5% supervised using reference points 

Table B.1: general characteristics of the language resources used in this work. 

 

     The voice conversion corpora contain around 200 sentences in Spanish and 
170 in English, uttered by four different professional bilingual speakers, 2 male 
and 2 female speakers. The average duration of the sentences is 4 seconds, so 
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between 10 and 15 minutes of audio are available for each speaker and 
language. The fact that the speakers are bilingual allows researching not only 
into intra-lingual voice conversion but also into cross-lingual voice conversion. 
From now on, the recorded voices will be denoted m1, m2, f1 and f2, as 
indicated in table B.1. 

     The sentences uttered by the speakers are exactly the same, so that parallel 
training corpora can be used for training voice conversion functions. In 
addition, the sentences were recorded as mimic sentences. This means that the 
recordings were made in such manner that there were no significant prosodic 
differences between speakers, since they all were asked to imitate the same pre-
recorded pattern with neutral speaking style for each of the sentences [Kai01]. 
This allows the listeners that participate in the perceptual tests concentrating on 
the spectral characteristics of voice, so that the spectral envelope conversion 
methods can be evaluated in a more precise way. 

     The recordings were made in a soundproof chamber whose signal to noise 
ratio was higher than 40dBA and whose reverberation time at 60dB was lower 
than 0.3 seconds. Initially the audio files were recorded at 96 KHz sampling 
frequency and 24 bits per sample, but the working copies used for this research 
work were converted to 16 KHz - 16 bits format. Although 3 different audio 
channels were available (close talk microphone, membrane microphone and 
laryngograph), only the one coming from the membrane microphone was used 
in this work. 

     Each audio file was stored together with the following information: the 
prompt text used to record the utterance, the orthographic annotation, the 
phonetic transcription, the segmentation into phonemes, and the pitch marks 
centered at the glottal closure instants. The phonetic transcription was carried 
out manually. During the automatic segmentation, the starting and ending time 
instants of the transcribed phonemes were determined. The pitch marks were 
also automatically estimated: first, the electroglotographic signal was 
differentiated to find out the negative peaks that correspond to the glottal 
closure instant; second, the speech signal was filtered by a low-pass filter; 
finally, in order to synchronize the pitch marks with the speech signal, the 
estimated glottal closure instants were delayed to match the minimum-energy 
instants located just before the waveform peaks. In the present work, the usage 
of all this extra information has been avoided as far as possible, in order to 
make the system more versatile and less information-demanding. However, the 
data coming from the segmentation have been used for aligning the frames of 
the parallel sentences in a reliable way (see chapter 4). 
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