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Abstract

This paper presents a study aiming to find out the best strategy to develop
a fast and accurate HMM tagger when only a limited amount of training
material is available. This is a crucial factor when dealing with languages for
which small annotated material is not easily available.

First, we develop some experiments in English, using WSJ corpus as a
test-bench to establish the differences caused by the use of large or a small
train set. Then, we port the results to develop an accurate Spanish PoS tagger
using a limited amount of training data.

Different configurations of a HMM tagger are studied. Namely, trigram
and 4-gram models are tested, as well as different smoothing techniques.
The performance of each configuration depending on the size of the training
corpus is tested in order to determine the most appropriate setting to develop
HMM PoS taggers for languages with reduced amount of corpus available.

1 Introduction

PoS Tagging is a need for most of Natural Language applications such as Suma-
rization, Machine Translation, Dialogue systems, etc. and the basis of many higher
level NLP processing tasks. It is also used to obtain annotated corpora combining
automatic tagging with human supervision. These corpora may be used for lin-
guistic research, to build better taggers, or as statistical evidence for many other
language-processing related goals.

*This research has been partialy supported by the European Comission (Meaning, 1ST-2001-
34460) and by the Catalan Government Research Department (DURSI).



PoS tagging has been largely studied and many systems developed. There are
some statistical implementations [1, 2, 3, 4, 5, 6] and some knowledge-based tag-
gers (finite-state, rule-based, memory based) [7, 8, 9]. There are also some systems
that combine different implementations with a voting procedure.

This work presents a thorough study aiming to establish which is the most
appropiate way to train a HMM PoS tagger when dealing with languages with a
limited amount of training corpora. To do so, we compare different smoothing
techniques and different order HMMs.

Experiments are performed to determine the performance of the best configu-
ration when the tagger is trained with a large English corpus (1 million words from
WSJ), and comparing the results with those for a training corpus ten times smaller.
Then, the experiments for the small train corpus are repeated in another language
(Spanish), validating the conclusions. The tested HMM configurations vary on the
order of the model (3 and 4 order HMM s are tested) and in the smoothing technique
(Lidstone’s law vs. Linear Interpolation) used to estimate model parameters.

Section 2 presents the theoretical basis of a HMM and the different smoothing
techniques used in this work. Section 3 shows the realized experiments and the
obtained results. Section 4 states some conclusions and further work.

2 Hidden Markov Models

We will be using Hidden Markov Models Part-of-Speech taggers of order three and
four. Depending on the order of the model, the states represent pairs or triples of
tags, and obviously, the number of parameters to estimate varies largely. As the
states are pairs or triples of tags, the possible number of states are the possible
combinations of all the tags in groups of two or three. Table 1 shows the number
of tags for each language and the consequent number of potential states. This
number is very large but there are many states that will never be observed. The
emmited symbols are words, which we estimated to be about 100,000 for English
and 1,000,000 for Spanish.

\ | English | Spanish |
Number of tags 47 67

Number of potential states in a 3-gram HMM | 2,209 4,489

Number of potential states in a 4-gram HMM || 103,823 | 300,763

Table 1: Number of potential tags and states for English and Spanish with both
models

The parameters of such models are initial state probabilities, state transition



probabilities and emission probabilities. That is:
mi = Plq1 = si)
is the probability that a sequence starts at state s;,
aij = P(qiy1 = sjlqt = s4)

is the transition probability from state i to state j (i.e. trigram probability P(¢3|t1t2)
in a 37 order model, or 4-gram probability P(t4|t;t,t3) in a 4-gram HMM), and

bi(k) = P(wg|s;)

is the emission probability of the symbol w,, from state s;.

In the PoS task model, the emitted symbols are the observed words and the
observed sequence is a complete sentence. Given a sentence, we want to choose
the most likely sequence of states (i.e. PoS tags) that generated it. This is computed
using the Viterbi algorithm [10].

2.1 Parameter Estimation

The simplest way to estimate the HMM parameters is Maximum Likelihood Esti-
mation (MLE), which consists in computing observation relative frequencies:

count(x
Pyre(z) = %
count(z,

Pure(zly) = count(z, y)

count(x)

For the case of the HMM we have to compute this probability estimation for
each initial state, transition or emission in the training data:
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where count(s;(t = 0)) is the number of times that s; is visited as an initial state,
count(sentences) is the number of sentences, count(s; — s;) is the count of

count(s;)



the transitions from state s; to s;, count(s;) is the number of visits to state s; and
count(s;, wy,) is the number of times that symbol wy, is emmited from state s;.

Actually, computing b;(k) in this way is quite difficult because the number
of occurrences of a single word will be too small to provide enough statistical
evidence, so Bayes rule is used to compute b;(k) as:

P(s;|wy) P(wy,)

where:

count(s;) count(wy)

P(si) ;o Plwg) =

- count(words) count(words)

being count(words) the number of words in the training corpus.

Since P(s;|wy) would also require lots of data to be properly estimated, we
approximate it as P(t|wy), where ¢ is the last tag in the n-gram corresponding to
the state. Similarly, P(s;) is approximated as P(t).

2.2 Smoothing

MLE is usually a bad estimator for NLP purposes, since data tends to be sparse?.
This leads to zero probabilities being assigned to unseen events, causing troubles
when multiplying probabilities.

To solve this sparseness problem it is necessary to look for estimators that
assign a part of the probability mass to the unseen events. To do so, there are many
different smoothing techniques, all of them consisting of decreasing the probability
assigned to the seen events and distributing the remaining mass among the unseen
events. In this work two smoothing methods are compared: Lidstone’s law and
Linear Interpolation.

2.2.1 Laplace and Lidstone’s Law

The oldest smoothing technique is Laplace’s law [11], that consists in adding one
to all the observations. That means that all the unseen events will have their prob-
ability computed as if they had appeared once in the training data. Since one ob-
servation for each event (seen or unseen) is added, the number of different possible
observations (B) has to be added to the number of real observations (IV), in order
to maintain the probability normalised.

count(z + 1)

PL(L(‘/E): N+B

Following Zipf’slaw: aword's frequency isinversely proportional to itsrank order



However, if the space is large and very sparse —and thus the number of possible
events (B) may be similar to (or even larger than) the number of observed events—
Laplace’s law gives them too much probability mass.

A possible alternative is Lidstone’s law (see [12] for a detailed explanation on
these and other smoothing techniques) which generalises Laplace’s and allows to
add an arbitrary value to unseen events. So, for a relatively large number of unseen
events, we can choose to add values lower than 1. For a relatively small number of
unseen events, we may choose 1, or even larger values, if we have a large number
of observations (V).

_ count(z) + A

PLd(CC)— N+ B\ A>0

To use Laplace’s or Lidstone’s laws in a HMM-based tagger we have to smooth
all probabilities involved in the model:
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count(words) + BiggAs

P(SZ) =

count(wg) + Ay
count(words) + ByAy

where By, is the number of possible tags and B,, is the number of words in the
vocabulary (obviously, we can only approximate this quantity).

Since there are different counts involved in each probability, we have to con-
sider different \ values for each formula. In the case of Laplace’s law, all X are set
to 1, but when using Lidstone’s, we want to determine which is the best set of A,
and how they vary depending on the train set size, as discussed in section 3.1.

P(wy) =

2.2.2 Linear Interpolation

A more sophisticated smoothing technique consists of linearly combine the esti-
mations for different order n-grams:

Py(ts|tite) = c1P(t3) + coP(t3|ta) + c3P(t3|t12)
Pji(taltitots) = c1P(ts) + coP(talt3) 4+ caP(taltats) + caP(ts|t1tats)



where 3, ¢; = 1 to normalise the probability. Although the values for ¢; can
be determined in many different ways, in this work they are estimated by deleted
interpolation as described in [6]. This technique assumes that the ¢; values don’t
depend on the particular n-gram and computes the weights depending on the counts
for each i-gram involved in the interpolation.

3 Experimentsand Results

The main purpose of this work is to study the behaviour of different configurations
for a HMM-based PoS tagger, in order to determine the best choice to develop
taggers for languages with scarce annotated corpora available.

First, we will explore different configurations when a large amount of training
corpus is available. The experiments will be performed on English, using 1.1 mil-
lion words from the Wall Street Journal corpus. Then, the same configurations will
be explored when the training set is reduced to 100,000 words.

Later, the behaviour on the reduced train set will be validated on a manually
developed 100,000 word corpus for Spanish [13].

The tested configurations vary on the order of the used HMM (trigram or 4-
gram), and on the smoothing applied (Lidstone’s law or Linear Interpolation).

All the experiments are done using ten fold cross-validation. In each fold, 90%
of the corpus is used to train the tagger and the rest to test it.

In the following sections, we present the behaviour of the different HMM con-
figurations for English, both with a large and a small corpus. After, we repeat the
tests using a small corpus for Spanish.

3.1 Applying Lidstone’s Law

As it has been explained in section 2.2.1, when Lidstone’s law is used in a HMM
tagger, there are four A\ values to consider. Changing these values significantly
affects the precision of the system.

Thus, before comparing this smoothing technique with another, we have to
select the set of A that yields the best tagger performance. After performing some
experiments, we observed that X 4 is the only parameter that significantly affects
the behaviour of the system. Modifying the other three values didn’t change the
system precision in a significant way. So A, As, and A,, were set to some values
determined as follows:

— A\q is the assigned count for unobserved initial states. Since initial states
depend only on the tag of the first word in the sentence, and the tag set
we are using is quite reduced (about 40 tags), we may consider that in a



1,000,000 word corpus, at least one sentence will start with each tag. So,
we will count one occurrence for unseen events (i.e. we are using A, = 1,
Laplace’s law, for this case). When the corpus is ten times smaller, we will
use a proportional rate of occurrence (A, = 0.1).

— s is the count assigned to the unseen states. Since we approximate P(s;)
by P(t) (see section 2.1), the possible events are the number of tags in the
tag set, and we can reason as above, assuming at least one occurrence of
each tag in a 1,000,000 word corpus (again, Laplace’s law, A; = 1), and a
proportional value for the small corpus (As = 0.1)

— My is the count assigned to the unseen words. Obviously, enforcing that each
possible word will appear at least once would take too many probability mass
out of seen events (English vocabulary is about 100,000 forms, which would
represent 10% of a 1 million word corpus), so we adopt a more conservative
value: X\, = 0.1 for the large corpus, and the proportional value A\, = 0.01
for the small one.

After setting these three X values, we have to select the best value for A 4. To
diminish the risk of getting local maxima, we will repeatedly use hill-climbing with
different starting values and step lengths (A\), and choose the value that produces
better results.

In table 2 the results of this hill-climbing algorithm using the whole English
corpus (1 million of words) are presented. Table 3 show the same results for the
100.000 words English corpus.

Trigram HMM 4-gram HMM
Initial | AM Initial Final Initial Final
A4 precision | precision | Aa precision | precision | Aa
0.05 | 0.01 96.98 97.00 0.22 96.72 96.88 0.28
0.05 | 0.005 96.98 96.99 | 0.085 96.72 96.81 | 0.125
0.5 0.1 97.008 97.009 0.6 96.91 96.93 1.0
0.5 0.05 97.008 97.009 0.4 96.91 96.93 0.95
1.0 0.5 97.00 97.01 0.5 96.93 96.94 15
1.0 0.1 97.00 97.01 0.6 96.93 96.93 1.0

Table 2: Precision obtained applying hill-climbing on the complete English corpus

As it was expected, when using a small corpus the precision falls, specially
when a 4-gram HMM is used, since the evidence to estimate the model is insuffi-
cient. This point is discussed in section 3.3.

These results show that the value selected for A 4 is an important factor when




Trigram HMM 4-gram HMM
Initial | AM Initial Final Initial Final
A precision | precision | A4 || precision | precision | Aa

0.05 | 0.01 96.56 96.63 | 0.09 95.79 96.30 | 0.33
0.05 | 0.005 96.56 96.63 0.1 95.79 96.20 0.2
0.5 0.1 96.69 96.69 0.5 96.36 96.43 0.8
0.5 0.05 96.69 96.69 0.5 96.36 96.43 | 0.75
1.0 0.5 96.70 96.70 1.0 96.44 96.51 35
1.0 0.1 96.70 96.71 0.9 96.44 96.46 1.2

Table 3: Precision obtained applying hill-climbing on the reduced English corpus

using this smoothing technique. As can be seen in table 3, the precision of the
tagger varies up 0.7% depending on the value used for A 4.

After performing the hill climbing search, we choose the A 4 that gives better
results in each case, as the optimal parameter to use with this smoothing technique.
So, for the whole corpus using a Trigram HMM, A 4 is set to 0.6 and the tagger
yields a precision of 97.01%, while if we use a 4-gram HMM, A4 = 1.5 leads
to a precision of 96.94%. When the experiments are performed over the reduced
corpus, the best results are obtained with A4 = 0.9 for a trigram HMM (96.71%)
and with A 4 = 3.5 for a 4-gram model (96.51%).

3.2 Applying Linear Interpolation

The performance of the taggers when using Linear Interpolation to smooth the
probability estimations has been also tested. In this case, the coefficients ¢; are
found via the deleted interpolation algorithm (see section 2.2.2).

When using Linear Interpolation, the precision obtained by the system with the
whole corpus is 97.00% with a trigram HMM, and 97.02% with a 4-gram HMM.
For the reduced corpus the precision falls slightly and we obtain 96.84% for the
trigram model and 96.71% for the 4-gram HMM.

The results obtained using Linear Interpolation and a trigram model should
reproduce those reported by [6], where the maximum precision reached by the
system on WSJ is 96.7%. In our case we obtain a higher precision because we
are assuming the nonexistence of unknown words (i.e. the dictionary contains all
possible tags for all words appearing in the test set. Obviously, word-tag frequency
information from the test corpus is not used when computing P(s;|wy)).



3.3 Best Configuration for English

Best results obtained for each HMM tagger configuration are summarized in ta-
ble 4. Results are given both for the large and small corpus.

1,1 Mword English corpus
Lidstone’s law Linear Interpolation
trigram 97.01% 97.00%
4-gram 96.94% 97.02%

100 Kword English corpus
Lidstone’s law Linear Interpolation
trigram 96.71% 96.84%
4-gram 95.51% 96.71%

Table 4: Obtained results for all HMM PoS tagger configurations using large and
small sections of WSJ corpus

Comparing the results for the two smoothing methods used with different order
models, we can draw the following conclusions:

— In general, Linear Interpolation produces taggers with higher precision than
using Lidstone’s law.

— For the case of the large corpus, the results are not significantly different
for any combination of n-gram order and smoothing technique. While for
the reduced corpus it is clearly better to use a trigram model than a 4-gram
HMM, and Linear Interpolation yields slightly better results.

— Using Linear Interpolation has the benefit that the involved coefficients are
computed using the training data via deleted interpolation, while for Lid-
stone’s law the precision is very dependent on the X 4 value, which has to be
costly optimised (e.g. via hill-climbing).

3.4 Behaviour in Spanish

The same experiments performed for English were performed with a Spanish cor-
pus (CLiC-TALP Corpus?) which has about 100,000 words. This corpus is manu-
ally validated so, although it is small, it is more accurately tagged than WSJ.

In this case the tagger relies on FreeLing morphological analyser [14] instead
of using a dictionary built from the corpus. Nevertheless, the situation is compa-
rable to the English experiments above: Since the corpus and the morphological

2moreinformation in http://www. Isi .upc.es/ nlp/
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analyser have been hand-developed and cross-checked, they are mutually consis-
tent, and so we don’t have to care about unknown words in the test corpus.

3.4.1 Applying Lidstone’s Law

In the same way than for the English corpus, a hill-climbing search is performed to
study the influence of A 4 value in the precision of the system. The A, A; and A,
values are fixed to the same values used for the reduced WSJ.

Trigram HMM 4-gram HMM
Initial | AM Initial Final Initial Final
AA precision | precision | Aa precision | precision | Aa

0.05 | 0.01 96.54 96.68 0.18 95.49 96.00 | 0.35
0.05 | 0.005 96.54 96.58 | 0.065 95.49 9582 | 0.15
0.5 0.1 96.79 96.80 0.5 96.06 96.16 1.6
0.5 0.05 96.79 96.81 0.55 96.06 96.14 1.05
1.0 0.5 96.80 96.85 15 96.14 96.22 2.5
1.0 0.1 96.80 96.84 11 96.14 96.16 1.6

Table 5: Precision obtained with the hill-climbing algorithm on the Spanish corpus

Table 5 shows the results of these experiments. The best A4 for the trigram
HMM is A4 = 1.5, yielding a precision of 96.85%. The best value for a 4-gram
model is A 4 = 2.5, which produces a precision of 96.22%

3.4.2 Applying Linear Interpolation

The coefficients for Linear Interpolation are computed for Spanish in the same way
than for English (section 3.2). The precision of the obtained taggers is 96.90% for
the trigram HMM and 96.73% for the 4-gram model.

3.4.3 Best Configuration for Spanish

Results for Spanish are —as it may be expected— similar to those obtained with
the reduced English corpus. Again, working with a trigram HMM gives higher
precision than working with a 4-gram one, for both smoothing techniques, and
using Linear Interpolation gives a slightly better results than using Lidstone’s law.
Table 6 summarizes the obtained results for both smoothing methods.
Nevertheless, some important remarks can be extracted from these results:

— Competitive HMM taggers may be build using relatively small train sets,
which is interesting for languages lacking large resources.
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100 Kword Spanish corpus

Lidstone’s law Linear Interpolation
trigram 96.85% 96.90%
4-gram 96.22% 96.73%

Table 6: Obtained results for all HMM PoS tagger configurations using Spanish
100 Kwords corpus

— The best results are obtained using trigram models and Linear Interpolation.

— Lidstone’s law may be used as an alternative smoothing technique, but if A 4
is not tuned, results are likely to be significantly lower.

4 Conclusions and Further Work

We have studied how competitive HMM-based PoS taggers can be developed using
relatively small training corpus.

Results point out that accurate taggers can be build provided the appropriate
smoothing techniques are used. Between both techniques studied here, in general
the one that gives a higher precision is Linear Interpolation but Lidstone’s law can
reach, in many cases, similar precision rates if a search is performed through the
parameter space to find the most appropriate A 4.

The model proposed in [6] (trigram tagger, Linear Interpolation smoothing) is
not only the more suitable for big training corpus but also it gives the best results
for limited amounts of training data.

The use of four-gram models may result in a slight increase in precision when
using large corpus. Nevertheless, the gain is probably not worth the increase in
complexity and size of the model.

Further work to be performed includes dealing with unknown words, and study
their influence on the taggers developed on small corpus. Also, we plan to port
the same experiments to other languages (namely, Catalan) to further validate the
conclusions of this paper.
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