
A Flexible POS Tagger Using an Automatically AcquiredLanguage Model�Llu��s M�arquezLSI - UPCc/ Jordi Girona 1-308034 Barcelona. Catalonialluism@lsi.upc.es Llu��s Padr�oLSI - UPCc/ Jordi Girona 1-308034 Barcelona. Cataloniapadro@lsi.upc.esAbstractWe present an algorithm that automati-cally learns context constraints using sta-tistical decision trees. We then use the ac-quired constraints in a 
exible POS tag-ger. The tagger is able to use informa-tion of any degree: n-grams, automati-cally learned context constraints, linguis-tically motivated manually written con-straints, etc. The sources and kinds of con-straints are unrestricted, and the languagemodel can be easily extended, improvingthe results. The tagger has been tested andevaluated on the WSJ corpus.1 IntroductionIn NLP, it is necessary to model the language in arepresentation suitable for the task to be performed.The language models more commonlyused are basedon two main approaches: �rst, the linguistic ap-proach, in which the model is written by a linguist,generally in the form of rules or constraints (Vouti-lainen and J�arvinen, 1995). Second, the automaticapproach, in which the model is automatically ob-tained from corpora (either raw or annotated)1, andconsists of n{grams (Garside et al., 1987; Cuttinget al., 1992), rules (Hindle, 1989) or neural nets(Schmid, 1994). In the automatic approach we candistinguish two main trends: The low{level datatrend collects statistics from the training corpora inthe form of n{grams, probabilities, weights, etc. Thehigh level data trend acquires more sophisticated in-formation, such as context rules, constraints, or de-cision trees (Daelemans et al., 1996; M�arquez andRodr��guez, 1995; Samuelsson et al., 1996). The ac-quisition methods range from supervised{inductive{learning{from{example algorithms (Quinlan, 1986;�This research has been partially funded by the Span-ish Research Department (CICYT) and inscribed asTIC96-1243-C03-021When the model is obtained from annotated corporawe talk about supervised learning, when it is obtainedfrom raw corpora training is considered unsupervised.

Aha et al., 1991) to genetic algorithm strategies(Losee, 1994), through the transformation{basederror{driven algorithm used in (Brill, 1995). Stillanother possibility are the hybrid models, which tryto join the advantages of both approaches (Vouti-lainen and Padr�o, 1997).We present in this paper a hybrid approach thatputs together both trends in automatic approachand the linguistic approach. We describe a POS tag-ger based on the work described in (Padr�o, 1996),that is able to use bi/trigram information, auto-matically learned context constraints and linguisti-cally motivated manually written constraints. Thesources and kinds of constraints are unrestricted,and the language model can be easily extended. Thestructure of the tagger is presented in �gure 1.
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Tagging algorithmFigure 1: Tagger architecture.We also present a constraint{acquisition algo-rithm that uses statistical decision trees to learn con-text constraints from annotated corpora and we usethe acquired constraints to feed the POS tagger.The paper is organized as follows. In section 2 wedescribe our language model, in section 3 we describethe constraint acquisition algorithm, and in section4 we expose the tagging algorithm. Descriptions ofthe corpus used, the experiments performed and theresults obtained can be found in sections 5 and 6.2 Language ModelWe will use a hybrid language model consisting of anautomatically acquired part and a linguist{writtenpart.



The automatically acquired part is divided in twokinds of information: on the one hand, we have bi-grams and trigrams collected from the annotatedtraining corpus (see section 5 for details). On theother hand, we have context constraints learnedfrom the same training corpus using statistical deci-sion trees, as described in section 3.The linguistic part is very small|since there wereno available resources to develop it further| andcovers only very few cases, but it is included to il-lustrate the 
exibility of the algorithm.A sample rule of the linguistic part:10.0 (%vauxiliar%)(-[VBN IN , : JJ JJS JJR])+<VBN>;This rule states that a tag past participle (VBN) isvery compatible (10.0) with a left context consistingof a %vauxiliar% (previously de�ned macro whichincludes all forms of \have" and \be") provided thatall the words in between don't have any of the tagsin the set [VBN IN , : JJ JJS JJR]. That is,this rule raises the support for the tag past partici-ple when there is an auxiliary verb to the left butonly if there is not another candidate to be a pastparticiple or an adjective inbetween. The tags [IN, :] prevent the rule from being applied when theauxiliary verb and the participle are in two di�erentphrases (a comma, a colon or a preposition are con-sidered to mark the beginning of another phrase).The constraint language is able to express thesame kind of patterns than the Constraint Gram-mar formalism (Karlsson et al., 1995), although in adi�erent formalism. In addition, each constraint hasa compatibility value that indicates its strength. Inthe middle run, the system will be adapted to acceptCGs.3 Constraint AcquisitionChoosing, from a set of possible tags, the proper syn-tactic tag for a word in a particular context can beseen as a problem of classi�cation. Decision trees,recently used in NLP basic tasks such as taggingand parsing (McCarthy and Lehnert, 1995; Daele-mans et al., 1996; Magerman, 1996), are suitable forperforming this task.A decision tree is a n{ary branching tree that rep-resents a classi�cation rule for classifying the objectsof a certain domain into a set of mutually exclusiveclasses. The domain objects are described as a setof attribute{value pairs, where each attribute mea-sures a relevant feature of an object taking a (ideallysmall) set of discrete, mutually incompatible values.Each non{terminal node of a decision tree representsa question on (usually) one attribute. For each possi-ble value of this attribute there is a branch to follow.Leaf nodes represent concrete classes.

Classify a new object with a decision tree is simplyfollowing the convenient path through the tree untila leaf is reached.Statistical decision trees only di�ers from commondecision trees in that leaf nodes de�ne a conditionalprobability distribution on the set of classes.It is important to note that decision trees can bedirectly translated to rules considering, for each pathfrom the root to a leaf, the conjunction of all ques-tions involved in this path as a condition and theclass assigned to the leaf as the consequence. Statis-tical decision trees would generate rules in the samemanner but assigning a certain degree of probabilityto each answer.So the learning process of contextual constraintsis performed by means of learning one statistical de-cision tree for each class of POS ambiguity2 and con-verting them to constraints (rules) expressing com-patibility/incompatibility of concrete tags in certaincontexts.Learning AlgorithmThe algorithm we used for constructing the statisti-cal decision trees is a non{incremental supervisedlearning{from{examples algorithm of the TDIDT(Top Down Induction of Decision Trees) family. Itconstructs the trees in a top{down way, guided bythe distributional information of the examples, butnot on the examples order (Quinlan, 1986). Brie
y,the algorithm works as a recursive process that de-parts from considering the whole set of examples atthe root level and constructs the tree in a top{downway branching at any non{terminal node accordingto a certain selected attribute. The di�erent val-ues of this attribute induce a partition of the setof examples in the corresponding subsets, in whichthe process is applied recursively in order to gener-ate the di�erent subtrees. The recursion ends, in acertain node, either when all (or almost all) the re-maining examples belong to the same class, or whenthe number of examples is too small. These nodesare the leafs of the tree and contain the conditionalprobability distribution, of its associated subset ofexamples, on the possible classes.The heuristic function for selecting the mostuseful attribute at each step is of a cru-cial importance in order to obtain simple trees,since no backtracking is performed. There ex-ist two main families of attribute{selecting func-tions: information{based (Quinlan, 1986; L�opez,1991) and statistically{based (Breiman et al., 1984;Mingers, 1989).Training SetFor each class of POS ambiguity the initial exam-ple set is built by selecting from the training corpus2Classes of ambiguity are determined by the groupsof possible tags for the words in the corpus, i.e, noun-adjective, noun-adjective-verb, preposition-adverb, etc.



all the occurrences of the words belonging to thisambiguity class. More particularly, the set of at-tributes that describe each example consists of thepart{of{speech tags of the neighbour words, and theinformation about the word itself (orthography andthe proper tag in its context). The window consid-ered in the experiments reported in section 6 is 3words to the left and 2 to the right. The follow-ing are two real examples from the training set forthe words that can be preposition and adverb at thesame time (IN{RB con
ict).VB DT NN <"as",IN> DT JJNN IN NN <"once",RB> VBN TOApproximately 90% of this set of examples is usedfor the construction of the tree. The remaining 10%is used as fresh test corpus for the pruning process.Attribute Selection FunctionFor the experiments reported in section 6 we used aattribute selection function due to L�opez de M�anta-ras (L�opez, 1991), which belongs to the information{based family. Roughly speaking, it de�nes a distancemeasure between partitions and selects for branch-ing the attribute that generates the closest partitionto the correct partition, namely the one that joinstogether all the examples of the same class.LetX be a set of examples, C the set of classes andPC(X) the partition of X according to the values ofC. The selected attribute will be the one that gen-erates the closest partition of X to PC(X). For thatwe need to de�ne a distance measure between parti-tions. Let PA(X) be the partition of X induced bythe values of attribute A. The average informationof such partition is de�ned as follows:I(PA(X)) = � Xa2PA(X) p(X; a) log2 p(X; a) ;where p(X; a) is the probability for an element of Xbelonging to the set a which is the subset ofX whoseexamples have a certain value for the attribute A,and it is estimated by the ratio jX\ ajjXj . This averageinformation measure re
ects the randomness of dis-tribution of the elements of X between the classes ofthe partition induced by A. If we consider now theintersection between two di�erent partitions inducedby attributes A and B we obtainI(PA(X) \ PB(X)) =� Xa2PA(X) Xb2PB(X) p(X; a\b) log2 p(X; a\b) .Conditioned information of PB(X) given PA(X) isI(PB(X)jPA(X)) =I(PA(X) \ PB(X)) � I(PA(X)) =� Xa2PA(X) Xb2PB(X) p(X; a\b) log2 p(X; a\b)p(X; a) .

It is easy to show that the measured(PA(X); PB(X)) =I(PB(X)jPA(X)) + I(PA(X)jPB(X))is a distance. Normalizing we obtaindN (PA(X); PB(X)) = d(PA(X); PB(X))I(PA(X) \ PB(X)) ,with values in [0;1].So the selected attribute will be that one that min-imizes the measure: dN (PC(X); PA(X)).Branching StrategyUsual TDIDT algorithms consider a branch for eachvalue of the selected attribute. This strategy is notfeasible when the number of values is big (or even in-�nite). In our case the greatest number of values foran attribute is 45 |the tag set size| which is con-siderably big (this means that the branching factorcould be 45 at every level of the tree3). Some sys-tems perform a previous recasting of the attributesin order to have only binary-valued attributes and todeal with binary trees (Magerman, 1996). This canalways be done but the resulting features lose theirintuition and direct interpretation, and explode innumber. We have chosen a mixed approach whichconsist of splitting for all values and afterwards join-ing the resulting subsets into groups for which wehave not enough statistical evidence of being di�er-ent distributions. This statistical evidence is testedwith a �2 test at a 5% level of signi�cance. In orderto avoid zero probabilities the following smoothingis performed. In a certain set of examples, the prob-ability of a tag ti is estimated byp̂(ti) = jtij+ 1mn+1 ,where m is the number of possible tags and n thenumber of examples.Additionally, all the subsets that don't imply areduction in the classi�cation error are joined to-gether in order to have a bigger set of examples tobe treated in the following step of the tree construc-tion. The classi�cation error of a certain node issimply: 1�max1�i�m (p̂(ti)) .Experiments reported in (M�arquezand Rodr��guez, 1995) show that in this way morecompact and predictive trees are obtained.Pruning the TreeDecision trees that correctly classify all examples ofthe training set are not always the most predictiveones. This is due to the phenomenon known as over-�tting. It occurs when the training set has a certainamount of misclassi�ed examples, which is obviouslythe case of our training corpus (see section 5). If we3In real cases the branching factor is much lower sincenot all tags appear always in all positions of the context.



force the learning algorithm to completely classifythe examples then the resulting trees would �t alsothe noisy examples.The usual solutions to this problem are: 1) Prunethe tree, either during the construction process(Quinlan, 1993) or afterwards (Mingers, 1989); 2)Smooth the conditional probability distributions us-ing fresh corpus4 (Magerman, 1996).Since another important requirement of our prob-lem is to have small trees we have implementeda post-pruning technique. In a �rst step thetree is completely expanded and afterwards it ispruned following a minimal cost{complexity crite-rion (Breiman et al., 1984). Roughly speaking thisis a process that iteratively cut those subtrees pro-ducing only marginal bene�ts in accuracy, obtainingsmaller trees at each step. The trees of this sequenceare tested using a, comparatively small, fresh part ofthe training set in order to decide which is the onewith the highest degree of accuracy on new exam-ples. Experimental tests (M�arquez and Rodr��guez,1995) have shown that the pruning process reducestree sizes at about 50% and improves their accuracyin a 2{5%.An ExampleFinally, we present a real example of the simple ac-quired contextual constraints for the con
ict IN{RB(preposition-adverb).
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Figure 2: Example of a decision tree branch.The tree branch in �gure 2 is translated into thefollowing constraints:-5.81 <["as" "As"],IN> ([RB]) ([IN]);2.366 <["as" "As"],RB> ([RB]) ([IN]);which express the compatibility (either positive ornegative) of the word{tag pair in angle brackets withthe given context. The compatibility value for eachconstraint is the mutual information between the tagand the context (Cover and Thomas, 1991). It isdirectly computed from the probabilities in the tree.4Of course, this can be done only in the case of sta-tistical decision trees.

4 Tagging AlgorithmUsual tagging algorithms are either n{gram oriented{such as Viterbi algorithm (Viterbi, 1967){ or ad{hoc for every case when they must deal with morecomplex information.We use relaxation labelling as a tagging algorithm.Relaxation labelling is a generic name for a familyof iterative algorithms which perform function opti-mization, based on local information. See (Torras,1989) for a summary. Its most remarkable feature isthat it can deal with any kind of constraints, thus themodel can be improved by adding any constraintsavailable and it makes the tagging algorithm inde-pendent of the complexity of the model.The algorithm has been applied to part{of{speechtagging (Padr�o, 1996), and to shallow parsing(Voutilainen and Padr�o, 1997).The algorithm is described as follows:Let V = fv1; v2; : : : ; vng be a set of variables(words).Let ti = fti1; ti2; : : : ; timig be the set of possiblelabels (POS tags) for variable vi.Let CS be a set of constraints between the labelsof the variables. Each constraint C 2 CS states a\compatibility value" Cr for a combination of pairsvariable{label. Any number of variables may be in-volved in a constraint.The aim of the algorithm is to �nd a weightedlabelling5 such that \global consistency" is maxi-mized. Maximizing \global consistency" is de�nedas maximizing for all vi, Pj pij � Sij, where pij isthe weight for label j in variable vi and Sij the sup-port received by the same combination. The supportfor the pair variable{label expresses how compatiblethat pair is with the labels of neighbouring variables,according to the constraint set. It is a vector opti-mization and doesn't maximize only the sum of thesupports of all variables. It �nds a weighted labellingsuch that any other choice wouldn't increase the sup-port for any variable.The support is de�ned as the sum of the in
uenceof every constraint on a label.Sij = Xr2Rij Inf(r)where:Rij is the set of constraints on label j for variablei, i.e. the constraints formed by any combination ofvariable{label pairs that includes the pair (vi; tij).Inf(r) = Cr � pr1k1(m) � : : :� prdkd(m), is the prod-uct of the current weights6 for the labels appearing5A weighted labelling is a weight assignment for eachlabel of each variable such that the weights for the labelsof the same variable add up to one.6prk(m) is the weight assigned to label k for variabler at time m.



in the constraint except (vi; tij) (representing howapplicable the constraint is in the current context)multiplied by Cr which is the constraint compatibil-ity value (stating how compatible the pair is with thecontext).Brie
y, what the algorithm does is:1. Start with a random weight assignment7.2. Compute the support value for each label ofeach variable.3. Increase the weights of the labels more compat-ible with the context (support greater than 0)and decrease those of the less compatible labels(support less than 0)8, using the updating func-tion: pij(m + 1) = pij(m) � (1 + Sij)kiXk=1 pik(m) � (1 + Sik)where � 1 � Sij � +14. If a stopping/convergence criterion9 is satis�ed,stop, otherwise go to step 2.The cost of the algorithm is proportional to theproduct of the number of words by the number ofconstraints.5 Description of the corpusWe used the Wall Street Journal corpus to train andtest the system. We divided it in three parts: 1; 100Kw were used as a training set, 20 Kw as a model{tuning set, and 50 Kw as a test set.The tag set size is 45 tags. 36:4% of the words inthe corpus are ambiguous, and the ambiguity ratiois 2:44 tags/word over the ambiguous words, 1:52overall.We used a lexicon derived from training corpora,that contains all possible tags for a word, as wellas their lexical probabilities. For the words in testcorpora not appearing in the train set, we storedall possible tags, but no lexical probability (i.e. weassume uniform distribution)10.The noise in the lexicon was �ltered by manuallychecking the lexicon entries for the most frequent 200words in the corpus11 to eliminate the tags due toerrors in the training set. For instance the original7We use lexical probabilities as a starting point.8Negative values for support indicate incompatibility.9We use the criterion of stopping when there are nomore changes, although more sophisticated heuristic pro-cedures are also used to stop relaxation processes (Ek-lundh and Rosenfeld, 1978; Richards et al. , 1981).10That is, we assumed a morphological analyzer thatprovides all possible tags for unknown words.11The 200 most frequent words in the corpus coverover half of it.

lexicon entry (numbers indicate frequencies in thetraining corpus) for the very common word the wasthe CD 1 DT 47715 JJ 7 NN 1 NNP 6 VBP 1since it appears in the corpus with the six di�er-ent tags: CD (cardinal), DT (determiner), JJ (ad-jective), NN (noun), NNP (proper noun) and VBP(verb-personal form). It is obvious that the onlycorrect reading for the is determiner.The training set was used to estimate bi/trigramstatistics and to perform the constraint learning.The model{tuning set was used to tune the algo-rithm parameterizations, and to write the linguisticpart of the model.The resulting models were tested in the fresh testset.6 Experiments and resultsThe whole WSJ corpus contains 241 di�erent classesof ambiguity. The 40 most representative classes12were selected for acquiring the corresponding deci-sion trees. That produced 40 trees totaling up to2995 leaf nodes, and covering 83.95% of the ambigu-ous words. Given that each tree branch produces asmany constraints as tags its leaf involves, these treeswere translated into 8473 context constraints.We also extracted the 1404 bigram restrictionsand the 17387 trigram restrictions appearing in thetraining corpus.Finally, the model{tuning set was tagged usinga bigram model. The most common errors com-mited by the bigram tagger were selected for manu-ally writing the sample linguistic part of the model,consisting of a set of 20 hand-written constraints.From now on C will stands for the set of acquiredcontext constraints, B for the bigram model, T forthe trigram model, and H for the hand-written con-straints. Any combination of these letters will indi-cate the joining of the corresponding models (BT,BC, BTC, etc.).In addition, ML indicates a baseline model con-taining no constraints (this will result in a most-likely tagger) and HMM stands for a hiddenMarkov model bigram tagger (Elworthy, 1992).We tested the tagger on the 50 Kw test set usingall the combinations of the language models. Resultsare reported below.The e�ect of the acquired rules on the number oferrors for some of the most common cases is shownin table 1. XX/YY stands for an error consistingof a word tagged YY when it should have been XX.Table 2 contains the meaning of all the involved tags.Figures in table 1 show that in all cases the learnedconstraints led to an improvement.It is remarkable that when using C alone, thenumber of errors is lower than with any bigram12In terms of number of examples.



ML C B BC T TC BT BTCJJ/NN+NN/JJ 73+137 70+94 73+112 69+102 57+103 61+95 67+101 62+93VBD/VBN+VBN/VBD 176+190 71+66 88+69 63+56 56+57 55+57 65+60 59+61IN/RB+RB/IN 31+132 40+69 66+107 43+17 77+68 47+67 65+98 46+83VB/VBP+VBP/VB 128+147 30+26 49+43 32+27 31+32 32+18 28+32 28+32NN/NNP+NNP/NN 70+11 44+12 72+17 45+16 69+27 50+18 71+20 62+15NNP/NNPS+NNPS/NNP 45+14 37+19 45+13 46+15 54+12 51+12 53+14 51+14\that" 187 53 66 45 60 40 57 45Total 1341 631 820 630 703 603 731 651Table 1: Number of some common errors commited by each modelNN NounJJ AdjectiveVBD Verb { past tenseVBN Verb { past participleRB AdverbIN PrepositionVB Verb { base formVBP Verb { personal formNNP Proper nounNNPS Plural proper nounTable 2: Tag meaningsand/or trigram model, that is, the acquired modelperforms better than the others estimated from thesame training corpus.We also �nd that the cooperation of a bigram ortrigram model with the acquired one, produces evenbetter results. This is not true in the cooperationof bigrams and trigrams with acquired constraints(BTC), in this case the synergy is not enough to geta better joint result. This might be due to the factthat the noise in B and T adds up and overwhelmsthe context constraints.The results obtained by the baseline taggers canbe found in table 3 and the results obtained using allthe learned constraints together with the bi/trigrammodels in table 4. ambiguous overallML 85:31% 94:66%HMM 91:75% 97:00%Table 3: Results of the baseline taggersOn the one hand, the results in tables 3 and 4show that our tagger performs slightly worse than aHMM tagger in the same conditions13, that is, whenusing only bigram information.13Hand analysis of the errors commited by the algo-rithm suggest that the worse results may be due to noisein the training and test corpora, i.e., relaxation algo-rithm seems to be more noise{sensitive than a Markovmodel. Further research is required on this point.

ambiguous overallB 91:35% 96:86%T 91:82% 97:03%BT 91:92% 97:06%C 91:96% 97:08%BC 92:72% 97:36%TC 92:82% 97:39%BTC 92:55% 97:29%Table 4: Results of our tagger using every combinationof constraint kindsOn the other hand, those results also show thatsince our tagger is more 
exible than a HMM, it caneasily accept more complex information to improveits results up to 97:39% without modifying the algo-rithm. ambiguous overallH 86:41% 95:06%BH 91:88% 97:05%TH 92:04% 97:11%BTH 92:32% 97:21%CH 91:97% 97:08%BCH 92:76% 97:37%TCH 92:98% 97:45%BTCH 92:71% 97:35%Table 5: Results of our tagger using every combinationof constraint kinds and hand written constraintsTable 5 shows the results adding the hand writtenconstraints. The hand written set is very small andonly covers a few common error cases. That pro-duces poor results when using them alone (H), butthey are good enough to raise the results given bythe automatically acquired models up to 97:45%.Although the improvement obtained might seemsmall, it must be taken into account that we aremoving very close to the best achievable result withthese techniques.First, some ambiguities can only be solved withsemantic information, such as the Noun{Adjectiveambiguity for word principal in the phrase the prin-cipal o�ce. It could be an adjective, meaning the



main o�ce, or a noun, meaning the school head of-�ce.Second, the WSJ corpus contains noise (mistaggedwords) that a�ects both the training and the testsets. The noise in the training set produces noisy{and so less precise{ models. In the test set, it pro-duces a wrong estimation of accuracy, since correctanswers are computed as wrong and vice-versa.For instance, verb participle forms are sometimestagged as such (VBN) and also as adjectives (JJ) inother sentences with no structural di�erences:� ... failing VBG to TO voluntarily RBsubmit VB the DT requested VBNinformation NN ...� ... a DT large JJ sample NN of INmarried JJ women NNS with IN at INleast JJS one CD child NN ...Another structure not coherently tagged are nounchains when the nouns are ambiguous and can bealso adjectives:� ... Mr. NNP Hahn NNP , , the DT62-year-old JJ chairman NN and CCchief NN executive JJ o�cer NN of INGeorgia-Pacific NNP Corp. NNP ...� ... Burger NNP King NNP's POS chief JJ executive NN o�cer NN , ,Barry NNP Gibbons NNP , , stars VBZin IN ads NNS saying VBG ...� ... and CC Barrett NNP B. NNPWeekes NNP , , chairman NN , ,president NN and CC chief JJ executive JJo�cer NN . .� ... the DT company NN includes VBZNeil NNP Davenport NNP , , 47 CD , ,president NN and CC chief NN executive NNo�cer NN ; :All this makes that the performance cannot reach100%, and that an accurate analysis of the noise inWSJ corpus should be performed to estimate theactual upper bound that a tagger can achieve onthese data. This issue will be addressed in furtherwork.7 ConclusionsWe have presented an automatic constraint learningalgorithm based on statistical decision trees.We have used the acquired constraints in a part{of{speech tagger that allows combining any kind ofconstraints in the language model.The results obtained show a clear improvement inthe performance when the automatically acquiredconstraints are added to the model. That indicatesthat relaxation labelling is a 
exible algorithm ableto combine properly di�erent information kinds, and

that the constraints acquired by the learning algo-rithm capture relevant context information that wasnot included in the n{gram models.It is di�cult to compare the results to other works,since the accuracy varies greatly depending on thecorpus, the tag set, and the lexicon or morphologicalanalyzer used. The more similar conditions reportedin previous work are those experiments performedon the WSJ corpus: (Brill, 1992) reports 3-4% er-ror rate, and (Daelemans et al., 1996) report 96:7%accuracy. We obtained a 97:39% accuracy with tri-grams plus automatically acquired constraints, and97:45% when hand written constraints were added.8 Further WorkFurther work is still to be done in the following di-rections:� Perform a thorough analysis of the noise inthe WSJ corpus to determine a realistic upperbound for the performance that can be expectedfrom a POS tagger.On the constraint learning algorithm:� Consider more complex context features, suchas non{limited distance or barrier rules in thestyle of (Samuelsson et al., 1996).� Take into account morphological, semantic andother kinds of information.� Perform a global smoothing to deal with low{frequency ambiguity classes.On the tagging algorithms� Study the convergence properties of the algo-rithm to decide whether the lower results atconvergence are produced by the noise in thecorpus.� Use back-o� techniques to minimize inter-ferences between statistical and learned con-straints.� Use the algorithm to perform simultaneouslyPOS tagging and word sense disambiguation,to take advantage of cross in
uences betweenboth kinds of information.ReferencesD.W. Aha, D. Kibler and M. Albert. 1991 Instance{based learning algorithms. In Machine Learning.7:37-66. Belmont, California.L. Breiman, J.H. Friedman, R.A. Olshen andC.J. Stone. 1984 Classi�cation and RegressionTrees. The Wadsworth Statistics/Probability Se-ries. Wadsworth International Group, Belmont,California.
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