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Abstract: Most Support Vector Machine (SVM) based systems make use of conventional methods for the 
normalization of the features or the scores previously to the fusion stage. In this work, in addition to the 
conventional methods, two equalization methods, histogram equalization, which was recently introduced in 
multimodal systems, and Bi-Gaussian equalization, which is presented in this paper, are applied upon the 
scores in a multimodal person verification system composed by prosodic, speech spectrum, and face 
information. The equalization techniques have obtained the best results; concretely, Bi-Gaussian 
equalization outperforms in more than a 22.19 % the results obtained by Min-Max normalization, the most 
used normalization technique in SVM fusion systems. The prosodic and speech spectrum scores have been 
provided by speech experts using records of the Switchboard I database and the face scores have been 
obtained by a face recognition system upon XM2VTS database. 

1 INTRODUCTION 

Multimodal score fusion can be performed in two 
main approaches: the arithmetical or logical 
combination of the scores and the classification of 
the score vectors by mean of classificatory 
techniques (Bolle et al., 2004). In the combinatory 
approach the scores provided by every monomodal 
system must be normalized before the fusion process 
due to, without this process, the contribution of a 
biometric could eliminate the contribution of the rest 
of the experts (Jain et al., 2005). In the classificatory 
approach, not much importance has been given to 
score normalization because the same classificatory 
techniques can adapt themselves to the biometrical 
scores characteristics. 

Concretely, for the SVM based classificatory 
techniques, the usage of kernels permits the non 
linear transformation of the input scores in a higher 
dimensional subspace where the recognition 
decision can be taken by means of a separator 
hyperplane (Cristianini and Shawe-Taylor, 2000). 
Some efforts have been made for the development of 
particular kernels for each application, as in the case 
of spherical normalization developed by Wan et al. 
(Wan and Renals, 2005). However, most 

investigators and developers use well-known kernels 
as radio basis function (RBF) or polynomial kernels 
for their systems and adapt them by the modification 
of the kernel parameters. In this case, the number of 
non linear transformations is limited by the kernel 
and the chosen parameters. 

The aim of this work is to demonstrate the 
importance of the normalization of the monomodal 
scores in an SVM fusion system and, more 
concretely, the application of two equalization 
techniques, histogram equalization and Bi-Gaussian 
equalization, which have outperformed the results 
obtained by the conventional normalization 
methods. Histogram equalization consists in the 
equalization of the probability density function 
(PDF) to a reference signal and has recently been 
introduced in multimodal systems (Farrús et al., 
2006; Ejarque et al., 2007). Bi-Gaussian 
equalization, which has obtained the best results, is 
presented in this work and equalizes the PDF to a 
double gaussian with the same EER than the original 
modality. 

The multimodal system is composed by three 
score sources: the first score is obtained by the SVM 
fusion of 9 voice prosodic features (Wolf, 1972; 
Farrús et al., 2006), the second one is obtained by a 
voice spectrum expert based in the Frequency 
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Filtering front-end and GMM (Nadeu et al., 1996), 
and the last one is provided by an NMFFaces 
algorithm (Tefas et al., 2005) face recognition 
system. A chimerical database has been created from 
the prosodic and spectrum scores obtained from 
voice signals of the Switchboard-I database and 
from the scores obtained from the face still images 
of the XM2VTS database. 

The results obtained in the SVM fusion system 
with the equalization techniques outperform that 
obtained with the conventional methods with RBF 
kernel. 

The paper is organized as follows: in section 2, 
the normalization techniques that have been tested in 
this work are presented; in section 3 the equalization 
methods are presented; in section 4 the SVM 
classificatory technique is reviewed and finally; in 
sections 5 and 6, the results and conclusions are 
presented. 

2 NORMALIZATION METHODS 

The normalization process transforms the 
monomodal scores of all the biometrics in a 
comparable range of values and is an essential step 
in multimodal fusion. The most conventional 
normalization techniques are Min-Max, Z-Score, 
and Tanh, which have been widely used in previous 
works (Bolle et al., 2004; Jain et al., 2005). 

2.1 Min-Max Normalization (MM) 

Min-Max normalization maps the scores in the [0, 1] 
range by means of an affine transformation. The 
calculation in equation 1 must be applied upon the 
multimodal scores a, where min(a) and max(a) are 
the minimum and maximum values of the 
monomodal scores. 

2.2 Z-Score Normalization (ZS) 

By means of Z-Score normalization the mean of all 
the biometric scores is set to 0 and its variance is set 
to 1 in a non affine transformation. In this case, the 
normalization affects to the global statistics of the 
scores. Equation 2 demonstrates the application of 
this normalization: 

where mean(a) and std(a) are respectively the 
statistical mean and variance of a monomodal set of 
scores. 

2.3 Hyperbolic Tangent Normalization 
(TANH) 

Tanh normalization maps the scores in the [-1, 1] 
range in a non linear transformation. By the 
application of this technique the values around the 
mean of the scores are transformed by a linear 
mapping and a compression of the data is performed 
for the high and low values of the scores. This 
normalization is performed by means of the formula 
in equation 3 

 
where μGH and σGH are, respectively, the mean and 
standard deviation estimates, of the genuine score 
distribution introduced by Hampel (Jain et al., 2005) 
and k is a suitable constant. The main advantage of 
this normalization is the suppression of the effect of 
outliers, which is absorbed by the compression of 
the extreme values. 

3 EQUALIZATION 

In this section, two equalization techniques are 
presented: histogram equalization, which has 
recently been integrated in multimodal person 
recognition systems (Farrús et al., 2006; Ejarque et 
al., 2007), and Bi-Gaussian equalization, which is 
presented in this paper. These techniques have been 
used as normalization methods in this work. 

3.1 Histogram Equalization (HEQ) 

By means of histogram equalization, the cumulative 
distribution function of the monomodal biometrics is 
equalized to a distribution of reference. This non-
linear technique has been widely used in image 
treatment (Jain, 1986) and has been applied to 
speech treatment in order to reduce non linear 
effects introduced by speech systems such as: 
microphones, amplifiers, etc. (Balchandran and 
Mammone, 1998). 
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The authors have used histogram equalization as 
a normalization technique in combinatory score 
fusion systems in several works (Farrús et al., 2006; 
Ejarque et al., 2007) with good results. In the 
experiments presented, all the biometrics have been 
referenced to that with the best monomodal 
recognition result, the face system. 

3.2 Bi-Gaussian Equalization (BGEQ) 

With this normalization technique the scores of each 
monomodal biometric are equalized to a double 
Gaussian distribution that would obtain the same 
EER (Equal Error Rate) than the original scores. In 
fact, histogram equalization is applied upon the 
monomodal scores where the reference distribution 
is artificially built by the combination of two 
Gaussians with the same variance, one for the client 
scores and another one for the impostor scores. The 
mean of the client Gaussian is set to a half and the 
impostor one is set to minus a half. 

As in the case of histogram equalization, this 
technique equalizes the whole monomodal 
distributions. However, in this case, the elimination 
of the effect of outliers is granted. Furthermore, the 
mean of the genuine and impostor scores have the 
same value as it can be seen in figure 1 where 
histogram of the scores for Bi-Gaussian equalization 
is plotted. 

 
Figure 1: Histogram of the scores for BGEQ. 

4 SVM SCORE FUSION 

Support Vector Machines (SVM) are learning 
classificatory kernel-based methods: learning 
because the whole training data and not only some 
statistical information is used for the training of the 
SVM models, classificatory because a SVM system 

performs a two-class classification of the data by 
means of a hyperplane, and kernel-based because the 
addition of a kernel in the system permits to make 
the classification of the data in a higher dimensional 
space (Cristianini and Shawe-Taylor, 2000). 

In a multimodal fusion verification system, SVM 
techniques aim to decide in the genuine-impostor 
disjuncture. Multimodal score vectors are created 
from the monomodal data which is used as the input 
data of the SVM based system. During the training 
phase, the normal vector w and the bias b of the 
hyperplane are determined according to the 
minimization of ||w||2 subject to yi(<w, xi>+b)≥1 
where xi are the training score vectors and yi are 1 
for the genuine and -1 for the impostor training 
vectors. 

The dual representation of this problem is 
presented in equation 4: 

where αi are the Lagrangian multipliers, and the bias 
can be found from yi(<w, xi>+b)=1 where αi ≠ 0. 

The extension to soft margin classifiers permits 
the introduction of the regularization parameter C, 
which controls the trade off between allowing 
training errors and forcing rigid margins. The dual 
representation restriction αi ≥ 0 is converted in the 
soft margin classification to 0 ≤ αi ≤ C. 

The dot product of the multimodal score vectors 
in equation 4 can be replaced by a kernel, which 
must accomplish Mercer’s conditions (Cristianini 
and Shawe-Taylor, 2000). The use of a kernel 
transports the data to a higher dimensional space 
where the classificatory hyperplane is defined. 

One of the most usually used kernel is radio 
basis function (RBF), which is based in Gaussian 
classificatory regions and correspond to the formula 
in equation 5 where the parameter σ controls the 
variance of the Gaussian functions, that is, the width 
of the regions. 

When an RBF kernel is used in the classificatory 
process, the information used by the SVM system is 
the distance between the score vectors. For this 
reason, great differences in the range of values 
covered by the different monomodal scores could 
produce classificatory errors, due to the contribution 
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of some of the monomodal systems can be 
eliminated by other ones. 

To avoid this type of problem, the use of a 
normalization process can be useful and most SVM 
based systems incorporate a Min-Max normalization 
previous to the classificatory system. In this work, 
the effect of several normalization techniques upon a 
SVM multimodal system is explored. 

5 EXPERIMENTS 

In this section, the speaker and face recognition 
systems used in the fusion experiments and the 
experimental results obtained with the different 
normalization methods in an SVM fusion system 
will be presented. 

5.1 Experimental Setup 

The monomodal scores used in the experiments have 
been provided by three experts: an SVM fusion of 9 
speech prosodic features, a voice spectrum based 
speaker recognition system and a facial recognition 
expert based in the NMFFaces (Tefas et al., 2005) 
algorithm. 

In the prosody based recognition system a 9 
prosodic feature vector was extracted for each 
conversation side (Wolf, 1972). The system was 
tested with 1 conversation-side, using the k-Nearest 
Neighbour method. The prosodic vectors have been 
fused by means of a SVM classificatory system with 
RBF kernel to obtain a single monomodal score. 

The spectrum based speaker recognition system 
was a 32-component GMM system with diagonal 
covariance matrices; 20 Frequency Filtering 
parameters were generated (Nadeu et al., 1996), and 
20 corresponding delta and acceleration coefficients 
were included. The UBM was trained with 116 
conversations. 

The face recognition expert is based in the 
NMFFaces algorithm (Tefas et al., 2005). Non-
negative matrix factorization is used in Tefas et al. 
work to yield sparse representation of localized 
features to represent the constituent facial parts over 
the face images. 

Prosodic and spectrum scores have been obtained 
form speech records of the Switchboard-I database 
(Godfrey et al., 1990) and the face scores have been 
obtained from still images of the XM2VTS database 
(Lüttin et Maître, 1998). The Switchboard-I is a 
collection of 2,430 two-sided telephone 
conversations among 543 speakers from the United 
States. XM2VTS database is a multimodal database 

consisting in face images, video sequences and 
speech recordings of 295 subjects. A chimerical 
database has been created by the combination of the 
three expert scores. A total of 5,000 score vectors 
have been generated for the training of the models 
and 46,500 score vectors has been used in the test 
phase. 

5.2 Results 

In the experiments, several normalization techniques 
have been applied upon the monomodal scores. 
Later, these scores have been fused by means of a 
SVM system. The normalization methods are that 
presented in previous sections: Min-Max (MM), Z-
Scores (ZS), a tanh based technique (TANH), 
histogram equalization to the best monomodal 
system (HEQ), and Bi-Gaussian equalization 
(BGEQ). 

To compare the effect of each normalization 
method upon the SVM fusion system, an RBF kernel 
based configuration has been tested. Concretely, for 
the RBF kernel different values of the Gaussian 
variance σ have been tested: 1/3, 1, and 3. 
Furthermore, the regularization parameter C has 
been set to 10, 100, and 200. 

The minimum percentages of error provided by 
the SVM verification system and the equal error rate 
(EER) obtained by each normalization technique are 
respectively presented in tables 1 and 2 for each 
combination of the SVM parameters. 

BGEQ obtains the best results and the rest of the 
techniques obtain results with a difference of, at 
least, a 10.51 % with respect to the best result. 
Furthermore, the EER obtained by BGEQ is a 5.40 
% better than that obtained by the non equalization 
techniques. Concretely, Min-Max, the most used 
normalization technique in SVM systems, is 
outperformed by Bi-Gaussian equalization with a 
relative error improvement of a 22.19 %. 

The minimum results obtained with the 
equalization techniques are from a 0.533 % to a 
0.643 % while the best result obtained by the Min-
Max normalization is of a 0.826 %. In the same 
way, the EER obtained by the equalization 
techniques are from a 0.667 % to a 0.750 % and the 
best result obtained by MM is a 0.815 %. That is, in 
these experiments, the selection of an adequate 
normalization method has been more decisive for 
obtaining the best results than the choice of the 
characteristics of the SVM system. 
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Table 1: Multimodal results (minimum error). 

σ2 C MM ZS TANH HEQ 
BGE

Q 
1/3 10 0.854 0.632 0.619 0.613 0.600 

 100 0.729 0.791 0.632 0.611 0.611 
 200 0.714 0.830 0.613 0.617 0.641 
1 10 0.940 0.615 0.729 0.622 0.587 
 100 0.849 0.617 0.652 0.611 0.533 
 200 0.826 0.589 0.660 0.602 0.540 
3 10 0.976 0.628 0.770 0.643 0.611 
 100 0.946 0.742 0.710 0.613 0.602 
 200 0.905 0.754 0.703 0.617 0.578 

Table 2: Multimodal results (EER). 

σ2 C MM ZS TANH HEQ BGEQ 
1/3 10 0.946 0.822 0.720 0.684 0.686 

 100 0.841 1.179 0.714 0.679 0.739 
 200 0.815 1.114 0.703 0.690 0.750 

1 10 1.065 0.709 0.839 0.709 0.697 
 100 0.940 0.852 0.756 0.679 0.667 
 200 0.875 0.882 0.720 0.679 0.673 

3 10 1.090 0.720 0.916 0.738 0.703 
 100 1.071 0.809 0.834 0.697 0.703 
 200 1.065 0.798 0.804 0.701 0.697 

In figure 2, the DET curve for the comparison of the 
normalization methods is shown. 

 
Figure 2: DET curve for RBF kernel SVM. 

For all the range of FAR and FRR, the best 
results are obtained by HEQ and BGEQ that 
outperforms the conventional normalizations for all 
the FAR and FRR values. TANH obtains better 
results than MM normalization and ZS 
normalization only obtains similar results to TANH 
for FAR lesser than 0.4 % due to the range of values 
of the scores is not controlled by the Z-Score 

normalization and this can produce unexpected 
results. 

6 CONCLUSIONS 

Support Vector Machines fusion systems usually 
make use of a Min-Max technique for the 
normalization of the features or the scores. In this 
work, several normalization methods have been 
applied upon a multimodal score SVM fusion 
system with RBF kernel. 

The results obtained by the SVM system with the 
MM normalization are improved by means of the 
normalization of the scores with TANH 
normalization and the equalization techniques. 
Histogram equalization and Bi-Gaussian 
equalization obtain the best results; concretely, Bi-
Gaussian equalization obtains a relative error 
improvement of a 22.19 % with respect to MM 
normalization and outperforms the normalization 
techniques for all values of FAR and FRR. 

In resume, in these experiments, the selection of 
an adequate normalization method has been more 
decisive for obtaining the best results than the choice 
of the characteristics of the SVM system, as the 
parameters of the kernel. 
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