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Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract
Voice conversion (VC) technology allows to transform the voice of the source speaker so that it is perceived as the voice of a target
speaker. One of the applications of VC is speech-to-speech translation where the voice has to inform, not only about what is said,
but also about who is the speaker. This paper introduces the different methods submitted by UPC to the TC-STAR second evaluation
campaign. One method is based on the LPC model and the other on the Harmonic+Noise Model (HNM). Unit selection techniques are
employed so that the methods no longer require parallel sentences during the training phase. We have applied these methods both to
intra-lingual and cross-lingual voice conversion. Results from the TC-STAR evaluation show that the speaker identity is successfully
transformed with all the methods. Further work is required to increase the quality of the voice so that it achieve the quality of current
TTS voices.

1 Introduction
Voice Conversion (VC) systems modify a speaker voice
(source speaker) to be perceived as if another speaker (tar-
get speaker) had uttered it. Therefore, given two speak-
ers, the goal of a VC system is to determine a transforma-
tion that makes the speech of the source speaker sounds as
it were uttered by the target speaker. Applications of VC
systems can be found in several fields, such as TTS (text-
to-speech systems) customization. Nowadays, high qual-
ity TTS are based on acoustic unit concatenation, i.e. to
produce an utterance the most appropriated acoustic units
are selected from speaker-dependent databases. In order
to produce a high quality synthetic voice, a large amount
of recorded and processed data is needed, making the de-
velopment of a new speaker voice an expensive and time
consuming task. VC techniques can be used as a fast and a
cheap way of building new voices for TTS systems. It will
make possible, for instance, to read e-mails or SMS with
their sender’s voice, to assign our and our friends voices to
characters when playing on a computer game, or to apply
different voices to different computer applications. VC can
also be very useful in speech-to-speech translation, in appli-
cations that require that listeners identify the speaker. For
example, when the speech to be translated has been gener-
ated by several speakers as in meetings, movies or debates.
In such situations, it is important to be able to differentiate
between speakers by their voices.
Many VC systems require that the source and target speak-
ers utter the same sentences. Based on these aligned
sentences, a transformation function is estimated. How-
ever, this is not possible in the speech-to-speech translation
framework. First of all, the source speaker does not speak
the target language, so it is not possible to have aligned
sentences in the target language. Furthermore, the system
has to be non-intrusive, i.e., it is not possible to get specific
training sentences from the source speakers.
TC-STAR organizes periodic evaluations of the different
technologies, open to external partners. Recently, the sec-
ond evaluation campaign took place including the assess-
ment of intra and cross-lingual voice conversion activities

in English, Mandarin and Spanish. This paper reports the
three approaches followed by UPC. The methods have been
applied both to intra and cross-lingual voice conversion and
do not require aligned sentences (text-independent). Sec-
tion 2 deals with the text-independent issue. Basically, the
idea is to use the back-end of the TTS to generate sentences
with similar prosody to the target. This approach can also
be used as a voice conversion method (at least as a refer-
ence for voice conversion methods). The second method is
presented in section 3: section 3.1 is devoted to vocal tract
conversion and section 3.2 presents the residual transforma-
tion techniques. The third method is presented in section 4:
section 4.1 gives an overview of the method, detailed in sec-
tion 4.2. Section 5 presents and discusses the results which
have been obtained in the TC-STAR evaluation. The final
section summarizes the main conclusions of this paper.

2 Alignment using unit selection
Most of the works in voice conversion required aligned
data, i.e., the transformation is estimated from pairs of sen-
tences uttered by the source and target speaker. But this
requirement can limit the use of voice conversion. Even
in some cases this is not possible at all, as in the speech
translation framework. Here we present our work in the
unaligned training context. The approach we follow here
is to synthesize source sentences which are parallel to the
target sentences. Our goal is to transform the TTS voice
so that it sounds as the target. In order to produce parallel
data the front-end is based on the target samples and the
back-end uses the unit selection module of the speech syn-
thesizer. After this step, the different algorithms employed
for the training process using parallel data can be applied,
as will be explained in sections 3 and 4.
The method we propose performs a resynthesis of the in-
put utterance, corresponding to the source speaker. The
prosody (fundamental frequency contour, duration and en-
ergy) is copied from the source utterance, and the selection
module is forced to use a database corresponding to the tar-
get speaker. In the evaluation task the source voice was not
the TTS voice, but a speaker with limited data. Therefore,

June 19–21, 2006 • Barcelona, Spain TC-STAR Workshop on Speech-to-Speech Translation

237



we build a TTS based on this data. Some of the constraints
of the unit selection algorithm needed to be relaxed, since
by default it works with either diphones or triphones, and in
our case the reduced size of the database implied that some
units were missing. We also forced the selected speech seg-
ments to belong to a different utterance than that of the in-
put. This is necessary since during the training stage all
the database was available, and when analyzing one file,
the unit selection module would find that the best candidate
units were those belonging to this file. The training data
available in this campaign consist on parallel sentences but
we wanted to test a text-independent method.
At the output of this module we have the selected units of
the target speaker, and the automatic phonetic segmenta-
tion of the source utterance. Hence, we have obtained the
alignment of the source and target phonetic units and are
able to use the same voice conversion algorithm as in the
aligned case. Next sections present the particularities of the
different VC algorithms using this alignment information.

3 VC using LPC and phonetic information
All the methods that deal with vocal tract conversion are
based on the idea that each speaker has his/her own way of
uttering a specific phone. Therefore, the spectral mapping
function has to take into account some phonetic/acoustic
information in order to choose the most appropriate rela-
tionship for converting the vocal tract (LSF, Line Spectral
Frequencies, coefficients) of each speech frame. To com-
plete the conversion from the source speaker to the target
speaker, a target LPC residual signal prediction from the
converted LSF envelopes is carried out. This strategy as-
sumes that the residual is not completely uncorrelated with
the spectral envelope, making the prediction possible (Kain,
2001).
Next section deals with the vocal tract conversion, and sec-
tion 3.2 gives the details of the residual transformation.

3.1 Decision tree based vocal tract conversion
Generally, a vocal tract conversion system may be divided
in three components: a model of the acoustic space with a
structure by classes, an acoustic classification machine and
a mapping function (see figure 1).

Model
Acoustic

Classification
data

source converted
dataMapping

Vocal Tract

Figure 1: Vocal tract conversion block diagram.

Previous Gaussian Mixture Models (GMMs) based vocal
tract conversion systems (Stylianou et al., 1998; Kain,
2001) use only spectral features to estimate acoustic mod-
els by maximum likelihood. CART (classification and re-
gression tree) allow working with numerical data (such as
spectral features) as well as categorical data (such as pho-
netic features) when building an acoustic model. Phonetic
data is available for TTS voices and may be very useful in

the classification task, because the acoustics are somehow
related to the phonetics.
The procedure to grow a CART for vocal tract conversion
is as follows. First, the available training data is divided
into two sets: the training set and the validation set. A joint
GMM based conversion system (Kain, 2001) is estimated
from the training set for the parent node t (the root node
in the first iteration), and an error index E(t) for all the
elements of the training set belonging to that node is calcu-
lated. The error index used is the mean of the Inverse Har-
monic Mean Distance between target and converted frames,
calculated as:

E(t) =
1
|t|

|t|−1∑
n=0

D(ỹn,yn), (1)

where |t| is the number of frames in the node t, y is a tar-
get frame and ỹ its corresponding converted frame. The
distance D(ỹ,y):

D(x,y) =

√√√√
P∑

p=1

c(p)(x(p)− y(p))2 (2)

c(p) =
1

w(p)− w(p− 1)
+

1
w(p + 1)− w(p)

(3)

with w(0) = 0, w(P + 1) = π and w(p) = x(p) or
w(p) = y(p) so that c(p) is maximized (p is the vector
dimension), weights more the mismatch in spectral peaks
than the mismatch in spectral valleys when working with
LSF vectors.
All the possible questions of the set Q are evaluated at node
t and two child nodes tL and tR are populated for each
question q. The left descendant node is formed by all the
frames which fulfill the question and the right node by the
rest. The set Q is formed by binary questions of the form is
{x ∈ A}, where A represents a phonetic characteristic of
the frame x, in particular: the vowel/glide/consonant cate-
gory, the point and manner of articulation for consonants,
the height and the backness for vowels and glides, and the
voicing.
For each child node, a joint GMM conversion system is es-
timated, and the error figures E(tL, q) and E(tR, q) for the
training vectors corresponding to the child nodes tL and tR
obtained from the question q are calculated. The increment
of the accuracy for the question q at the node t can be cal-
culated as:

∆(t, q) = E(t)−
(
E(tL, q)|tL|

)
+

(
E(tR, q)|tR|

)

(|tL|+ |tR|) . (4)

To decide if a node will be split or not, the increment of
accuracy for the training set is evaluated for each question
and the question q∗ corresponding to the maximum incre-
ment is selected. Then, the increment of accuracy for the
validation set for the question q∗ is calculated, and only if
it is greater than zero the node will be split. The tree is
grown until there is no node candidate to be split. The deci-
sion tree constructed by this procedure can be used to divide
the acoustic space into overlapping classes determined by
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phonetic properties. Each leaf represents a hidden acous-
tical class and has defined a conversion function. To esti-
mate a conversion function for each leaf, all the available
data (training set plus validation set) is classified by the
tree. Then, the data of each class is used to estimate a joint
GMM with one component and the transformation function
related is derived as:

ŷi = µy
i + Σyx

i Σxx−1

i (x− µx
i ). (5)

It must be remarked that, although the transformation func-
tion of each leaf is estimated with data of a single phonetic
class, the transformation is continuous and defined in all
the acoustic space. Both properties are a requirement to as-
sure a high quality of the converted speech. To transform
new source vectors, they are classified into leafs according
to their phonetic features by the decision tree. Then, each
vector is converted according to the GMM based system
belonging to its leaf.

3.2 Residual Selection and Fixed Smoothing
In the residual selection technique, which has been proved
to be a better approach than the residual conversion tech-
nique (Duxans and Bonafonte, 2006), residuals are selected
from a database extracted from the target training data. In
the current work, each entry of the database is formed by
a target LSF vector y and its corresponding residual sig-
nal r. Only voiced residuals with a length l in the interval
µT − 1.5 ∗ σT ≤ l ≤ µT + 1.5 ∗ σT , where T is the pitch
period length, have been used to build the database.
To produce the converted speech, once the vocal tract has
been transformed, a residual signal is selected from the
database. The criteria used to select the residual rk for
the converted envelope ỹ is to choose that residual which
associated LSF vector yk minimizes the Inverse Harmonic
Mean Distance between ỹ and yk. For unvoiced frames,
white noise samples are used as residuals.
The output signal is generated by filtering the selected
residual signals with the inverse LSF filter. The prosody
is manipulated using TD-PSOLA. Since no similarity crite-
ria over neighbor residual signals is imposed, concatenation
problems appear. Thus we need to smooth the voiced resid-
ual signals once they are selected from the database. The
smoothing applied in this work is a weighted average over
neighbor frames, with weights equal to a normal distribu-
tion centered in the current frame. Unlike previous works
(Sündermann et al., 2005), the average is applied only to
voiced residuals, and the normal weighting window has a
fixed duration.

4 VC using a harmonic/stochastic method
In voice conversion systems not only the spectral character-
istics of the voice are considered, but also some prosodic as-
pects, so it is important to use a synthesis system capable of
modifying all these features in a flexible way. Furthermore,
the output signal of the TTS block may have some acous-
tic discontinuities or artifacts caused by the concatenation
of units containing slight spectral differences. A good syn-
thesis system should minimize this kind of effects before
passing the signals to the voice conversion module.

With regard to the prosody, in most of the voice conver-
sion systems found in the literature, a pitch-synchronous
synthesis system is used to generate the converted wave-
form and modify the prosodic parameters (Stylianou et al.,
1998; Kain, 2001; Duxans et al., 2004). The main advan-
tage of this kind of systems is that the frames correspond to
the signal periods, so the prosodic modifications can be per-
formed by means of any PSOLA technique, and each frame
can be processed individually without losing the phase co-
herence in the regenerated signal. The main disadvantage
is the need of a robust method for the accurate separation
of all the signal periods. The use of constant-length frames
can induce significant artifacts if the phase envelopes are
altered in any way. However, if the problem of the phase
manipulation is solved successfully, several advantages can
be obtained:

• The errors coming from the separation of periods are
avoided. In addition, it is not necessary to use pseudo-
periods in the unvoiced regions. The pitch and the
voiced/unvoiced decision are not necessary a priory.

• The use of constant length frames is desirable for the
analysis of signals in real-time applications. It is easier
and more reliable to measure the pitch than to locate
the exact position of the pitch marks.

• The analysis rate can be controlled manually, so more
parameters can be extracted from the same amount of
audio data.

With regard to the flexibility and capability of spectral ma-
nipulation, methods like TD-PSOLA, frequently found in
the TTS systems, may be not appropriated for the voice
conversion task, because they assume no model for the
speech signal. In addition, if the unit database is small,
the noise caused by the spectral discontinuities at the con-
catenation points can seriously affect the quality of the syn-
thetic signal. The quality provided by other systems based
on LPC or residual-excited LPC is not as high as desirable,
but in exchange the LPC parameters are easy to convert.
The different variants of sinusoidal or harmonic models
provide good knowledge of the signal from the perceptual
point of view, and allow manipulating many characteristics
of the signal by changing its parameters in a very flexible
way. Furthermore, they minimize the concatenation arti-
facts, and can operate in a pitch-asynchronous way. For all
these reasons, the synthesis system presented in (Erro and
Moreno, 2005), based on the decomposition of a speech
signal into a harmonic and a stochastic component, has
been applied to develop a new voice conversion system.

4.1 Synthesis system overview
The deterministic plus stochastic model assumes that the
speech signal can be represented as a sum of a number of
sinusoids and a noise-like component (Erro and Moreno,
2005). In the analysis step the signal parameters are mea-
sured at the so called analysis points, located in samples
n=k·N, k=1, 2, 3... N is a constant number of samples cor-
responding to a time interval of 8 or 10ms. At each analysis
point, the following parameters are extracted:
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• Fundamental frequency. If the analysis point is inside
an unvoiced region, the fundamental frequency is con-
sidered to be zero.

• Amplitudes and phases of all the harmonics below
5KHz, only in voiced regions. Note that the voicing
decision employed is binary.

• The LPC coefficients that characterize the power spec-
tral density of the stochastic component.

In order to resynthesize the signal from its measured param-
eters, both the deterministic and the stochastic components
are rebuilt using the overlap-add technique. A frame of 2N
samples centered at each analysis point k is built by sum-
ming together all the detected sinusoids with constant am-
plitudes, frequencies and phases. For the generation of the
stochastic component, 2N-length frames of white Gaussian
noise are shaped in frequency by the previously calculated
LPC filters. A triangular 2N-length window is then used
to overlap and add the frames in order to obtain the time-
varying synthetic signal.
The duration modification of the signal can be carried out
by increasing or decreasing the distance N between the dif-
ferent analysis points, so that the amplitude and fundamen-
tal frequency variations get adapted to the new time scale.
The change in N needs to be compensated with a phase
manipulation in a way that the waveform and pitch of the
duration-modified signal are similar to the original.
When the pitch of the signal is modified, the amplitudes of
the new harmonics are obtained by a simple linear inter-
polation between the measured amplitudes in dB. The new
phases can be obtained by means of a linear interpolation
of the real and imaginary parts of the measured complex
amplitudes, but the interpolation has to be done in the same
conditions for all the analysis points, in order to guarantee
the coherence. Finally, a new phase term has to be added
to compensate the modification of the periodicity, because
the relative position of the analysis point within the pitch
period has changed.
Different analyzed units can be concatenated together in or-
der to synthesize new utterances. The deterministic and
stochastic coefficients inside each unit are transformed to
match the energy, duration and pitch specifications. A
phase shift is added to the harmonics of the second unit
to make the waveforms match properly. Another adjust-
ment is carried out in the amplitudes of the sinusoids near
the borders between units, to smooth the spectrum in the
transition.

4.2 The voice conversion method
The speaker modification is performed in several steps:

• Prosodic scaling, in which only the F0 and the fre-
quencies are changed according to a simple transfor-
mation.

• Vocal tract conversion, which is linked to the ampli-
tudes of the sinusoids.

• Phase calculation, because the phase variations are
tied to the amplitude variations, and if this equilibrium
is broken, a significant loss of quality is induced.

• Stochastic component prediction.

4.2.1 Fundamental frequency scaling
The fundamental frequency is characterized by a log-
normal distribution. During the training phase, an estimate
of the average value µ and variance σ of log F0 is calculated
for each speaker. The only prosodic modification consists
of replacing the source speaker’s µ and σ by the values of
the target speaker. The frequencies of the sinusoids are then
scaled according to the new pitch values.

4.2.2 Transformation of the amplitudes
Three different types of parameters were considered to
model the vocal tract: line spectral frequencies (LSF), dis-
crete cepstral coefficients, and some points of the amplitude
envelope, obtained from the amplitudes of the sinusoids
measured in dB by linear interpolation. The LSF coeffi-
cients were considered the most suitable, for several rea-
sons:

• They are a good representation for the formants struc-
ture, and have been shown to possess very good in-
terpolation characteristics. Furthermore, a bad estima-
tion of one of the coefficients affects only one small
portion of the spectrum.

• If the amplitudes of the sinusoids are substituted by the
sampled amplitude response of the all-pole filter asso-
ciated with the LSF coefficients, keeping the phases
and the stochastic parameters without variation, there
is not a perceptually important quality loss. This fact
means that the codification is not an important source
of errors.

• The all-pole filter associated with the LSF coefficients
provides not only a magnitude envelope but also a
phase envelope, whose information can be used as an
estimate of the phase envelope of the speaker. The
other types of parametrization are magnitude-only.

• As the stochastic component is parametrized by means
of LPC, the same type of codification can be easily
used for both components of the speech.

For each vector of amplitudes, the optimal all-pole filter
is obtained by the Discrete All-Pole Modeling technique,
in which the Itakura-Saito distortion measure between the
measured amplitudes and the envelope of the filter is min-
imized (El-Jaroudi and Makhoul, 1991). The resolution
given by a 14th order filter is accurate enough for a sam-
pling frequency of 16 KHz. The aligned LSF vectors of
both the source and the target speaker are used to estimate
the parameters of an 8th order GMM, and the converted
amplitudes are obtained by sampling the envelope of the
all-pole filter associated with the converted LSF vector. An
attempt was made to convert also the residual amplitudes
of the codification, but no significant improvements were
reached, and in some cases the quality of the converted
speech got worse.

4.2.3 Phase envelope adjustment
It must be taken into account that in order to avoid unpleas-
ant artifacts, the variations in the magnitude envelope must
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entail appropriate variations in the phase envelope, but at
the same time the phase coherence must be maintained dur-
ing the consecutive frames. To satisfy these two objectives,
the phase of the sinusoids is calculated in two steps. In the
first step, the phase of the jth sinusoid at frame k is obtained
from the value at frame k-1:

ϕ
(k)
j = ϕ

(k−1)
j + jπNTs

(
f

(k−1)
0 + f

(k)
0

)
. (6)

This equation assumes that the frequency of the jth har-
monic varies linearly from k-1 to k. At the beginning of the
voiced regions, all the phases are initialized to zero. There
are no phase discontinuities at the end of the first step, but
also no variations in the phase envelope from one frame to
the next, so an annoying metallic noise appears in the resyn-
thesized signal. During the second step, the phase envelope
of the converted filter H is added as a new contribution to
the final phases.

ϕ′(k)
j = ϕ

(k)
j + arg

{
H

(
f

(k)
j

)}
. (7)

The phase of H does not represent the real phase envelope
of the converted speech, but it provides small phase vari-
ations from one frame to the next, tied to the amplitude
variations, and the metallic noise disappears.

4.2.4 Stochastic component prediction
It can be proved that the conversion of the stochastic com-
ponent is not as important as the previous one. When the
signals are analyzed using sinusoids and noise, it is very
difficult to completely extract the non-sinusoidal compo-
nent from the voiced regions of the original sound. In fact,
the sinusoids beyond the voicing frequency treated as part
of the stochastic component, do not form a part of it. There-
fore, there is a strong dependence between some portions
of the stochastic spectrum and the vocal tract. Other prob-
lems can be caused by inaccurate pitch detection, impre-
cise measurement and interpolation of the amplitude and
instantaneous phase of the detected sinusoids between two
consecutive frames, etc. In this paper, we have worked un-
der the assumption that the stochastic component obtained
at the voiced regions is in general highly correlated with
the vocal tract. Then, a new GMM can be estimated from
the LSFs corresponding to the amplitude envelopes and to
the stochastic component. This modeling has a smoothing
effect over the different stochastic instances that are mea-
sured for each phoneme at the analysis step, so the breath-
ing noise and other irregularities are minimized. For the
unvoiced regions, no transformation is performed.

5 TC-STAR Evaluation
TC-STAR organizes periodical evaluations in all the
speech-to-speech translation technologies, including
speech synthesis and voice conversion. In the second cam-
paign (March 2006), voice conversion has been evaluated
in English, Mandarin and Spanish. For Spanish-English,
one specific track was cross-lingual voice conversion.

5.1 Language resources
UPC produced the language resources for supporting the
evaluation of English/Spanish. Basically, 4 bilingual speak-
ers English/Spanish recorded around 200 sentences in each

language. To ease the alignment (for those methods that
require it), a mimic style was used, as proposed by (Kain,
2001). Ten sentences were reserved for testing and the oth-
ers for training. The sentences were designed to be phonet-
ically rich. The recordings are of high quality (96kHz, 24
bits, three channels, including laryngograph). Details about
the LR can be found in Bonafonte et al. (2006).

5.2 Evaluation metric
The evaluation was based on subjective rating by human
judges. 20 judges were recruited to complete the evalua-
tions. The judges were between 18 and 40 years old native
speakers with no known hearing problem. They were not
experts in speech synthesis; they were paid for the task.
Perceptual tests were carried out via the web. Judges were
required to have access to highspeed/ ADSL Internet con-
nection and good listening material.
Two metrics were used in the evaluations: one for rating
the success of the transformation in achieving the desired
speaker identification, and one for rating the quality. This
is needed since strong changes usually achieve the desired
identity at the penalty of degrading the quality of the sig-
nal. To evaluate the performance of the identity change,
the human judges were presented with examples from the
transformed speech and the target one. They have to decide
using a 5-points scale if the voices comes from different
speakers (1) or from the same speaker (5). Some natural
source-target examples were also presented as a reference.
The judges rate the transformed voice quality using a 5-
points MOS scale, from bad (1) to excellent (5).

5.3 Evaluation results
We have submitted three systems to the TC-STAR evalua-
tion. The first method (UPC1) consists on a TTS-back-end
that uses the phonetic and prosodic representation of the
source speech. The synthetic speech is produced using a
concatenative synthesizer built using the training data (ap-
prox. 200 sentences). The second method (UPC2) is the
method explained in section 3. The third method (UPC3)
uses the approach explained in section 4, using the UPC1
method in the training phase to avoid the use of parallel
sentences. UPC1 was presented only to the intra-lingual
evaluation, while UPC2 and UPC3 where submitted to both
intra and cross-lingual evaluation. To apply the methods to
the cross-lingual condition we rely on bilingual speakers:
the transformation was learnt in one language and applied
to the other language. This requires that the source speaker
(the TTS in the final application) is bilingual. Both UPC1
and UPC3 where trained using non-parallel data, but we
were not in time to present to the TC-STAR evaluation the
UPC2 method trained using non-parallel data.
Table 1 shows the results for the Spanish and English eval-
uations, both for intra and cross-lingual voice conversion.
From the last line, we can see that the original source and
target speaker voices are judged to be different (rated 1.96
and 1.52 for Spanish and English respectively), and to have
a good quality (> 4.5 in both cases).
The results for Spanish show how the three methods per-
form similarly when changing the voice identity in intra-
lingual conversion, with UPC2 slightly outperforming the
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SPANISH ENGLISH
Intralingual Crosslingual Intralingual Crosslingual

Identity Quality Identity Quality Identity Quality Identity Quality
UPC1 3.35 3.2 X X 3.83 1.61 X X
UPC2 3.47 2.25 3.2 1.63 3.47 1.78 2.21 1.58
UPC3 3.18 2.37 2.79 2.33 2.92 2.23 2.59 2.13

SRC-TGT 1.96 4.8/4.6 1.52 4.8

Table 1: Evaluation results in intra and cross-lingual voice conversion, for Spanish and English.

other two. In terms of quality, UPC1 clearly outperforms
the other two methods, that are rated very similarly. For the
Spanish cross-lingual evaluation, the performance in iden-
tity degrades for both UPC2 and UPC3. As in the intra-
lingual case, UPC2 performs better than UPC3 in the iden-
tity evaluation. However, the quality of UPC2 decreases
down to a non-acceptable degree.
The quality of both intra-lingual UPC1 and UPC2 meth-
ods applied to the English database severely degrades with
respect to the Spanish case. On the contrary, UPC3 only
shows a minor degradation. The identification capabili-
ties of the UPC2 and UPC3 methods do not significantly
change, and UPC1 gets better results according to the MOS
results. In cross-lingual conversion, UPC3 suffers a small
degradation of the identity capabilities, while maintaining
the same degree of quality. UPC2, on the other hand, suf-
fers a severe degradation of the identity, and a lighter de-
crease in quality.

6 Conclusions
This paper reports the different methods for voice conver-
sion presented to the second evaluation campaign of the
TC-STAR project. The main goal was to make the systems
text-independent, so that they did not require aligned sen-
tences. Our first method, the back-end of our TTS system,
is based on a small amount of source training data. It is
also used to create sentences aligned to the training target
data to be used by the other two methods. In our second
method, CART are used to split the acoustic space based
on phonetic features. For each class, a linear regression is
applied to transform the LSF coefficients. Then, the ap-
propiated residual is selected from the residuals found in
the training data based on the similarity of the associated
LSF and the transformed LSF. The third method is based
on the deterministic plus stochastic speech model, where
the speech signal can be represented as a sum of a num-
ber of sinusoids and a noise-like component. Vocal tract
conversion is linked to the amplitudes of the sinusoids, and
special care is taken to avoid phase variations. The last step
involves the prediction of the stochastic component. In all
cases, a prosody scaling is performed to adequately change
the F0. It is somewhat unexpected that the TTS back-end
(UPC1) is not rated highest in terms of speaker identity,
since the speech waveforms are derived directly from the
target training data. This could be explained considering
the artifacts introduced during the concatenation process,
due to the reduced size of the database. The degradation
of the UPC1 and UPC2 methods for English compared to
the Spanish evaluation, could be due to the automatic seg-

mentation of the databases. Both methods use phonetic in-
formation to perform the conversion, and are then highly
dependent on the segmentation quality. UPC3, on the other
hand, has achieved a good balance between speech quality
and speaker identity transformation for both intra and cross-
lingual voice conversion, using non-aligned data. In future
works, it is expected that a deeper study of the stochas-
tic component will lead to important improvements. Al-
though UPC2 was presented to the TC-STAR evaluation us-
ing parallel data, informal results show that the use of non-
aligned sentences does not degrade the performance neither
on speaker identity nor in speech quality significantly.
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