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Proof syntax of discontinuity
Glyn Morrill
Universitat Politécnica de Catalunya

The syntactic calculus of Lambek (1958) provides a logical model of language
which presents formulas-as-categories and proofs-as-derivations. The calculus,
now recognizable as essentially the multiplicative fragment of non-commutative
intuitionistic linear logic (Girard 1987), has a sequent calculus with no struc-
tural rules, and a proof net syntax which is more geometrical than that of linear
logic, for the proof nets are planar (Roorda 1991).

Computationally, the proof nets provide the essential structure of deriva-
tions. They support, for example, parsing to normal form semantic output
without on-line B-reduction (Morrill 1997: 25-30), and memoisation (Morrill
1996), something prohibitive under the shifting premises of hypothetical reason-
ing in other forms of proof syntax. The proof nets are for categorial grammar
what parse trees are for CFG (furthermore incorporating semantics), adding to
our paradigmatic slogans: proof nets-as-syntactic structures.

Still, from a linguistic point of view the possibilities of the Lambek calcu-
lus are extremely limited since it is a logic of only concatenation; works that
have aimed at formulating corresponding logic of discontinuity include Moort-
gat (1988 pt. 3.3, 1990, 1991/96, 1996), Solias (1992), Morrill and Solias (1993),
Morrill (1994 chs. 4-5, 1995), Moortgat and Oehrle (1994), Calcagno (1995),
Hendriks (1995), and Morrill and Merenciano (1996).

Let us recall the (associative) Lambek calculus L. The category formulas F
are given in terms of primitive category formulas A as follows.

(1) Fu=A|FeF|F\F|FIF

We interpret category formulas as subsets of the set L of all strings over some
vocabulary V. Given an interpretation [P] for each primitive category formula
P, each category formula A receives an interpretation [A] thus:

(2) [A\B] = ({s|Vs €[A),s'+s€[B]} .
[B/A] = {s|Vs'€[A],s+s € [B]}
[AOB] = {si+s2} s1 € [A] & sz € [B]}

A sequent I' = A comprises a succedent category formula A and an antecedent
configuration I which is a sequence of category formulas. It asserts that in all
interpretations, the ordered concatenation of strings in the antecedent category
formulas yields a string in the succedent category formula. The valid sequents
are those generated by the following sequent calculus.

(3) a A=a4 id s A A(A)=B
Clut
A(l) = B
b. T=A AB)=C AT =B
L \R
AT, A\B) = C I'= A\B
c. I'ssA AB)=C A= B

/L /R
A(B/AT) = C I'= BJ/A
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d. I‘(A,B)=>CL '>A A=2_B
[(AeB) = C [[,A] = AeB

The calculus of Lambek (1958) excludes the empty string €, and the empty
configuration A, but they are included here, and we add the product unit I.
The definition (1) of category formulas becomes (4)

(4) Fu=A|FeF | A\F|F/F| I

The product unit is interpreted as the set comprising the empty string:
5) 1l = {g

The sequent rules are those of (6).

6) =1 IR [T = A

— L
Iy I,0y = A

By way of examples of discontinuity beyond the reach of L we consider
relativisation and in situ binding, In (7) the relative pronoun binds a position
which is medial in the relative clause.

(7) (the man) that probably won

Defining the relative pronoun as R/(N\S) or R/(S/N) (where R is CN\CN)
allows it to bind only left or right peripheral positions: (7) is not generated. To
deal with such cases, Moortgat (1988: 110) defines as follows a binary operator
which we write T.:

(B)  [B1,4] = {s1+s0[¥s € [A], 5145450 € B}

Assigning the relative pronoun to category R/(S1.N) allows both medial and
(assuwming the €) peripheral extraction, via the introduction rule (9).

(9) r,AT.=B
.—__T”R

Ty, T2 = BT A

A satisfactory elimination rule, on the other hand, cannot be formulated, as ob-
served by Moortgat (121-2). Morrill (1992: 13-14) notes that such a treatment
potentially accommodates obligatory extraction valencies:

(I(J) a.  (the man) that John assured Mary to be reliable
b. #John assured Mary Bill to be reliable

If the extraction valency of “assured” is marked by Te, a sequent corresponding
to (10a) is valid while that for (10b) is invalid. However, as pointed out by
L Sag (p.c.), in the absence of an elimination rule it is impossible to actually
derive all cases like (10a).

In (11) the quantifier phrase and reflexive are in situ binders, taking scope
respectively at the sentence and verb phrase levels.

(11) a,  John bought someone Fido.
b, John bought himself Fido
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Moortgat (1991/96) introduces a ternary operator Q for which Morrill (1992:
15) offers the interpretation:

(12) [Q(B,A,C)] = {Slvslls31 [VSZ < [A]y51+32+53 (S [B]] — 51+82+83 € [C]}

Moortgat categorises quantifier phrases and reflexives as sentence and verb
phrase in situ binders Q(S, N, S} and Q(N\S, N, N\S) respectively. Cases such
as (11) are generated by means of the elimination rule (13).

(13) Ty =B A@©) = D
A(T(Q(B,A,C))) = D

However, this time no satisfactory introduction rule can be given. Therefore, as
pointed out by H. Hendriks (p.c.), a valid sequent such as Q(S, N, S) = Q(N\S,
N, N\S), showing that a sentence in situ binder is also a verb phrase in situ
binder, cannot actually be derived.

Based on considerations in Morrill and Solias (1993), Morrill (1994, chs. 4~
5; 1995) presents an (unsorted) discontinuity calculus and Morrill (1995, app.)
and Morrill and Merenciano (1996) a sorted discontinuity calculus. The former
has a sequent calculus with an extraction elimination inference, but does not
solve the problems alluded to above. The latter has a labelled sequent calculus,
and does solve these problems, treating {. and Q as defined operators. In a
labelled sequent calculus a wider class of sequents is generated by rules for
formulas which is then filtered by conditions on labels. However, it would be
even more satisfactory to have a one-stage characterisation in the spirit of pure
sequent calculus.

In this article we provide such a pure sequent calculus for sorted disconti-
nuity and show how the issues raised above are resolved. We then show how to
give proof nets for the operators 1. and Q treated as units. We hope to present
proof nets for the full sorted discontinuity calculus in a longer version of the
paper.

In the sorted discontinuity calculus, category formulas fall into two sorts:
those F of sort string, interpreted as subsets of L, and those F?2 of sort split
string, interpreted as subsets of L?. Qur definition (4) of category formulas
becomes (14).

(14) =

A| FeF | F\F | FIF|I| F2oF | FALF
F? F1F

The discontinuity operators are interpreted by “residuation” with respect to the
interpolation adjunction W of functionality L?, L. — L, defined by {s1, s2)Ws =
S1+8+89, in exactly the same way that the continuity operators are interpreted
by residuation with respect to the concatenation adjunction + of functionality
L,L - L

(15) [AIB} = {s|¥(s1,52) € [A],s1+5+s2 € [B]}
[BT1A] = {{s1,s2)] Vs € [4],s1+s+s2 € [B]}
[A®B] = {si1+s+s2] (51,52) € [A] & s € [B]}

We have, then, B1,A = (BTA)®I and Q(B, A4,C) = (BT1A)lC.
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We have already noted the problem of giving sequent rules for categories
of the variety BTA: a category occurrence BTA in an antecedent would fail
to indicate where one is meant to interpolate. Our analysis is that in the
sequent calculus of Lt a category occurrence signals two things: a resource, and
the location of that resource witl respect to others. This double service can
be maintained in view of the continuity of concatenation, but discontinuity
requires a distinction between signaling a resource, and its locations of action,
which may be multiple. Tn particular, BT4 has two discontinuous components.
Our solution is for a split string category formula to appear twice in a sequent,
at its two loci of action. To mark that the two components are to be taken
together as a resource, the occurrences are punctnated as roots, v/

Sequents come in two kinds, those & with sort string succedents, which
have string antecedent configurations O, and those %2 with sort split string
succedents, which have split string antecedent configurations O

(16) = = O=F
52 = 0 = /712
O u= A|F0|VFLO,JF?
O = OVFL,0|0,¥VF2 0% YF 0

Observe that configurations have balanced occurrences of parenthesising punc-
tuation v and /. These mark the two components of split antecedent cat-
egories. In a sequent with a split succedent category there is a v/ in the
antecedent marking the split point, and around which the parenthesising is
balanced. The sequent rules are thus:

(17) a. T(VA) = VA A(B):>C|L \I/Z,F,\Q/Z@BIR
A(T(AIB)) = C i I'= AlB

b, I'=A4 s =e =B
AVBTAL YBA) = O T(VBTA) = vBIA

¢. T(VAB VA =cC . IVA)= VA A=B I

T(A©B) = ¢ TR R

By way of example, the medial relativisation (7) is treated as follows,

(18) S/S, N, N\S = §
S/SSTN, NS = VBTN 1
S/S, N\S = (STN)f M o R/L
R/((STN)®I), /6, N\S = R |
that+probably+won: R

Turning to proof nets for L (Roorda 1991}, the proof frame for a sequent
Ay, .o, Ay = Als obtained by recursively unfolding the cyclically ordered polar
formulas A7 ..., A, AT up to atomic literals as follows.

(19) a. AY i B~ B* i A~ b, B i AY A~ i Bt
A\B~ A\B* B/A™ B/AY




| fail
the
and

can
ity
tion,
ents.
1ent,
aken

hich
ring

unc-
cat-

the
g 18

nent
olar

c. A~ i B- BY i A-
AeB~ AeBt

The unfolding defines a cyclic total order (chain) > on the literals. A proof
structure is a graph of polar formulas that is the result of connecting with an
axiom link each literal to exactly one other with the same atom and opposite
polarity. A proof structure is a proof net iff it satisfies planarity (Roorda) and
the long trip condition (Girard).!

Morrill (1996) offers a correctness criterion in terms of unifiability. Here we
employ a graph theoretic statement of this criterion. From an axiom linking,
construct the graph on i- and ii-vertices {we use numerals and letters respec-
tively below) which has, for each axiom link, an edge between the two vertices
immediately inside and between the two vertices immediately outside the link.
The correctness criterion is that in the resulting graph no i-vertex be connected
to any other i-vertex, or to any ii-vertex from which it is a descendant in the
proof frame.

We give the unfolding for T, and Q:

(20) a. i At i i AT i
B~ Bt
BT, A Bt A%
b. i BY i CT i i B~ i C* i
A~ At
Q(B,A4,C)” Q(B,A,C)*

Vertically stacked literals are unordered with respect to one another; the upper

literals enter into a separate chain which is cyclic: the peripheral vertices are

the same. But linking must still be planar in the chains of the partial order.
Consider the proof frame for the medial extraction (7).

(21) k N- ok
S+
R~ j St.N* s~ ( st Nt m §”
0 R/(STeN)™ 1 §/8™ 2 N\S~ 3 R* o

R/(S1.N), $/S, N\S = R

The partial order on literals comprises the cyclic chains O0R~jST1S~ISt2N+-
mS~3R*0 and kN~k. We can add the axiom linkings OR™j=3R*0, jSt1=1S"{,
kN~ k=2N*m, and IST2=mS~3, which are planar in this partial order. The

! A crossing is an elementary path in the literal ordering [;> ... >l2> ... >l1> ... >} where
l; and !} and l; and [} are linked. A proof net satisfies planarity iff there is no crossing. A
circularity is a cycle in the proof structure which does not traverse the premisses of any i-node.
A proof net satisfies the long trip condition iff there is no circularity.
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vertex graph is 0 — (), j — 3,9-1,1-1
the connectedness constraints,?
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“In view of space limitations the reacder is invited to clieck the sequent ¢
derivability of R/((STN)>I), N, ((((N\S)/VP)TN)E'I)/N, N, VP = R {(
N, ((((N\S)/VP)TN)@])/N, N, N, VP = ) conresponding to the obligatory extraction (10),
of N, ((N\S)/N)/N, {Q(s, N, S)Q(N\S, N, N\S)}, N =8 corresponding to the quantification
and reflexivisation (11}, and of QS N, 8) = Q(N\S, N, N\S).
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