Grammar and logic*
by

GLYN MORRILL
Universitat Politécnica de Catalunya, Barcelona

T s poinT OF ORIGIN Of logic, historically and conceptually, is the
idealisation of reasoning in the form of arguments comprising premises
and conclusions, and the property of validity wherein. premises in
some sense entail, or have as a consequence, conclusions. In this
respect there is a straightforward connection between logic and gram-
mar—the description of language—when the logical semantic rela-
tions of a language are taken to be part of the structure to be de-
scribed grammatically.

In this paper we are concerned with a related but more subtle
connection between grammar and logic. In this, linguistic expres-
sions are classified by structured categories which of themselves de-
termine the distributional behaviour of the expressions; these cat-
egories are formulas of a logic, and the properties of a language pre-
dicted by a categorisation of words in a lexicon are the logical conse-
quences of this lexical categorisation (there are no non-logical axioms).

In this manner there emerge logical foundations of language in
much the same way that in computer science there have emerged
logical foundations of computation. Applications of the methodology
of logic such as the latter require us to see logic as a science not just
of natural reasoning, but as a more general science of, let us say, the
relations between symbols in virtue of their meaning (especially con-
sequence relations). One can then understand logical methodology
in respect of the symbols of computational formalisms and the sym-
bols of natural language in a uniform light. But grammar formalisms
are also symbolic systems, and it is our concern here to explain how
logical methodology extends uniformly to grammar.

The paper is organised into three sections. In the first we relate

* This paper is a much updated and reoriented version of Morrill (1990). For
many valuable discussions at the time of origin of this work I thank Guy Barry,
Mark Hepple, and Neil Leslie. All errors are my own.
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the historical contributions providing the ingredients for logical foun-
dations of language. In the second section we exemplify linguistic
applications. In the final section we briefly discuss linguistic prec-
edents, and in what directions further prospects lie.

1. Historical ingredients
1.1. Logic, types, and signs

The transition from syllogistic to modern logic was made with Frege’s
logical analysis of multiple quantification in the form of predicate
calculus. Such formalism is needed for the representation of multi-
ple quantification in the semantics of natural language. But Frege
also addressed the question of how semantic analysis itself is to be
organised; to him is attributed the principle of compositionality, usu-
ally expressed as: ‘the meaning of an expression is a function of the
meanings of its parts, and their mode of composition’. Although
evaluation of the principle solicits greater precision, and can be ori-
ented empirically or methodologically, Frege (1892) saw that an
issue is already highlighted in respect of examples like (1).

(1) a. It is not the case that the morning star is the evening star.
b. John believes that the morning star is the evening star.

This is that while the truth of falsity of (1a) depends solely on that
of the subordinate sentence “the morning star is the evening star”,
in (1b) it is not the actual denotation, truth or falsity, of the subor-
dinate sentence which is relevant to the truth of the sentence over-
all, but rather the idea it expresses (and John’s attitude towards that
idea): what Frege called the mode of referring or sense (“Sinn”).
Frege construed sense non-mentalistically, independent of any psy-
chological vehicle. Such issues are addressed in intensional seman-
tics; the proper articulation of sense remains an important open
question.

Another influence arose through Russell’s discovery of inconsist-
ency in Frege’s treatment of classes. (There are classes which belong
to themselves, 4(4), for example the class of all classes; and there
are classes which do not belong to themselves, for example the empty
class; let B be the class of all classes which do not belong to them-
selves; then by definition, VX[B(X)>—X(X)]; but this entails by
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universal instantiation B(B)«—B(B): contradiction.) Russell respond-
ed to such paradoxes by developing a theory of types which strati-
fies classes. Higher order logical languages, that is ones generalising
over propositions and properties, usually need to adopt a version of
type theory to avoid inconsistency; such is the case in applications
of logic to the semantics of natural language.

As Frege is considered the founder of modern logic, so de Saussure
(1916) is considered the founder of modern linguistics. He provided
a general semiotic conceptual framework according to which the
elements of language are signs comprising a signifier (symbol or
form) and a signified (meaning); in the case of natural language we
shall refer respectively to prosodics and semantics. By distinguishing
tokens of language (utterances) from the system itself, he identified
language qua a collection of signs as an object of study.

1.2. Proofs

The deductive formalisms which we shall employ in relating logic
and grammar are natural deduction and sequent calculus, both due
to Gentzen (1934). In natural deduction, proofs are tree-like struc-
tures generated by rules from elementary proofs which are single
formulas. Connectives have rules of use which show how a premise
with that principal connective can be used, and rules of proof, which
show how a conclusion with that principal connective can be proved.
In natural deduction these are referred to as rules of elimination (E)
and introduction (I) respectively. Recall for instance that the rules
for the implicational connective are as follows.

a i b. —mn

A A-B g 4

B :
_B
A—-B
In —I one closes any 4 assumptions one likes by coindexation with
the rule occurrence. Assumptions that have not been closed are open,
and a natural deduction proof shows that its open assumptions en-

tail its conclusion.
In sequent calculus, proofs are trees of sequents which, in gen-
eral, are of the form I' = A where the antecedent T" and succedent A

-I"
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are sequences of formulas, stating that the conjunction of T entails
the disjunction of A. Gentzen provided sequent calculus for both
classical and intuitionistic logic; for the latter, sequent succedents
have at most one formula (and in the absence of negation, exactly
one formula). This ensures that a disjunctive conclusion always de-
rives from a proof of one of its disjuncts, and that proofs are con-
structive. It is the intuitionistic case which interests us here _unam.cww
constructivity in .Hommn corresponds to compositionality in grammar.
One may see, just in virtue of the reflexivity of consequence, that
mmacnmﬂm of the form of the identity axiom (3a) are valid (corre-
E.uonn:mm to the elementary natural deduction proofs); similarly, in
view of the transitivity of consequence, the Cut rule (3b) is cm:n.ﬂ.

Bad=>4 id b I'A A,A A= B
2 Cut
A,T,A, =B

_P further set (4) of structural rules are valid. Weakening W embod-
ies monotonicity; Contraction C and Permutation P derive from the
idempotency and commutativity of the conjunction represented by
the antecedent commas.

4) a. r,r,=B

277w
I,AT,=B

b. T,AAT,=B
I,AT,=B

C

c. I',A B, I =€
ﬁ.m.m,ﬁﬁ C

P

Hwo ._ommom_ rules themselves are exemplified by the following, for
implication. u

®a ro4 ABoc b Ar—sB

b,ﬂi»lvwﬂvﬁlvh

I'=A—B —R

As in :mHE,.m_ deduction there are rules of use with the connective in
the conclusion antecedent, the left (L) rules, and rules of proof with
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the connective in the conclusion succedent, the right (R) rules. For
each sequent proof of I' = A there is a natural deduction proof with
open assumptions I' and root 4. Gentzen’s Hauptsatz was to show
Cut-elimination: that every sequent proof has a Cut-free counterpart
(a normal form) with the same conclusion sequent. There is also
such a notion of normalisation in natural deduction (Prawitz 1965);
when introduction and elimination rules are composed they consti-
tute a proof detour which can be removed. For example:

(©)

B

Here the proof of A replaces every assumption of A which is closed
by the —I inference. The Cut-free sequent proofs correspond to the
normalised natural deduction proofs.

1.3. Functions

A contribution of distinct origin though (as we shall shortly note)
common content was made by Church’s introduction of the A-cal-
culus as a model of functions and computation. He defined A-terms
representing functions, and modelled computational evaluation as
reduction to normal form. In the simply typed formulation (Church
1940) one recursively generates functional types thus: if 7and 7' are
“types, T—> 7' is a type. Then given basic terms (variables and con-
stants) for each type, further terms are formed by application of a
functional term ¢ of type 7— ' to an argument term y of type 7,
(¢ ) of type 7', and by abstraction of a term ¢ of type T over a
variable x of type 7', Ax¢ of type 7' — 7. When composed the two
operations can be evaluated, thus there is B-reduction:

(7))  (Axg y) ~ glx < V]

Here the substitution on the right is to replace by y every occur-
rence of x in ¢ bound by the Ax.
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1.4. Categorial grammar

It was also under the influence of the theory of types that, originating
with Husserl’s semantic categories, and with the Polish school,
especially Le$niewski’s grammar of semantic categories, Ajdukiewicz
introduced a fractional notation for linguistic classification which is
the hallmark of what Bar-Hillel later called ‘categorial grammar’
(Ajdukiewicz 1935; Bar-Hillel 1953; Bar-Hillel, Gaifman and Shamir
1960).

Categorial grammar implements in a rather direct way the com-
positional method of linguistic analysis due in essence to Frege.
Under such analysis certain not necessarily basic expressions are
taken to be the primary bearers of meaning, and other expressions
are attributed with meanings in terms of the meanings of the ex-
pressions in which they occur. Thus Ajdukiewicz presented a nota-
tion for categories as the types of these meanings by analogy with
the arithmetic law 5 x y = x such that while expressions like nominals
and sentences are categorised by basic categories N and S, other
expressions are classified by fractional categories mmcn_u as m for verb
phrase (lacking a nominal to be a sentence), and M|_“w
modifier (lacking a verb phrase to form another Wwa_u phrase).

The fractional division of Ajdukiewicz does not indicate word
order; Bar-Hillel (1953) refined it into two directional varieties /
(‘over’) and \ (‘under’) such that A\B and B/A4 indicate combination
with an 4 to the immediate left and right respectively to form a B.
Then a verb phrase in a subject-initial clause will be N\S, and a pre-
verbal verb phrase modifier (N\S)/(N\S). Thus in the categorial cal-
culus AB of Ajdukiewicz/Bar-Hillel we find the following two rules.

(8)a. 4, /B = B b. B/4, A= B

for verb phrase

These rules clearly resemble Modus Ponens, and the directed divi-
sions can be looked upon as directional implications in a sequent
system in which none of the structural rules W, C or P are allowed
to apply. This connection with logic was fully established by Lambek
(1958). He observed that reading A\B (B/A) as the linguistic cat-
egory of expressions which concatenate with As to the left (right) to
form Bs, the rules of proof (9) are valid. (Strictly speaking, Lambek
excluded empty antecedent sequents, a detail we shall ignore.)
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9 a T,A, =B R b. A T=B \R
I' = B/A I = A\B

Lambek added an additional, conjunctive, type-constructor ‘prod-
uct’ (analogous to arithmetic multiplication) such that AeB stands
for the immediate succession A and then B, with the following sequent

rules of use and proof.
b.T=4 A=28

(10) a. T,A, B I =C
: 2 oL e R
I,AeB, T, = C I, A= AeB

And he showed that with the implicational rules of use formulated
as in (11), the sequent calculus L comprising (3), (9), (10) and (11)
enjoys Cut-elimination. (The proof is simpler than Gentzen’s pre-
cisely because of the absence of structural rules.)

(11) a. T'=4 A,B A=C b.T=4 A,BA=C

AT, AAB,A,=C A, B/A,T, A= C

This has decidability of L as a corollary, since in all rules except
Cut, the number of connective occurrences in the premises is one
less than that in the conclusion. (The same corollary does not fol-
low directly in Gentzen’s system since Contraction is complexity-
increasing.)

Right at the start of contemporary generative grammar was a
presentation of rewriting systems as the paradigmatic mathematical
framework for mn_mBEE. (Chomsky 1957). One of Chomsky’s inau-
gural arguments was that context-free rewriting systems are inad-
equate for description of natural language, and in this way he moti-
vated the more powerful transformational grammars. The ‘classical’
categorial grammar AB of Ajdukiewicz and Bar-Hillel was shown
to be equal in weak generative capacity to context-free phrase struc-
ture grammar (Bar-Hillel, Gaifman and Shamir 1960). Chomsky’s
conjecture {confirmed only recently) that the equivalence also held
for Lambek categorial grammar attributed it with the same sup-
posed inadequacy as context-free grammar; see Buszkowski (1997).

\L /L

1.5. Formulas-as-types and proofs-as-programs

The discovery of the connection between A-calculus and proofs is
attributed to Curry. This is that, for example, the implicational for-
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mulas of intuitionistic logic can be seen as the types of A-calculus
(‘formulas-as-types’), and the natural deduction proofs as the terms
(‘proofs-as-programs’). Then A-reduction, cf. (7), and proof nor-
malisation, cf. (6), are the same operation, differing in notation only.
That this formulas-as-types correspondence extends to other logical
connectives and computational operations was observed by Howard
(1969). For example, just as implication corresponds to functional
abstraction and application, conjunction corresponds to pairing and
projection, and its counterpart to B-reduction is the following:

(12) a. =mpy~9 b. m(p, v~y

The programming language Lisp of McCarthy et al. (1962) was
inspired by A-calculus in respect of such constructs as LAMBDA (x)
and AppLy, and computation as A-reduction, and thus realised pro-
gram evaluation as proof normalisation, though without explicit
types. It is interesting to note that the construct cons of Lisp corre-
sponds to pairing and cAr and cDRr to first and second projections,
i.e. the computational realisations of conjunctive types. For a con-
temporary account of the Curry-Howard correspondence see Girard,
Lafont and Taylor (1989).

1.6. Grammar and logical semantics

A language is a medium for the expression of information: a con-
vention for the attribution of meanings to forms. A grammar is a
description of a language. We can discriminate in a natural lan-
guage various notions of form and meaning, at various levels: pho-
netic and orthographic forms, literal and metaphorical meanings,
word, sentence and discourse levels, etc. A grammar might model
various aspects of such linguistic reality; we take as our concern the
signs comprising the written forms and logical or truth-conditional
significance of sentences. A formal grammar is to be a specification
of the relation between forms and meanings which is symbolised as
a formal (i.e. mechanical) system. The broad structure of a lan-
guage model set up by a formal grammar will be a pairing of forms
with meanings to make signs, and a classification of these signs into
categories: sentences, verb phrases, adjectives and so on.
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Such a formal description must employ representations of forms,
meanings, and categories. Let us represent orthographic forms by
sequences of word-forms, and logical meanings by terms of higher
order logic. Let a— ¢ stand for the sign comprising association of
form o and meaning ¢; let the type assignment statement o — ¢: A
stand for the assertion that the sign - ¢ is of category 4. We call a
classification of signs into categories an inhabitation.

Montague (1973) used the A-calculus and higher order (intensional)
logic within a particularly simple architecture for specifying gram-
mar and logical semantics of a language. A lexical component presents
an initial inhabitation by word signs, and a rule component presents
a set of operations under which the lexical inhabitation is to be
closed to generate a general inhabitation of phrasal signs, by pair-
ing the suboperations which apply to form and meaning parts of
signs in a rule-by-rule fashion.This parallel structure contrasts with
the traditional serial component-to-component architectures where
syntactic analysis is seen as feeding into a subsequent stage of se-
mantic analysis.

Consider the following examples of lexical assignments:

(13) john - Ax(x j) : NP
mary — Ax(x m) : NP
walks — walk : VP
sings — sing 1 VP
man — man : CN
woman — woman : CN
some — ApAz3AxX[(y x) A (z x)] :D
every - AAzVX[(y x) = (z x)] :D
socialist — AuAv[(socialist v) A (u v)] : ADJ
deaf — AuAv[(deaf v) A (u v)] : ADJ

Complex expressions can be generated by the following rules; the
annotations indicate the compositional operations involved. A state-
ment I' = X asserts that the inhabitants in T entail that in X.

(14) a—x:NP,b-y:VP=ab-(xy):S rl
a-x:D,b—-y:CN=ab-(xy) NP r2
a-x:5,b-y:S=ao0rb-(xvy):S r3

a-x:ADJ,b-y:CN=ab-(xy) CN r4
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Mary sings or every deaf man walks
ADJ CN
B —14
D CN
- JEE— e —) _
NP VP NP VP
—_—rl rl
S S
r3
S

Figure 1: Montague-style derivation

Thus we obtain the analysis in figure 1 of ‘Mary sings or every man
walks’, where the prosodics is left implicit as left-to-right con-
catenation; the (normalised) semantics of each node is shown in
figure 2. Note how in (13) the semantics of proper names has been
lifted so that rl can combine subject proper names and quantifier
phrases with verb phrases with the same orientation of application
in the semantic operation. There is a trade off, then, in which one
reduces the number of syntactic rules at the price of some lexical
complexity. Incidentally, a shared category of noun phrase is im-
plied by coordination of the form ‘John and every/some woman’.

Montague defined categories categorially, but made no essential
use of this, simply stipulating specific rule instances like those in
(14) in a phrase structure style. But recalling the origins of categorial
grammar, the combination of a functor (4\B or B/A) with its argu-
ment (4) is meant to be interpreted by functional application se-
mantically, and it is straightforward to reconstruct an analysis such
as the one just given in a purely categorial manner.

We shall assume basic types N (proper name or nominal), CN
(common noun), PP (prepositional phrase) and S (sentence) and the
following rule schemata (the syntactic operation is left implicit as
left-to-right concatenation):

(15) a. xA,zzAB=(zx):B \E
a. z2B/A,x:A=>(zx):B /E

Corresponding to the earlier grammar there is the following lexicon.
The semantics of proper names has been deflated, and coordination
is introduced categorematically, i.e. by lexical assignment rather than
syntactic rule.
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Mary sings or every deaf man walks
Audv[(deaf v) A (u v)] man o
r4 o
Az x[(y x) = (z x)] Av[(deaf v) A (man v)] ;
Ax(x m) sing AzV x{[(deaf x) A (man x)] = (z x)] ) walk §
— fl — el
(sing m) Vd[(deaf x) A (man x)] > (walk )] E
[(sing m) v Vx{[(deaf x} A (man x)] — (walk x)]] -
Figure 2: Semantics of Montague-style derivation
|
Mary sings or every deaf man walks
CN/CN CN
e e — {E
(S/(N\S))/CN CN
/E —
S/(N\S) N\S
- _ —— /E
N NS (8\S)/S S
\E /E
S S\S a)
- \E g
S g
£
%
Mary sings or every deaf man walks >
Z
AuAv[(deaf v) A (u v)] man E
— /E o)
AyAzV x[(y x) = (z x)] Avj(deaf v) A (man v)] %’
—— IE —
AzV x{[[(deaf x) A (man x)] = (z x)] walk
- — — —/E
m sing\ AxAyly v x] V x[[(deaf x) A (man x)] — (walk x)]
E /E
(sing m) Ayly v Vx][(deaf x} A (man x)] - (walk x)]
— \E
{(sing m) v Vx[[(deaf x) A (man x)] — (walk x)]]
Figure 3: Categorial derivation §
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(16) john -j :N
mary -m :N
walks — walk : NAS
sings — sing : N\S
man — man :CN
woman — woman :CN
some — AAz3xX[(y x) A (z x)] : (S/(N\S))/CN
every - WAz x[(y x) > (z x)] 1 (S/(N\S))/CN
or - AxWyly v x] : (S\S)/S
socialist — Aulv[(socialist v) A (u v)] : CN/CN
deaf — Audv[(deaf v) A (u v)] : CN/CN

Now ‘Mary sings or every man walks’ has the derivation and node-
by-node semantic analysis given in figure 3.

This semantic interpretation is extended from AB to L in the light
of the following observations (van Benthem 1983). Categorial logic
is a refinement of intuitionistic logic obtained by restricting struc-
tural rules. So categorial validity entails intuitionistic validity and
for every categorial proof there is an intuitionistic natural deduc-
tion proof or typed A-term obtained by forgetting the structural re-
finements. In particular, while the rules of use of L are semantically
interpreted as functional application, the rules of proof are semanti-
cally interpreted as functional abstraction. In general, the linguistic
mode of composition is identified with the logical constructive con-
tent of the inference. Linguistic ramification of this framework was
developed in Moortgat (1988).

1.7. Linear logic

The principal exemplar of substructural logic, logic lacking some
structural rules, is linear logic, introduced by Girard (1987). In this,
the free application of Contraction and Weakening is withdrawn,
thus we obtain an occurrence logic in which data (formulas) are
considered as resources the presence and number of occurrences of
which are significant. Linear logic has both classical and intuitionistic
varieties according to whether or not the sequent succedent may be
multiple. Van Benthem (1983) in fact works with what can retro-
spectively be recognised as the so-called multiplicative fragment of
intuitionistic linear logic: the calculus L plus the permutation rule
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(4c), so that the two categorial implications A\B and B/A collapse
(into the linear implication 4—oB) and the product 4eB becomes
commutative (in linear logic, A® B: tensor product, or multiplicative
conjunction).

Just as implication splits into distinct varieties on withdrawal of
Permutation, so linear logic already contains two conjunctions: as
well as the multiplicative conjunction 4A®B one finds the additive
conjunction A&B for which the (intuitionistic) rules are:

(7 a T,AT,=C
2 &L
r,A&B,I[,=C *

LBL,=C
I,A&B,T,=C

b. T =4 TI'=2B8B
I'= A&B

In the presence of Contraction and Weakening the additive and
multiplicative conjunctions collapse. Multiplicative and additive
varieties of disjunction also exist, of which the latter, ADB, is as
follows (the former does not make itself evident given the intuitionistic
constraint on succedents):

(18) a T,AT,=C T,BT,=C
I,ADB,T,=C

&R

@L

b. I'=>A4 I'=28
R =7 &R

I'=A4®B ? I'= A ®B b
Standard linear logic includes Permutation, but since language is
ordered in time we are interested, in grammar, in non-commutativity.
Withdrawing Permutation gives sequence logics like L. The system
L plus (17) and (18) constitutes the multiplicative and additive frag-
ment of intuitionistic non-commutative linear logic.

Girard reintroduces Weakening and Contraction via a further class
of unary connectives, the exponentials (or as we shall say, structural
modalities) which licence the structural operations on formulas of
which they are the principal connective. In the non-commutative
context, (Abrusci 1990) uses the connective ‘of course’ as follows,
such that !4 represents discardable, reusable, and permutable As.
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(19)

d

T,AT,=C b. T=4
2 L —— R

T,!A,T,=>B T= 14

C. H,:ijnvw
T,!A,T,= B

'W

d. T,1A,AT,=B
I,'A,T,=B

e. T,ABT,=B
T,B,AT,=B

P, A or Bl-ed

In (19b), 'T" stands for a sequence of !-ed formulas, i.e. formulas
with principal connective !. The rules !IL and !R alone define an S4
universal modality; !W, !C and !P are structural rules conditioned
on the licencing structural modality.

Finally in this section, let us note that it is natural to seek a finer-
grained notion of structural modality, as in Barry, Hepple, Leslie
and Morrill (1991). Thus for example an S4 structural modality A
may be commissioned for just permutation:

(200 a. T,AT,=8B b. A= 4

AL ——— AL
I,AA,T,=B AT= A4

r,A,BT,=B
r,B AT,=B8

AP, A or B A-ed

We shall see in the next section linguistic applications of this and
other aspects of non-commutative linear logic in conjunction with
the Curry-Howard correspondence.

2. Type Logical Grammar

The grammatical architecture exemplified in Montague Grammar is
one which sees language objects as having dimensions in syntactic
and semantic algebraic domains, and in which rules of grammar
correlate operations in these algebras. For this design in general, a
sign is an array of elements in the linguistic domains under consid-
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eration, a rule is an array of operations; a language is described by
the componentwise closure of the lexical signs under the rules of
grammar. (For discussion see Oehrle 1988.)

Bidirectional categorial grammar provides for the classification
of linguistic objects by starting with primitive types representing
“complete” (or: primarily meaningful) expressions, and building fur-
ther classes by means of the type-constructors / and \. Assignment
of a type B/A (A\B) to an expression is a simultaneous classification
according to form and meaning stating that the expression prefixes
(postfixes) itself to expressions of type 4 to form expressions of
type B, and stating that the meaning of the resultant expression is
given by the application of the meaning of the affix expression to
that of the stem expression.

Consider for instance a language containing as complete expres-
sions some proper names ‘John’, ‘Mary’, ... indexed by type N and
some sentences ‘John walks’, ‘Mary walks’, ..., ‘Mary likes John’,
... indexed by type S. Then ‘walks’ has type N\S since it fulfills the
condition to have this type, namely to combine with any proper
name prefix (and applying semantically as a predicate) to form an
S; so also do ‘likes John’, ‘likes Mary’, ..., and ‘likes’ has type
(N\S)/N. But additional type assignments are valid under the in-
tended meaning of the type-constructors. The expression ‘John’ also
has type S/(N\S); this is so because given that every verb phrase we
may care to choose suffixes to ‘John’ to form a sentence, it is true
that John prefixes to every verb phrase to form a sentence; the
semantics in this lifted type is Ax(x j)—the function that applies to
the predicate to give the sentence meaning. For similar reasons,
‘John’ also has type ((IN\S)/N)\W(N\S), and so on.

The categorial calculus AB has an ordered natural deduction style
presentation as follows:

21 a. : : b. : :
x:B/A oA ¢ A x: A\B
/E =——\K
(x¢):B x 9):B
Here the left-to-right arrangement represents the ordering of assumpt-
ions; the encoding of the derivation as an intuitionistic proof in A-
notation (with types implicit) is included before colons.

The calculus AB does not capture all the type inferences that
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John

PN  x:N\S
(xi):8

i =i
Ax(x j): SIN\S)

Figure 4: Subject Lifting

are valid according to the interpretation of types described above,
e.g. it does not capture that inhabitation of type N by ‘John’
implies inhabitation also of type S/(N\S). It contains rules of use, but
not rules of proof. Completeness for an associative version of affixa-
tion (one which forgets grouping) is achieved in the associative
Lambek calculus. L is obtained in the present natural deduction for-
mat by adding the following conditionalisation rules to the direc-
tional Modus Ponens rules of AB. These state that from a derivation
of B from assumptions including an (appropriate) occurrence of 4, a
further derivation is obtained by closing that assumption occurrence.

(22) a. x: A b. x4

v: B . y. B -
v BIA | Iy AB
There is the condition that A is respectively the rightmost and leftmost
undischarged assumption above B in /I and \I. In the introduction
rules, the meaning of the result is given by the functional abstrac-
tion over the meaning of the discharged assumption. By way of
example, the derivation of figure 4 lifts ‘John’ of type N with mean-
ing j to S/(N\S) with meaning Ax(x j).

The rules in (22) are analogous to the usual natural deduction
rule of — introduction, except that exactly one assumption, in a
particular place, must be closed. Derivations are semantically inter-
preted in a single-bind lambda calculus satisfying the usual law of
Preduction. As observed in the previous section, the functional
semantics is an instance of the Curry-Howard correspondence
between constructive implicational logic and the lambda calculus.
By structuring lexical terms, we may program lexical semantics to
interact with derivational semantics under normalisation. By way of
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man that Mary likes
— 1
(N\SYN N
— P
N N\S
— \E
S
— —r
(CN\CN)/(S/N) S/N
/E
CN CN\CN
\E
CN
man that Mary likes
— -1
like x
— ——E
m (like x)
——\E
((like x) m) _
/1
AxApAz[(y 2) A(x z)]  Ax((like x) m)
/E
man AyAz[(y z) A((like z) m))
\E

Az[(man z) A ((like z) m)]
Figure 5: Relativisation

illustration of both this and of hypothetical reasoning we note that
the non-canonical constituent ‘John likes’ can be derived as of type
S/N, and assignment of categorial type (CN\CN)/(S/N) to an object
relative pronoun produces relativisation (cf. Steedman 1985); see
figure 5, where the lexical semantics of the relative pronoun com-
putes the intersection of two predicates.

In general, the depth of embedding of the position that a relative
pronoun binds is unbounded. In (23a) it binds the object position in
a subordinate clause at depth one, in (23b) at depth two, and the
pattern continues without limit.

(23) a. the man that John thinks Mary likes
b. the man that Mary thinks Bill claims Suzy likes

The treatment just given allows for this long-distance relativisation
since there is no constraint on the remoteness of conditionalisation;
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man that John thinks Mary likes |
(N\SYyN N

N N\S
\E

(N\SyS S

N N\S

fE

- J—
(CN\CN)/(S/N) S/N

CN CN\CN

\E
CN

Figure 6: Long distance relativisation

see figure 6. However, the relative pronoun argument clause type
S/N admits just clause-final extraction sites (“gaps”): S/N means an
element which concatenates with an N at its right periphery to form
an S. Thus medial extraction such as e.g. (24) where the object is
missing from before the adverb is not generated.

(24) the man that Bill meets today

Furthermore, some verbs in English like ‘assure’ and ‘guarantee’
exercise valencies which must be satisfied by extraction such as
relativisation rather than by a canonical, non-extracted, comple-
ment; thus for example (25a) is grammatical but (25b) is not.

(25) a. the man that John assures Mary to be reliable
b. *John assures Mary Bill to be reliable.

We shall later see how the desired effects can be obtained.
For the product types 4eB there are the following rules of or-
dered natural deduction:

(26) a. : : b. :
A yvB w.AeB

SRS - oE”
(¢, v): AeB x:A y A

yC
n
ylxerm, yem): C
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Mary considers John Socialist

N CN/CN

eI
(N\S)/(N+(CN/CN)) N+(CN/CN) °

(E

N N\S
A\E
S

Mary considers John socialist

i .Px.»&?wonmn:mg vIA(x )]

= cH

Ax(consider ((m,x Az(z = mx]) 7,x)) (i, AxAy[(socialist v)A(x ,__.__:m
— /

m (consider y)[(socialist j)A[j = _._ﬁm

Qno-_manﬂ [(socialist j)Aj = j]]) m)
Figure 7: Analysis using product

In the rule oE we plug vertically a proof of 4eB into the adjacent
premises 4 and B of a proof of C. The root is extended by a coin-
dexed bar in order that the derivations remain freely generated, and
the semantic annotation is recoverable from just the formulas and
rules.

In the example of figure 7 the product is used to give a so-called
“small-clause” analysis to the complements of the verb ‘consider’
whereby the object and predicative following the verb form a ca-
nonical constituent. The lexical semantics of ‘considers’ yields an
analysis [(socialist j) A [j = j]] of the subordinate clause which is
logically equivalent to (socialist j). (Note that this illustrative role of
product is not essential since types C/(BeA) and(C/A)/B are inter-
derivable in L.)

The examples above illustrate some potential of Lambek categorial
grammar in relation to natural language, even for “action-at-a-dis-
tance” such as relativisation where an element has an effect remote
from its location, and which classically motivates a transformational
approach. But this is clearly only a beginning, for instance natural
language abounds with polymorphism, and while the Lambek cal-
culus is a sequence logic suited to the description of linear linguistic
forms, it of itself does not offer any control over the subtleties of
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occurrence and order in natural language. In the following subsec-
tions we review one small further step, extending categorial gram-
mar, seen as an implicational fragment of non-commutative linear
logic, with type-constructors inspired by linear logic, and applying
these to various problematic phenomena.

2.1. Additives

The additive conjunction type-constructor & has the following rules
of natural deduction.

@27 a. -n b. : :
r x mkm@m x A&B
: : 4 &%E, ——— L &E
sCM v B ny A B
- ApHa
(¢, v): A&LB

In &I, T signifies cancellation of the sequence I of leaves.
Consider the ambiguity of the following, between creating a pic-
ture, and coating the building.

(28) John paints the house.

The relation between the meanings is such that ‘paints’ is a transitive
verb in each case. The assignment in (29) captures this generalisation.

(29) paints — AxAy(((paint, x) y), ((paint, x) y)): (N\(S&S))/N

Depending on the final step, figure 8 delivers one or other of the
two readings.

For the additive disjunction €D the rules of natural deduction are thus:

John paints the house
(N\(S8&S))/N N
= /E
N N\(S&S)
\E
S&S
—=&E, or &E,
S

Figure 8: Polymorphism through conjunction
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30) a. :
o A y: B
_ — &l
1,¢: A @mmwr Ly ABB
b. :
w: ADB OF
' xx4A Ty:B A
2:C X C
n

(w—=xx:y.2): C

In @E a subproof of ADB is plugged into the premises 4, A and T',
B of two proofs of C. The semantic operator is a case operator
keyed on first and second injections 1, and 1,. Depending on the label-
ling, the first or second branch is taken:

Bl (¢ > x.x5 yx) ~ xlxe¢l
Ly = x.x5 y-20) ~ el

This disjunctive connective finds application in e.g. the polymor-
phism of ‘is’ with respect to its complementation:

(32) a. 007 is teetotal.
b. 007 is Bond.

In (32a) the complement is an adjective and the semantics is predi-
cation of the subject; in (32b) the complement is a nominal and the
semantics involved is identification with the subject. We achieve
these effects with the following single assignment.

(33) is — AxAp(x —z.((z Mulu = y]) y) wlw = 3D
(N\S)/((CN/CN)BN)

A derivation illustrating the predicational use is given in figure 9. A
derivation for the identificational use is shown in figure 10. The use
of such type-constructors, as well as quantifiers, in application to
linguistic polymorphism is discussed in more detail in Morrill (1994a,
ch. 6).
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Bond is teetotal
CN/CN
@I,
(N\S)/((CN/CN)®N) (CN/CN)SN
/E
N N\S
\E
S
Bond is teetotal

Au Av[(teetotal v) A (u 5_@
Iyl = (2 Jue = 50) 3wl =)D 1judo{(teetotal ) au V)]
ﬂ Ayl(teetotal y)Aly = y]]

[(teetotal b)A[b = b]]

E

Figure 9: Polymorphism through disjunction, I

2.2. Semantic Modality

Intensional semantics provides an approach to the problem of sense
on the basis of multiple reference or contextuality. In this view mean-
ings are relativised to worlds or points of reference. Montague (1973)
structures semantic types as ordered pairs thus: if T and 7' are types,
then <7, 7'>, and <s, 7> are types. The former is the usual binary
functional type-constructor of the simple theory of types; the latter
is a unary type-constructor for functions into 7 from the set of worlds
represented by s: senses formalised as intensions. To the definition
of lambda terms are added the clauses: if ¢ is a term of type 7 then
"¢ (intensionalisation; ‘up’) is a term of type <s, t>, and if ¢ is a
term of type <s, 7>, "¢ (extensionalisation; ‘down’) is a term of type
7. There is the following law of term reduction, down-up cancella-
tion:

B4 "o~

The intensionalisation and extensionalisation operators are like QUOTE
and evaL in Lisp. Hobbs and Rosenschein (1978) point out the
close relations between Lisp and Montague’s intensional logic.
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007 is Bond
N
oI,
(N\S)/((CN/CN)@N) Aoz\ozvez\m
N N\S
i \E
S
007 is Bond
b
&I,
AxAy(x — z.((z Awlu = y]) y); wlw = y]) _Nﬁm
007 Aylb = y]
\E
[b = 007]

Figure 10: Polymorphism through disjunction, II

In Morrill (1990b) this is rendered as a Curry-Howard correspond-
ence between modal logic and intensional types; the unary modal
operator I is the intensional type-constructor. Annotated rules of
S4 natural deduction are as follows:

(35 a. : b. :
¢: A $:DA
— %0 \_DH. ﬂﬂm

There is the condition * on OI that every path from the root to an
open assumption contains a licencing modal type, i.e. a modal type
which does not depend on closed assumptions. An intensionalised
version of lexical assignments is as follows.

(36) for - "Axx :O(PP/N)
john - :ON
mary -"m :ON
likes — like :O((N\S)/N)
man — man :OCN
the — the :ON/CN)
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thinks — think
votes — vote

: O((N\S)/TIS)
: O((N\S)/PP)

All lexical categories are modalised since all words have senses. The
semantics of the preposition is the identity function at all worlds
and that of the proper names renders them rigid designators, i.e.
they have the same reference at all worlds; the propositional atti-
tude verb ‘thinks’ projects an intensional subordinate sentence. A
derivation is given in figure 11, an intensional analysis of ‘Mary
thinks John votes for the man’.

This semantic modality rests on an intensional semantic interpre-
tation on the basis of a single domain of points of reference, but e.g.
Montague distinguishes worlds and times, and for this we could use
a bimodal logic. In general there would be a polymodal logic, with
a modality for each dimension of intensional ramification; see Morrill
(1994a, ch. 5).

2.3. Structural Modality

There is the following annotated natural deduction rule of control-
led permutation with S4 modality introduction and elimination.
(37 a : :

¢ A y. B

B A AP", A or B A-ed
xC
x[xe— ¢, ye— tht
b. : :
oA ¢ AA E
P * _— D
¢: AA = ¢ A

Assignment of type (CN\CN)/(S/AN) to a relative pronoun will now
allow it to fill a gap in any position, not just a clause-peripheral
one, as seen in figure 12, cf. (24).

Consider now the fact, illustrated in (25), that ‘assure’ allows ex-
traction of the subject of its infinitival complement, but does not
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Mary thinks John votes for the man
O(N/CN) OCN
OE OE
OPP/N) N/CN CN
OE 'E
O(N\S)/PP) PP/N N
— OE —/E
ON  (N\S)/PP PP
—OE /E
N N\S
\E
O((N\S)/08S) S
OE —0Or
ON (N\S)/0s Os
—OE /E
N N\S
\E
S
Mary thinks John votes for  the man
the man
OE OE
“Axx  “the “man
—OE /E
vote Axx ("the “man)
DOE {E
i “vote ("the “man)
-0OE {E
j (“vote ("the “man))
— \E
think (Cvote ("the “man)) j)
OE |
“m “think “((C'vote ("the “man)) j)
—0E /E
m ("think “(('vote ("the “man)) j})
-\E

(('think "(('vote ("the “man)) j)) m)
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that Bill meets today
— —2
(NAS)HY{NAS) AN
—AP!
AN (NAS)\(N\S)

——— —AE
N\S)N N
— /E
NAS
\E
NAS
—1
N N\S
\E
S
- S
(CN\CN)/(S/AN) S/IAN
/E
CN\CN
that Bill meets today
-2
today X
— AP
z w
- — -AE
meet z
/E
(meet z)
\E

(w (meet z))

— 1
b (today (meet x))
."m

((today Q:M: x)) b)
RS ¢

AxpA{(y 2) A (x 2)] Ax((today (meet x)) b) \
E

AyAz[(y 2) A ((today (meet z)) b)]

Figure 12: Medial extraction
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that John assures Mary to be reliable
—
NAS AN
——AP!
AN N\S
IR
(N\S)/(ANe(N\S))))N N ANe(N\S)
/E —1
(NAS)/(ANe(N\S)) ANe(N\S)
— /E
N NAS
— \E
S
- ) F
(CN\CN)/(SAN) S/AN
/E

Figure 13: Obligatory extraction

allow a canonical, i.e. non-extracted, form. A category that can
only allow extraction is provided by ((N\S)/(ANe(N\S)))/N. Thus,
on the one hand (25a) can be derived as shown in figure 13. On the
other hand, the sequent (38), corresponding to (25b), is not modally
valid (and nor is any variant where the underlined N corresponding
to ‘Bill’ is relocated).

(38) N, (N\S)(ANe(N\S)))/N, N,N, N\S = §

The reason why is that N= AN is not valid. In this way the struc-
tural properties of A allow left extraction, while the modal proper-
ties block generation of any canonical form.

3. Prospects

In section 1 we have tried to explain the precedents of type logical
grammar from the point of view of logic. We offer now a brief
analysis from the point of view of formal linguistics.

The model of grammar based on rewriting systems initially estab-
lished by Chomsky (1965) had the following two fundamental char-
acteristics: firstly, the lexicon was the repository of only idiosyn-
cratic information, all generalisations being expressed syntactically;
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secondly, surface structures were derived from deep structures by
multistratal derivations generated by series of transformations. Type
logical grammar can be seen as the integration of Chomsky’s for-
mal syntax and Montague’s formal semantics in the light of three
subsequent revolutions: one linguistic, one computational, and one
logical.

The linguistic revolution is the transfer to lexicalism initiated in
Lexical-Functional Grammar (Bresnan 1982), driven by empirical
considerations revealing that various phenomena (such as pas-
sivisation) are best characterised by lexical generalisations. This move
abandons the principle that all regularities should be expressed syn-
tactically and not lexically.

The computational revolution is the elimination of strata. Com-
putationally, an architecture comprising many serially related repre-
sentations is unattractive because calculations at one point must be
made in ignorance of constraints exercised at another; one would
prefer all dependencies to represented simultaneously so that com-
putations and constraints can be rendered in parallel. This is real-
ised in such monostratal computational linguistic formalisms as
Generalised Phrase Structure Grammar (Gazdar, Klein, Pullum and
Sag, 1985) and Head-driven Phrase Structure Grammar (Pollard
and Sag 1987, 1994).

The logical revolution (Moortgat 1988, van Benthem 1991, Morrill
1994a) marks a transition from grammar as formal system in gen-
eral, as in Chomsky’s rewriting paradigm, to logical system in par-
ticular, in the manner we have here endeavored to explain and illus-
trate. A type logical grammar comprises solely a lexicon, there are
no non-logical axioms such as analogues of phrase structure sche-
mata, so in so far as a logic may be defined model-theoretically, this
framework is actually non-stratal: it makes no essential use of any
level of representation, rather the language model is determined en-
tirely be the meaning of operators. It is intriguing to note that the
most recent theory minimalism of Chomsky (1995) shares the same
features of lexicalism and non-existence of any essential level of
syntactic representation (see Morrill, 1994a, ch. 9). Thus it does not
seem in vain to hope for a methodological convergence here.

Let us conclude with two observations as to future prospects,
one at the level of category formulas, the other at the level of proofs.
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Regarding categorisation, we have assumed above a single sort of
prosodic form, strings of words, and prosodic operation, con-
catenation. That is, we have worked with a system which drops
permutation but retains the associativity implicit in the definition of
sequent antecedents as sequences. Lambek (1961) already introduced
non-associative logic. However, rather than assuming full associativity
or full non-associativity, what really seems preferable is some kind
of controlled partial non-associativity, introducing localised struc-
tural inhibition analogous to the structural facilitation of controlled
partial commutativity seen above (Morrill 1994b, 1994a ch. 7).

Still, this partial commutativity itself is not adequate for action-
at-a-distance in general and the subtleties of discontinuity in natural
grammar demand a methodology for combining concatenative ad-
junction with other modes such as interpolation to introduce partial
commutativity (Moortgat 1991, Morrill 1994a, chs. 4-5,1995, Morrill
and Merenciano 1997). A general framework for such multimodal
categorial type logic is given in Moortgat (1997).

Concerning proofs, we have employed for purposes of exposition a
version of ordered natural deduction, this resembling the derivations
seen in linguistic contexts; we have also spoken of sequent calculus. As
just remarked, the manner in which derivations are represented is not
linguistically relevant, being just the notation for calculations as to
what the grammar says. However, computationally one is certainly in-
terested in the representation of grammatical information and infer-
ence, and here it is important that a proof syntax, proof nets (Girard
1987, Danos and Regnier 1989), has been developed which can make
a real claim to represent the deep structure behind different notations
for proofs, and to define the global geometric conditions of interac-
tion that determine the validity of proofs.

Entering into just a little detail, let us note that although natural
deduction proofs represent a degree of parallelism of derivation (in-
dependent subproofs may be performed in parallel), they still exer-
cise a seriality in respect of hypothetical reasoning: assumptions are
made available and at some point discharged. Ideally we would rid
ourselves of all such temporal clutter and identify the pure struc-
ture, i.e. the geometry, of proofs, in such a way that parallelism,
dependence, and independence are fully determined. This is what is
done in proof nets.
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In the linguistic, non-commutative, form (Roorda 1991, Abrusci
1995) this offers us the potential for a geometry of language in which
proof nets provide us with the true deep structure of linguistic deri-
vations. Furthermore, an understanding of proof nets may begin to
explain computational processes under the Curry-Howard paradigm.
In particular, it may help connect evaluation with mode of referring,
i.e. sense. Intensional semantics treats intensions as functions-in-
extension from contexts to denotations; hence the indistinguishabil-
ity of logical equivalents and the problems of logical omniscience in
Montague semantics; the treatment needs to be more fine-grained
and less extensional. On the other hand, the analogue arising in
Lisp is too quotational, identifying in effect sense with form, which
is too fine-grained. Frege sought a non-psychological notion of sense;
but information processing, human or machine, as we understand it
today is surely at the centre of the issue, and a deeper understand-
ing of proofs and proofs-as-programs may provide us with a key.
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