Generalization in Multi-Agent Systems
Learning in Multi-Agent Systems: Important Issues

- Classification
- Social Awareness
- Communication
- Role Learning
- Distributed Learning
- Focus: Learning of Coordination
Types of Multi-Agent Learning
[Weiss & Dillenbourg 99]

• **Multiplied Learning:** No interference in the learning process by other agents (except for exchange of training data or outputs).

• **Divided Learning:** Division of learning task on functional level.

• **Interacting Learning:** cooperation beyond the pure exchange of data.
Social Awareness

• Awareness of existence of other agents and (eventually) knowledge about their behavior.

• Not necessary to achieve near optimal MAS behavior: rock sample collection [Steels 89].

• Can it degrade performance?
Levels of Social Awareness
[Vidal&Durfee 97]

• **0-level agent**: no knowledge about existence of other agents.

• **1-level agent**: recognizes that other agents exist, model other agents as 0-level.

• **2-level agent**: has some knowledge about behavior of other agents and their behavior; model other agents as 1-level agents.

• **k-level agent**: model other agents as \((k-1)\)-level.
Social Awareness and Q Learning

• 0-level agents already learn *implicitly* about other agents.

• [Mundhe and Sen, 00]: study of two Q learning agents up to level 2.

• Two 1-level agents display slowest and least effective learning (worse than two 0-level agents).
Agent models and Q Learning

- \(Q: S \times A^n \rightarrow R \), where \(n \) is the number of agents.

- If other agent’s actions are not observable, need assumption for actions of other agents.

- **Pessimistic assumption**: given an agent’s action choice other agents will minimize reward.

- **Optimistic assumption**: other agents will maximize reward.
Agent Models and Q Learning

• Pessimistic Assumption leads to overly cautious behavior.
• Optimistic Assumption guarantees convergence towards optimum [Lauer & Riedmiller ‘00].
• If knowledge of other agent’s behavior available, Q value update can be based on probabilistic computation [Claus and Boutilier ‘98]. But: no guarantee of optimality.
Q Learning & Communication

[Tan 93]

Types of communication:
- Sharing sensation
- Sharing or merging policies
- Sharing episodes

Results:
- Communication generally helps
- Extra sensory information may hurt
Role Learning

- Often useful for agents to specialize in specific roles for joint tasks.
- Pre-defined roles: reduce flexibility, often not easy to define optimal distribution, may be expensive.
- How to learn roles?
- [Prasad et al. 96]: learn optimal distribution of pre-defined roles.
Q Learning of roles

- [Crites&Barto 98]: elevator domain; regular Q learning; no specialization achieved (but highly efficient behavior).
- [Ono&Fukumoto 96]: Hunter-Prey domain, specialization achieved with *greatest mass merging strategy*.

Q Learning of Roles
[Balch 99]

- Two main types of reward function: local and global.
- Global reward supports specialization.
- Local reward supports emergence of homogeneous behaviors.
- Some domains benefit from learning team heterogeneity (e.g., robotic soccer), others do not (e.g., multi-robot foraging).
- Heterogeneity measure: social entropy.
Distributed Learning

• Motivation: Agents learning a global hypothesis from local observations.
• Application of MAS techniques to (inductive) learning.
• Applications: Distributed Data Mining [Provost & Kolluri ‘99], Robotic Soccer.
Distributed Data Mining

- [Provost & Hennessy 96]: Individual learners see only subset of all training examples and compute a set of local rules based on these.

- Local rules are evaluated by other learners based on their data.

- Only rules with good evaluation are carried over to the global hypothesis.
Learning to Coordinate

• Good coordination is crucial for good MAS performance.
• Example: soccer team.
• Pre-defined coordination protocols are often difficult to define in advance.
• Needed: learning of coordination.
• Focus: Q-learning of coordination.
Soccer Formation
Soccer Formation Control

- Formation control is a coordination problem.
- Good formations and set-plays seem to be a strong factor in winning teams.
- To date: pre-defined.
- Can (near-)optimal formations be (reinforcement) learned?
A Sub-Problem

- **Given**: n agents at random positions, and a formation having n positions.
- **Wanted**: set of n policies that transforms initial state into the desired formation.
- **Specifically**: Q learning of these policies.
A Further Simplification

- MAS Policy: decision procedure who takes which position.
- No two agents should choose the same formation position.
- Problem reduces to reinforcement learning of coordination in cooperative games.
Cooperative Games

- Players perform actions simultaneously.
- Afterwards, all players receive the same reward based on the joint action.

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
<td>A2</td>
</tr>
</tbody>
</table>

This table represents a simple cooperative game where players A1 and A2 can choose to act independently or together, resulting in different rewards.
Cooperative Games and Formations

- Consider 2-player formation with 2 positions: left, right.
- Corresponding cooperative game:

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>left</td>
</tr>
<tr>
<td>Player 1</td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>0</td>
</tr>
<tr>
<td>right</td>
<td>5</td>
</tr>
</tbody>
</table>
Learning in Cooperative Games

• To date: focus on Q-learning.
• Is communication/observation amongst agents necessary?
• Does this requirement change with increasing difficulty of the cooperative game?
Convergence

• Single-agent Q-learning: guaranteed convergence (to optimum).
• Multi-agent Q-learning: more assumptions needed.
• Crucial in MAS: action selection strategy.
Q Learning Revisited

• Modified Q update function:
 \[Q(a) = Q(a) + \gamma (r - Q(a)) \]

• Boltzmann action selection strategy:
 \[P(a) = \frac{e^{EV(a)/T}}{\sum_{a'} e^{EV(a')/T}} \]
Boltzmann Exploration

• Usually: $EV(a) = Q(a)$.
• Trade-off between exploration and exploitation.
• Higher temperature T results in more emphasis on exploration.
• Temperature T should be high at first, and lowered with time ($T(t) = e^{(-s*t)}$).
Q Learning of Coordination

- [Singh et al., 2000]: convergence to some joint action can be ensured with specific temperature properties.
- Convergence to optimal joint action for simple cases:

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>A1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
“Difficult” Cooperative Games

• Climbing Game [Claus & Boutillier, 98]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11</td>
<td>-30</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>-30</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Climbing Game

• Multiplied Q learning with Boltzmann exploration converges to suboptimal (c,c).
• [C & B, 98]: Joint action learners (JAL).
• Agents observe each others actions and build a probabilistic model, according to which the next action is chosen.
• Agents get to (b,b) but are stuck there.
Climbing Game (cont.)

• Optimistic assumption [Lauer & Riedmiller, 00]: never reduce Q-values due to penalties.
• Converges quickly to optimal (a,a).
• However, does not converge on stochastic version of climbing game.
Stochastic Climbing Game

<table>
<thead>
<tr>
<th>Player 2</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>12/10</td>
<td>0/-60</td>
<td>0/-60</td>
</tr>
<tr>
<td>b</td>
<td>0/-60</td>
<td>14/0</td>
<td>8/4</td>
</tr>
<tr>
<td>c</td>
<td>5/-5</td>
<td>5/-5</td>
<td>7/3</td>
</tr>
</tbody>
</table>

Player 1

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
<td>0/-60</td>
<td>0/-60</td>
</tr>
<tr>
<td>b</td>
<td>0/-60</td>
<td>14/0</td>
<td>8/4</td>
</tr>
<tr>
<td>c</td>
<td>5/-5</td>
<td>5/-5</td>
<td>7/3</td>
</tr>
</tbody>
</table>
FMQ Heuristic

- \([\text{Kapetanakis & Kudenko, 02}]:\)
 - \(EV(a) = Q(a) + c \text{ freq}(\text{maxR}(a)) \text{ maxR}(a)\)
- \(EV(a)\) carries information on how frequently an action produces its maximum corresponding reward.
- Converges to optimal \((a,a)\) for climbing game and \textit{partially stochastic} climbing game.
Partially Stochastic Climbing Game

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11</td>
<td>0/-60</td>
<td>0/-60</td>
</tr>
<tr>
<td>b</td>
<td>0/-60</td>
<td>14/0</td>
<td>8/4</td>
</tr>
<tr>
<td>c</td>
<td>5/-5</td>
<td>5/-5</td>
<td>7/3</td>
</tr>
</tbody>
</table>
“Difficult” Cooperative Games

- Penalty Game [Claus & Boutillier, 98]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
<td>0</td>
<td>k</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>k</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
Penalty Game

• JAL: convergence to optimal (a,a) or (c,c) only for small penalties $k (k > -20)$.

• Both optimistic assumption and FMQ converge to either optimum also for large penalties (up to -100).
Learning of Coordination: More Questions

• Scaling-up of Q learning approaches?
• Agents with state: [Boutilier, 99].
• Large numbers of actions/agents?
• Learning of formations from non-explicit rewards?
Learning of Coordination: Conclusions

• Idealized and simple cases have been studied and solved.
• Mutual communication/observation may not be needed.
• Beyond Q learning: Evolutionary approaches [Quinn, 01].