
Noname manuscript No.
(will be inserted by the editor)

Identifiability and Transportability in Dynamic Causal Networks

Gilles Blondel · Marta Arias · Ricard Gavaldà
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Abstract In this paper we propose a causal analog to the
purely observational Dynamic Bayesian Networks, which
we call Dynamic Causal Networks. We provide a sound and
complete algorithm for the identification of causal effects in
Dynamic Causal Networks, namely, for computing the effect
of an intervention or experiment given a Dynamic Causal
Network and probability distributions of passive observa-
tions of its variables, whenever possible. We note the exis-
tence of two types of hidden confounder variables that affect
in substantially different ways the identification procedures,
a distinction with no analog in either Dynamic Bayesian
Networks or standard causal graphs. We further propose a
procedure for the transportability of causal effects in Dy-
namic Causal Network settings, where the result of causal
experiments in a source domain may be used for the identi-
fication of causal effects in a target domain.

Keywords Causal analysis · Dynamic modeling

1 Introduction

Bayesian Networks (BN) are a canonical formalism for rep-
resenting probability distributions over sets of variables and
reasoning about them. A useful extension for modeling phe-
nomena with recurrent temporal behavior are the Dynamic
Bayesian Networks (DBN). While regular BN are directed
acyclic graphs, DBN may contain cycles, with some edges
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indicating dependence of a variable at time t+ 1 on another
variable at time t. The cyclic graph in fact compactly rep-
resents an infinite acyclic graph formed by infinitely many
replicas of the cyclic net, with some of the edges linking
nodes in the same replica, and others linking nodes in con-
secutive replicas.

BN and DBN model conditional (in)dependences, so they
are restricted to observational, non-interventional data or,
equivalently, model association, not causality. Pearl’s causal
graphical models and do-calculus [20] are a leading approach
to modeling causal relations. They are formally similar to
BN, as they are directed acyclic graphs with variables as
nodes, but edges represent causality. A new notion is that of
a hidden confounder, an unobserved variableX that causally
influences two variables Y and Z so that the association be-
tween Y and Z may erroneously be taken for causal influ-
ence. Hidden confounders are unnecessary in BNs since the
association between Y and Z represents their correlation,
with no causality implied. Causal graphical models allow to
consider the effect of interventions or experiments, that is,
externally forcing the values of some variables regardless
of the variables that causally affect them, and studying the
results.

The do-calculus is an algebraic framework for reason-
ing about such experiments: An expression Pr(Y |do(X))

indicates the probability distribution of a set of variables Y
upon performing an experiment on another set X . In some
cases, the effect of such an experiment can be obtained given
a causal network and some observational distribution only;
this is convenient as some experiments may be impossible,
expensive, or unethical to perform. When Pr(Y |do(X)), for
a given causal network, can be rewritten as an expression
containing only observational probabilities, without a do op-
erator, we say that it is identifiable. [25,13] showed that a
do-expression is identifiable if and only if it can be rewrit-
ten in this way with a finite number of applications of the
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three rules of do-calculus, and [25] proposed the ID algo-
rithm which performs this transformation if at all possible,
or else returns fail indicating non-identifiability.

In this paper we use a causal analog of DBNs to model
phenomena where a finite set of variables evolves over time,
with some variables causally influencing others at the same
time t but also others at time t + 1. The infinite DAG rep-
resenting these causal relations can be folded, when regu-
lar enough, into a directed graph, with some edges indicat-
ing intra-replica causal effects and other indicating effect on
variables in the next replica. Central to this representation is
of course the intuitive fact that causal relations are directed
towards the future, and never towards the past.

Existing work on causal models usually focuses on two
main areas: the discovery of causal models from data and
causal reasoning given an already known causal model. Re-
garding the discovery of causal models from data in dynamic
systems, [14] and [7] propose an algorithm to establish an
ordering of the variables corresponding to the temporal or-
der of propagation of causal effects. Methods for the discov-
ery of cyclic causal graphs from data have been proposed
using independent component analysis [15] and using local
d-separation criteria [17]. Existing algorithms for causal dis-
covery from static data have been extended to the dynamic
setting by [18] and [2]. [3,34,33] discuss the discovery of
causal graphs from time series by including granger causal-
ity concepts into their causal models.

Dynamic causal systems are often modeled with sets of
differential equations. However [5] [6] [4] show the caveats
of the discovery of causal models based on differential equa-
tions which pass through equilibrium states, and how causal
reasoning based on the models discovered in such way may
fail. [32] propose an algorithm for the discovery of causal re-
lations based on differential equations while ensuring those
caveats due to system equilibrium states are taken into ac-
count. Time scale and sampling rate at which we observe
a dynamic system play a crucial role in how well the ob-
tained data may represent the causal relations in the system.
[1] discuss the difficulties of representing a dynamic system
with a DAG built from discrete observations and [12] argue
that under some conditions the discovery of temporal causal
relations is feasible from data sampled at lower rate than the
system dynamics.

Our paper does not address the discovery of dynamic
causal networks from data. Instead we focus on causal rea-
soning: given the formal description of a dynamic causal
network and a set of assumptions, our paper proposes al-
gorithms that evaluate the modified trajectory of the sys-
tem over time, after an experiment or intervention. We as-
sume that the observation time-scale is sufficiently small
compared to the system dynamics, and that causal models
include the non-equilibrium causal relations and not only
those under equilibrium states. We assume that a stable set

of causal dependencies exist which generate the system evo-
lution along time. Our proposed algorithms take such mod-
els (and under these assumptions) as an input and predict the
system evolution upon intervention on the system.

Regarding reasoning from a given dynamic causal model,
one existing line of research is based on time series and
granger causality concepts [10,11,9]. The authors in [24]
use multivariate time series for identification of causal ef-
fects in traffic flow models. The work [16] discusses inter-
vention in dynamic systems in equilibrium, for several types
of time-discreet and time-continuous generating processes
with feedback. [8] uses local independence graphs to repre-
sent time-continuous dynamic systems and identify the ef-
fect of interventions by re-weighting involved processes.

Existing work on causality does not thoroughly address
causal reasoning in dynamic systems using do-calculus. The
works [10,11,9] discuss back-door and front-door criteria in
time-series but do not extend to the full power of do-calculus
as a complete logic for causal identification. One of the ad-
vantages of do-calculus is its non-parametric approach so
that it leaves the type of functional relation between vari-
ables undefined. Our paper extends the use of do-calculus
to time series while requiring less restrictions than existing
parametric causal analysis. Parametric approaches may re-
quire to differentiate the intervention impacts depending on
the system state, non-equilibrium or equilibrium, while our
non parametric approach is generic across system states. Our
paper shows the generic methods and explicit formulas re-
vealed by the application of do-calculus to the dynamic set-
ting. These methods and formulas simplify the identification
of time evolving effects and reduce the complexity of causal
identification algorithms.

Required work is to precisely define the notion and se-
mantics of do-calculus and hidden confounders in the dy-
namic setting and investigate whether and how existing do-
calculus algorithms for identifiability of causal effects can
be applied to the dynamic case.

As a running example (more for motivation than for its
accurate modeling of reality), let us consider two roads join-
ing the same two cities, where drivers choose every day to
use one or the other road. The average travel delay between
the two cities any given day depends on the traffic distribu-
tion among the two roads. Drivers choose between a road or
another depending on recent experience, in particular how
congested a road was last time they used it. Figure 1 indi-
cates these relations: the weather(w) has an effect on traffic
conditions on a given day (tr1, tr2) which affects the travel
delay on that same day (d). Driver experience influences the
road choice next day, impacting tr1 and tr2. To simplify,
we assume that drivers have short memory, being influenced
by the conditions on the previous day only. This infinite net-
work can be folded into a finite representation as shown in
Figure 2, where +1 indicates an edge linking two consec-
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utive replicas of the DAG. Additionally, if one assumes the
weather to be an unobserved variable then it becomes a hid-
den confounder as it causally affects two observed variables,
as shown in Figure 3. We call the hidden confounders with
causal effect over variables in the same time slice static hid-
den confounders, and hidden confounders with causal effect
over variables at different time slices dynamic hidden con-
founders. Our models allow for causal identification with
both types of hidden confounders, as will be discussed in
Section 4.

This setting enables the resolution of causal effect iden-
tification problems where causal relations are recurrent over
time. These problems are not solvable in the context of clas-
sic DBNs, as causal interventions are not defined in such
models. For this we use causal networks and do-calculus.
However, time dependencies can’t be modeled with static
causal networks. As we want to predict the trajectory of the
system over time after an intervention, we must use a dy-
namic causal network. Using our example, in order to reduce
travel delay traffic controllers could consider actions such as
limiting the number of vehicles admitted to one of the two
roads. We would like to predict the effect of such action on
the travel delay a few days later, e.g. Pr(dt+α|do(tr1t)).

Our contributions in this paper are:

– We introduce Dynamic Causal Networks (DCN) as an
analog of Dynamic Bayesian Networks for causal rea-
soning in domains that evolve over time. We show how
to transfer the machinery of Pearl’s do-calculus [20] to
DCN.

– We extend causal identification algorithms [27,25,26]
to the identifiability of causal effects in DCN settings.
Given the expression P (Yt+α|do(Xt)), the algorithms
either compute an equivalent do-free formula or con-
clude that such a formula does not exist. In the first case,
the new formula provides the distribution of variables Y
at time t + α given that a certain experiment was per-
formed on variables X at time t. For clarity, we present
first an algorithm that is sound but not complete (Sec-
tion 4), then give a complete one that is more involved
to describe and justify (Section 5).

– Hidden confounder variables are central to the formal-
ism of do-calculus. We observe a subtle difference be-
tween two types of hidden confounder variables in DCN
(which we call static and dynamic). This distinction is
genuinely new to DCN, as it appears neither in DBN nor
in standard causal graphs, yet the presence or absence of
hidden dynamic confounders has crucial impacts on the
post-intervention evolution of the system over time and
on the computational cost of the algorithms.

– Finally, we extend from standard Causal Graphs to DCN
the results by [22] on transportability, namely on whether
causal effects obtained from experiments in one domain
can be transferred to another domain with similar causal

Fig. 1 A dynamic causal network. The weather w has an effect on traf-
fic flows tr1, tr2, which in turn have an impact on the average travel
delay d. Based on the travel delay car drivers may choose a different
road next time, having a causal effect on the traffic flows.

structure. This opens up the way to studying relational
knowledge transfer learning [19] of causal information
in domains with a time component.

2 Previous Definitions and Results

In this section we review the definitions and basic results
on the three existing notions that are the basis of our work:
DBN, causal networks, and do-calculus. New definitions in-
troduced in this paper are left for Section 3.

All formalisms in this paper model joint probability dis-
tributions over a set of variables. For static models (regular
BN and Causal Networks) the set of variables is fixed. For
dynamic models (DBN and DCN), there is a finite set of
“metavariables”, meaning variables that evolve over time.
For a metavariable X and an integer t, Xt is the variable
denoting the value of X at time t.

Let V be the set of metavariables for a dynamic model.
We say that a probability distribution P is time-invariant if
P (Vt+1|Vt) is the same for every t. Note that this does not
mean that P (Vt) = P (Vt+1) for every t, but rather that the
laws governing the evolution of the variable do not change
over time. For example, planets do change their positions
around the Sun, but the Kepler-Newton laws that govern
their movement do not change over time. Even if we per-
formed an intervention (say, pushing the Earth away from
the Sun for a while), these laws would immediately kick in
again when we stopped pushing. The system would not be
time-invariant if e.g. the gravitational constant changed over
time.

2.1 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) are graphical models
that generalize Bayesian Networks (BN) in order to model
time-evolving phenomena. We rephrase them as follows.

Definition 1 A DBN is a directed graph D over a set of
nodes that represent time-evolving metavariables. Some of
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the arcs in the graph have no label, and others are labeled
“+1”. It is required that the sub-graph G formed by the
nodes and the unlabeled edges must be acyclic, therefore
forming a Directed Acyclic Graph (DAG). Unlabeled arcs
denote dependence relations between metavariables within
the same time step, and arcs labeled “+1” denote depen-
dence between a variable at one time and another variable at
the next time step.

Definition 2 A DBN with graph G represents an infinite
Bayesian Network Ĝ as follows. Timestamps t are the in-
teger numbers; Ĝ will thus be a biinfinite graph. For each
metavariable X in G and each time step t there is a variable
Xt in Ĝ. The set of variables indexed by the same t is de-
noted Gt and called “the slice at time t”. There is an edge
from Xt to Yt iff there is an unlabeled edge from X to Y in
G, and there is an edge from Xt to Yt+1 iff there is an edge
labeled “+1” from X to Y in G. Note that Ĝ is acyclic.

The set of metavariables in G is denoted V (G), or sim-
ply V when G is clear from the context. Similarly Vt(G) or
Vt denote the variables in the t-th slice of G.

In this paper we will also use transition matrices to model
probability distributions. Rows and columns are indexed by
tuples assigning values to each variable, and the (v, w) entry
of the matrix represents the probability P (Vt+1 = w|Vt =
v). Let Tt denote this transition matrix. Then we have, in
matrix notation, P (Vt+1) = Tt P (Vt) and, more in gen-
eral, P (Vt+α) = (

∏t+α−1
i=t Ti)P (Vt). In the case of time-

invariant distributions, all Tt matrices are the same matrix
T , so P (Vt+α) = TαP (Vt).

2.2 Causality and Do-Calculus

The notation used in our paper is based on causal models
and do-calculus [20,21].

Definition 3 (Causal Model) A causal model over a set of
variables V is a tuple M = 〈V,U, F, P (U)〉, where U is
a set of random variables that are determined outside the
model (”exogenous” or ”unobserved” variables) but that can
influence the rest of the model, V = {V1, V2, ...Vn} is a set
of n variables that are determined by the model (”endoge-
nous” or ”observed” variables), F is a set of n functions such
that Vk = fk(pa(Vk), Uk, θk), pa(Vk) are the parents of Vk
inM , θk are a set of constant parameters and P (U) is a joint
probability distribution over the variables in U .

In a causal model the value of each variable Vk is as-
signed by a function fk which is determined by constant pa-
rameters θk, a subset of V called the ”parents” of Vk (pa(Vk))
and a subset of U (Uk).

A causal model has an associated graphical representa-
tion (also called the ”induced graph of the causal model”)

Fig. 2 Compact representation of the Dynamic Causal Network in Fig-
ure 1 where +1 indicates an edge linking a variable in Gt with a vari-
able in Gt+1.

in which each observed variable Vk corresponds to a vertex,
there is one edge pointing to Vk from each of its parents,
i.e. from the set of vertex pa(Vk) and there is a doubly-
pointed edge between the vertex influenced by a common
unobserved variable in U (see Figure 3). In this paper we
call the unobserved variables in U ”hidden confounders”.

Causal graphs encode the causal relations between vari-
ables in a model. The primary purpose of causal graphs is to
help estimate the joint probability of some of the variables in
the model upon controlling some other variables by forcing
them to specific values; this is called an action, experiment
or intervention. Graphically this is represented by remov-
ing all the incoming edges (which represent the causes) of
the variables in the graph that we control in the experiment.
Mathematically the do() operator represents this experiment
on the variables. Given a causal graph where X and Y are
sets of variables, the expression P (Y |do(X)) is the joint
probability of Y upon doing an experiment on the controlled
set X .

A causal relation represented by P (Y |do(X)) is said to
be identifiable if it can be uniquely computed from an ob-
served, non-interventional, distribution of the variables in
the model. In many real world scenarios it is impossible,
impractical, unethical or too expensive to perform an ex-
periment, thus the interest in evaluating its effects without
actually having to perform the experiment.

The three rules of do-calculus [20] allow us to transform
expressions with do() operators into other equivalent ex-
pressions, based on the causal relations present in the causal
graph.

For any disjoint sets of variables X , Y , Z and W :

1. P (Y |Z,W, do(X)) = P (Y |W,do(X))

if (Y ⊥ Z|X,W )GX

2. P (Y |W,do(X), do(Z)) = P (Y |Z,W, do(X))

if (Y ⊥ Z|X,W )GXZ

3. P (Y |W,do(X), do(Z)) = P (Y |W,do(X))

if (Y ⊥ Z|X,W )G
XZ(W )

GX is the graph G where all edges incoming to X are
removed. GZ is the graph G where all edges outgoing from
Z are removed. Z(W) is the set of Z-nodes that are not an-
cestors of any W-nodes in GX .
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Do-calculus was proven to be complete [25,13] in the
sense that if an expression cannot be converted into a do-free
one by iterative application of the three do-calculus rules,
then it is not identifiable.

2.3 The ID Algorithm

The ID algorithm [25], and earlier versions by [29,28] im-
plement an iterative application of do-calculus rules to trans-
form a causal expressionP (Y |do(X)) into an equivalent ex-
pression without any do() terms in semi-Markovian causal
graphs (with hidden confounders). This enables the identifi-
cation of interventional distributions from non-interventional
data in such graphs.

The ID algorithm is sound and complete [25] in the sense
that if a do-free equivalent expression exists it will be found
by the algorithm, and if it does not exist the algorithm will
exit and provide an error.

The algorithm specifications are as follows. Inputs: a
causal graph G, variable sets X and Y , and a probability
distribution P over the observed variables in G; Output: an
expression for P (Y |do(X)) without any do() terms, or fail.

Remark: In our algorithms of Sections 4 and 5, we may
invoke the ID algorithm with a slightly more complex input:
P (Y |Z, do(X)) (note the “extra” Z to the right of the con-
ditioning bar). In this case, we can solve the identification
problem for the more complex expression with two calls to
the ID algorithm using the following identity (definition of
conditional probability):

P (Y |Z, do(X)) =
P (Y, Z|do(X))

P (Z|do(X))

The expressionP (Y |Z, do(X)) is thus identifiable if and
only if both P (Y,Z|do(X)) and P (Z|do(X)) are [25].

Another algorithm for the identification of causal effects
is given in [26].

The algorithms we propose in this paper show how to ap-
ply existing causal identification algorithms to the dynamic
setting. In this paper we will refer as ”ID algorithm” any
existing (non-dynamic) causal identification algorithm.

3 Dynamic Causal Networks and Do-Calculus

In this section we introduce the main definitions of this pa-
per and state several lemmas based on the application of do-
calculus rules to DCNs.

In the Definition 3 of causal model the functions fk are
left unspecified and can take any suitable form that best
describes the causal dependencies between variables in the
model. In natural phenomenon some variables may be time
independent while others may evolve over time. However

Fig. 3 Dynamic Causal Network where tr1 and tr2 have a common
unobserved cause, a hidden confounder. Since both variables are in the
same time slice, we call it a static hidden confounder.

rarely does Pearl specifically treat the case of dynamic vari-
ables.

The definition of Dynamic Causal Network is an exten-
sion of Pearl’s causal model in Definition 3, by specifying
that the variables are sampled over time, as in [30].

Definition 4 (Dynamic Causal Network) A dynamic causal
network D is a causal model in which the set F of functions
is such that Vk,t = fk(pa(Vk,t), Uk,t−α, θk); where Vk,t is
the variable associated with the time sampling t of the ob-
served process Vk; Uk,t−α is the variable associated with the
time sampling t − α of the unobserved process Uk; t and α
are discreet values of time.

Note that pa(Vk,t) may include variables in any time
sampling previous to t up to and including t, depending on
the delays of the direct causal dependencies between pro-
cesses in comparison with the sampling rate. Uk,t−α may
be generated by a noise process or by a hidden confounder.
In the case of noise, we assume that all noise processes Uk
are independent of each other, and that their influence to the
observed variables happens without delay, so that α = 0. In
the case of hidden confounders, we assume α ≥ 0 as causes
precede their effects.

To represent hidden confounders in DCN, we extend to
the dynamic context the framework developed in [23] on
causal model equivalence and latent structure projections.
Let’s consider the projection algorithm [31], which takes a
causal model with unobserved variables and finds an equiva-
lent model (with the same set of causal dependencies), called
a ”dependency-equivalent projection”, but with no links be-
tween unobserved variables and where every unobserved vari-
able is a parent of exactly two observed variables.

The projection algorithm in DCN works as follows. For
each pair (Vm, Vn) of observed processes, if there is a di-
rected path from Vm,t to Vn,t+α through unobserved pro-
cesses then we assign a directed edge from Vm,t to Vn,t+α;
however if there is a divergent path between them through
unobserved processes then we assign a bidirected edge, rep-
resenting a hidden confounder.

In this paper we represent all DCN by their dependency-
equivalent projection. Also we assume the sampling rate to
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be adjusted to the dynamics of the observed processes. How-
ever, both the directed edges and the bidirected edges repre-
senting hidden confounders may be crossing several time
steps depending on the delay of the causal dependencies in
comparison with the sampling rate. We now introduce the
concept of static and dynamic hidden confounder.

Definition 5 (Static Hidden Confounder) LetD be a DCN.
Let β be the maximal number of time steps crossed by any
of the directed edges in D. Let α be the maximal number of
time steps crossed by a bidirected edge representing a hid-
den confounder. If α ≤ β then the hidden confounder is
called ”static”.

Definition 6 (Dynamic Hidden Confounder) LetD, β and
α be as in Definition 5. If α > β then the hidden confounder
is called ”dynamic”. More specifically, if β < α ≤ 2β we
call it ”first order” Dynamic Hidden Confounder; if α > 2β

we call it ”higher order” Dynamic Hidden Confounder.

In this paper, we consider three case scenarios in regards
to DCN and their time-invariance properties. If a DCN D

contains only static hidden confounders we can construct
a first order Markov process in discrete time, by taking β
(per Definition 5) consecutive time samples of the observed
processes Vk in D. This does not mean the DCN generat-
ing functions fk in Definition 4 are time-invariant, but that a
first order Markov chain can be built over the observed vari-
ables when marginalizing the static confounders over β time
samples.

In a second scenario, we consider DCN with first order
dynamic hidden confounders. We can still construct a first
order Markov process in discrete time, by taking β consecu-
tive time samples. However we will see in later sections how
the effect of interventions on this type of DCN has a differ-
ent impact than on DCN with static hidden confounders.

Finally, we consider DCN with higher order dynamic
hidden confounders, in which case we may construct a first
order Markov process in discrete time by taking a multiple
of β consecutive time samples.

As we will see in later sections, the difference between
these three types of DCN is crucial in the context of identifi-
ability. Dynamic hidden confounders cause a time invariant
transition matrix to become dynamic after an intervention,
e.g. the post-intervention transition matrix will change over
time. However, if we perform an intervention on a DCN
with static hidden confounders, the network will return to
its previous time-invariant behavior after a transient period.
These differences have a great impact on the complexity of
the causal identification algorithms that we present.

Considering that causes precede their effects, the associ-
ated graphical representation of a DCN is a DAG. All DCN
can be represented as a biinfinite DAG with vertices Vk,t;
edges from pa(Vk,t) to Vk,t; and hidden confounders (bi-
directed edges). DCN with static hidden confounders and

DCN with first order dynamic hidden confounders can be
compactly represented as β time samples (a multiple of β
time samples for higher order dynamic hidden confounders)
of the observed processes Vk,t; their corresponding edges
and hidden confounders; and some of the directed and bi-
directed edges marked with a ”+1” label representing the
dependencies with the next time slice of the DCN.

Definition 7 (Dynamic Causal Network identification) Let
D be a DCN, and t, t+α be two time slices of D. Let X be
a subset of Vt and Y be a subset of Vt+α. The DCN identifi-
cation problem consists of computing the probability distri-
bution P (Y |do(X)) from the observed probability distribu-
tions in D, i.e. computing an expression for the distribution
containing no do() operators.

In this paper we always assume that X and Y are dis-
joint and we only consider the case in which all intervened
variables X are in the same time sample. It is not difficult to
extend our algorithms to the general case.

The following lemma is based on the application of do-
calculus to DCN. Intuitively, future actions have no impact
on the past.

Lemma 1 (Future actions) Let D be a DCN. Take any sets
X ⊆ Vt and Y ⊆ Vt−α, with α > 0. Then for any set Z the
following equalities hold:

1. P (Y |do(X), do(Z)) = P (Y |do(Z))
2. P (Y |do(X)) = P (Y )

3. P (Y |Z, do(X)) = P (Y |Z) whenever Z ⊆ Vt−β with
β > 0.

Proof The first equality derives from rule 3 and the proof
in [25] that interventions on variables which are not ances-
tors of Y inD have no effect on Y . The second is the special
case Z = ∅. We can transform the third expression using the
equivalence

P (Y |Z, do(X)) = P (Y,Z|do(X))/P (Z|do(X));

since Y and Z precedeX inD, by rule 3 P (Y,Z|do(X)) =

P (Y,Z) and P (Z|do(X)) = P (Z), and then the above
equals P (Y,Z)/P (Z) = P (Y |Z). ut

In words, traffic control mechanisms applied next week
have no causal effect on the traffic flow this week.

The following lemma limits the size of the graph to be
used for the identification of DCNs.

Lemma 2 Let D be a DCN with biinfinite graph Ĝ. Let tx,
ty be two time points in Ĝ. Let Gxy be sub-graph of Ĝ con-
sisting of all time slices in between (and including) Gtx and
Gty . Let Glx be graph consisting of all time slices in be-
tween (and including) Gtx and the left-most time slice con-
nected to Gtx by a path of dynamic hidden confounders. Let
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Gdx be the graph consisting of all time slices that are inGlx
or Gxy . Let Gdx− be the graph consisting of the time slice
preceding Gdx. Let Gid be the graph consisting of all time
slices in Gdx− and Gdx. If P (Y |do(X)) is identifiable in Ĝ
then it is identifiable in Gid and the identification provides
the same result on both graphs.

Proof Let Gpast be the graph consisting of all time slices
preceding Gid and Gfuture be the graph consisting of all
time slices succedingGid in Ĝ. By application of do-calculus
rule 3, non-ancestors of Y can be ignored from Ĝ for the
identification of P (Y |do(X)) [25], so Gfuture can be dis-
carded. We will now show that identifying P (Y |do(X)) in
the graph including all time slices of Gpast and Gid is equal
to identifying P (Y |do(X)) in Gid.

By C-component factorization [27,25], the set V of vari-
ables in a causal graph G can be partitioned into disjoint
groups called C-components by assigning two variables to
the same C-component if and only if they are connected by
a path consisting entirely of hidden confounder edges, and

P (Y |do(X)) =
∑

V \(Y ∪X)

∏
i

P (Si|do(V \ Si))

where Si are the C-components ofGAn(Y )\X expressed
as C(GAn(Y ) \ X) = {S1, ..., Sk} and GAn(Y ) is the sub-
graph of G including only the variables that are ancestors of
Y . If and only if every C-component factor P (Si|do(V \Si))
is identifiable then P (Y |do(X)) is identifiable.

C-component factorization can be applied to DCN. Let
VGpast

, VGdx− and VGdx
be the set of variables in Gpast,

Gdx− and Gdx respectively. Then (VGpast ∪ VGdx−)∩ (Y ∪
X) = ∅ and it follows that V \(Y ∪X) = VGpast

∪VGdx− ∪
(VGdx

\ (Y ∪X)).
If Si ∈ C(GAn(Si)) the C-component factorP (Si|do(V \

Si)) is computed as [25]:

P (Si|do(V \ Si)) =
∏

{j|vj∈Si}

P (vj |v(j−1)π )

Therefore there is a P (vj |v(j−1)π ) factor for each vari-
able vj in the C-component, where v(j−1)π is the set of all
variables preceding vj in some topological ordering π in G.

Let vj be any variable vj ∈ VGpast ∪ VGdx− . There are
no hidden confounder edge paths connecting vj to X , and
so vj ∈ Si ∈ C(GAn(Si)). Therefore the C-component fac-
tors QVGpast∪VGdx−

of VGpast ∪ VGdx− can be computed as
(chain rule of probability):

QVGpast∪VGdx−
=

∏
{j|vj∈VGpast∪VGdx−}

P (vj |v(j−1)π )

= P (VGpast
∪ VGdx−)

We will now look into the C-component factors of VGdx
.

As the DCN is a first order Markov process, the C-component
factors of VGdx

can be computed as [25]:

QVGdx
=

∏
i

∑
Si\Y

∏
{j|vj∈Si} P (vj |v

(j−1)
π ) =

=
∏
i

∑
Si\Y

∏
{j|vj∈Si} P (vj |v

(j−1)
π ∩(VGdx−∪VGdx

))

So these factors have no dependency on VGpast
and there-

fore P (Y |do(X)) can be marginalized over VGpast
and sim-

plified as:
P (Y |do(X)) =

∑
V \(Y ∪X)

∏
i P (Si|do(V \ Si))

=
∑
VGpast∪VGdx−∪(VGdx

\(Y ∪X))QVGpast∪VGdx−
QVGdx

=
∑
VGdx−∪(VGdx

\(Y ∪X)) P (VGdx−)QVGdx

We can now replace VGdx− ∪ VGdx
by VGid

and define
S′i as the C-component factors of VGid

which leads to

P (Y |do(X)) =
∑

VGid
\(Y ∪X)

∏
i

P (S′i|do(V \ S′i))

Therefore the identification of P (Y |do(X)) can be com-
puted in the limited graph Gid. Note that if a DCN con-
tains no dynamic hidden confounders, then Gid consists of
Gxy and the time slice preceding it. In a DCN with dynamic
hidden confounders Gid may require additional time slices
into the past, depending on the reach of hidden dynamic
confounder paths. Note that Gid may include infinite time
slices to the past, if hidden dynamic confounders connect
with each other cyclically in succesive time slices. However
in this paper we will consider only finite dynamic confound-
ing. ut

This result is crucial to reduce the complexity of identi-
fication algorithms in dynamic settings. In order to describe
the evolution of a dynamic system over time, after an inter-
vention, we can run a causal identification algorithm over
a limited number of time slices of the DCN, instead of the
entire DCN.

4 Identifiability in Dynamic Causal Networks

In this section we analyze the identifiability of causal effects
in the DCN setting. We first study DCNs with static hid-
den confounders and propose a method for identification of
causal effects in DCNs using transition matrices. Then we
extend the analysis and identification method to DCNs with
dynamic hidden confounders. As discussed in Section 3,
both the DCNs with static hidden confounders and with dy-
namic hidden confounders can be represented as a Markov
chain. For graphical and notational simplicity, we represent
these DCN graphically as recurrent time slices as opposed
to the shorter time samples, on the basis that one time slice
contains as many time samples as the maximal delay of any
directed edge among the processes. Also for notational sim-
plicity we assume the transition matrix from one time slice
to the next to be time-invariant; however removing this re-
striction would not make any of the lemmas, theorems or
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algorithms invalid, as they are the result of graphical non-
parametric reasoning.

Consider a DCN under the above assumptions, and let
T be its time invariant transition matrix from any time slice
Vt to Vt+1. We assume that there is some time t0 such that
the distribution P (Vt0) is known. Fix now tx > t0 and a set
X ⊆ Vtx . We will now see how performing an intervention
on X affects the distributions in D.

We begin by stating a series of lemmas that apply to
DCNs in general.

Lemma 3 Let t be such that t0 ≤ t < tx, with X ⊆
Vtx . Then P (Vt|do(X)) = T t−t0P (Vt0). Namely, transi-
tion probabilities are not affected by an intervention in the
future.

Proof By Lemma 1, (2), P (Vt|do(X)) = P (Vt) for all such
t. By definition of T , this equals T P (Vt−1). Then induct on
t with P (Vt0) = T 0P (Vt0) as base. ut

Lemma 4 Assume that an expression P (Vt+α|Vt, do(X))

is identifiable for some α > 0. LetA be the matrix whose en-
triesAij correspond to the probabilities P (Vt+α = vj |Vt =
vi, do(X)). Then P (Vt+α|do(X)) = AP (Vt|do(X)).

Proof Case by case evaluation of A’s entries. ut

4.1 DCNs with Static Hidden Confounders

DCNs with static hidden confounders contain hidden con-
founders that impact sets of variables within one time slice
only, and contain no hidden confounders between variables
at different time slices (see Figure 3).

The following three lemmas are based on the applica-
tion of do-calculus to DCNs with static hidden confounders.
Intuitively, conditioning on the variables that cause time de-
pendent effects d-separates entire parts (future from past) of
the DCN (Lemmas 5, 6, 7).

Lemma 5 (Past observations and actions) LetD be a DCN
with static hidden confounders. Take any set X . Let C ⊆ Vt
be the set of variables in Gt that are direct causes of vari-
ables in Gt+1. Let Y ⊆ Vt+α and Z ⊆ Vt−β , with α > 0

and β > 0 (positive natural numbers). The following distri-
butions are identical:

1. P (Y |do(X), Z, C)

2. P (Y |do(X), do(Z), C)

3. P (Y |do(X), C)

Proof By the graphical structure of a DCN with static hid-
den confounders, conditioning on C d-separates Y from Z.
The three rules of do-calculus apply, and (1) equals (3) by
rule 1, (1) equals (2) by rule 2, and also (2) equals (3) by
rule 3. ut

In our example, we want to predict the traffic flow Y

in two days caused by traffic control mechanisms applied
tomorrow X , and conditioned on the traffic delay today C.
Any traffic controls Z applied before today are irrelevant,
because their impact is already accounted for in C.

Lemma 6 (Future observations) Let D, X and C be as in
Lemma 5. Let Y ⊆ Vt−α and Z ⊆ Vt+β , with α > 0 and
β > 0, then:

P (Y |do(X), Z, C) = P (Y |do(X), C)

Proof By the graphical structure of a DCN with static hid-
den confounders, conditioning on C d-separates Y from Z

and the expression is valid by rule 1 of do-calculus. ut

In our example, observing the travel delay today makes
observing the future traffic flow irrelevant to evaluate yes-
terday’s traffic flow.

Lemma 7 If t > tx thenP (Vt+1|do(X)) = TP (Vt|do(X)).
Namely, transition probabilities are not affected by interven-
tion more than one time unit in the past.

Proof P (Vt+1|do(X)) = T ′ P (Vt|do(X)) where the ele-
ments of T ′ are P (Vt+1|Vt, do(X)). As Vt includes all vari-
ables in Gt that are direct causes of variables in Gt+1, con-
ditioning on Vt d-separates X from Vt+1. By Lemma 5 we
exchange the action do(X) by the observation X and so
P (Vt+1|Vt, do(X)) = P (Vt+1|Vt, X).

Moreover, Vt d-separates X from Vt+1, so they are sta-
tistically independent given Vt. Therefore,

P (Vt+1|Vt, do(X)) = P (Vt+1|Vt, X) = P (Vt+1|Vt)

which are the elements of matrix T as required. ut

Theorem 1 LetD be a DCN with static hidden confounders,
and transition matrix T . Let X ⊆ Vtx and Y ⊆ Vty for two
time points tx < ty .

If the expression P (Vtx+1|Vtx−1, do(X)) is identifiable
and its values represented in a transition matrix A, then
P (Y |do(X)) is identifiable and

P (Y |do(X)) =
∑
Vty\Y

T ty−(tx+1)AT tx−1−t0P (Vt0).

Proof Applying Lemma 3, we obtain that

P (Vtx−1|do(X)) = T tx−1−t0P (Vt0).

We assumed thatP (Vtx+1|Vtx−1, do(X)) is identifiable, and
therefore Lemma 4 guarantees that

P (Vtx+1|do(X)) = AP (Vtx−1|do(X)) = AT tx−1−t0P (Vt0).

Finally, P (Vty |do(X)) = T (ty−(tx+1))P (Vtx+1|do(X)) by
repeatedly applying Lemma 7. P (Y |do(X)) is obtained by
marginalizing variables in Vty \Y in the resulting expression
T ty−(tx+1)AT tx−1−t0P (Vt0). ut



Identifiability and Transportability in Dynamic Causal Networks 9

As a consequence of Theorem 1, causal identification
of D reduces to the problem of identifying the expression
P (Vtx+1|Vtx−1, do(X)). The ID algorithm can be used to
check whether this expression is identifiable and, if it is,
compute its joint probability from observed data.

Note that Theorem 1 holds without the assumption of
transition matrix time-invariance by replacing powers of T
with products of matrices Tt.

4.1.1 DCN-ID Algorithm for DCNs with Static Hidden
Confounders

The DCN-ID algorithm for DCNs with static hidden con-
founders is given in Figure 4. Its soundness is immediate
from Theorem 1, the soundness of the ID algorithm [25],
and Lemma 2.

Theorem 2 (Soundness) Whenever DCN-ID returns a dis-
tribution for P (Y |do(X)), it is correct. ut

Observe that line 2 of the algorithm calls ID with a graph
of size 4|G|. By the remark of Section 2.3, this means two
calls but notice that in this case we can spare the call for the
“denominator” P (Vtx−1|do(X)) because Lemma 1 guaran-
tees P (Vtx−1|do(X)) = P (Vtx−1). Computing transition
matrix A on line 3 has complexity O((4k)(b+2)), where k is
the number of variables in one time slice and b the number
of bits encoding each variable. The formula on line 4 is the
multiplication of P (Vt0) by n = (ty − t0) matrices, which
has complexityO(n.b2). To solve the same problem with the
ID algorithm would require running it on the entire graph of
size n|G| and evaluating the resulting joint probability with
complexityO((n.k)(b+2)) compared toO((4k)(b+2)+n.b2)

with DCN-ID.
If the problem we want to solve is evaluating the trajec-

tory of the system over time

(P (Vtx+1), P (Vtx+2), P (Vtx+3), ...P (Vtx+n))

after an intervention at time slice tx, with ID we would need
to run ID n times and evaluate the n outputs with over-
all complexity O((k)(b+2) + (2k)(b+2) + (3k)(b+2) + ... +

(n.k)(b+2)). Doing the same with DCN-ID requires running
ID one time to identify P (Vtx+1), evaluating the output and
applying successive transition matrix multiplications to ob-
tain the joint probability of the time slices thereafter, with
resulting complexity O((4k)(b+2) + n.b2).

4.2 DCNs with Dynamic Hidden Confounders

We now discuss the case of DCNs with dynamic hidden
confounders, that is, with hidden confounders that influence
variables in consecutive time slices.

Function DCN-ID(Y ,ty , X ,tx, G,C,T ,P (Vt0
))

INPUT:

– DCN defined by a causal graph G on a set of variables V and a
set C ⊆ V × V describing causal relations from Vt to Vt+1 for
every t

– transition matrix T for G derived from observational data
– a set Y included in Vty

– a set X included in Vtx

– distribution P (Vt0
) at the initial state,

OUTPUT: The distribution P (Y |do(X)), or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2, Gtx−1,
Gtx , and Gtx+1 by the causal relations given by C;

2. run the standard ID algorithm for expression
P (Vtx+1|Vtx−1, do(X)) on G′; if it returns FAIL, return
FAIL;

3. else, use the resulting distribution to compute the transition matrix
A, where Aij = P (Vtx+1 = vi|Vtx−1 = vj , do(X));

4. return
∑

Vty\Y
T ty−(tx+1) AT tx−1−t0 P (Vt0

);

Fig. 4 The DCN-ID algorithm for DCNs with static hidden con-
founders

The presence of dynamic hidden confounders d-connects
time slices, and we will see in the following lemmas how
this may be an obstacle for the identifiability of the DCN.

If dynamic hidden confounders are present, Lemma 7
does no longer hold, since d-separation is no longer guaran-
teed. As a consequence, we cannot guarantee the DCN will
recover its “natural” (non-interventional) transition proba-
bilities from one cycle to the next after the intervention is
performed.

Our statement of the identifiability theorem for DCNs
with dynamic hidden confounders is weaker and includes
in its assumptions those conditions that can no longer be
guaranteed.

Theorem 3 LetD be a DCN with dynamic hidden confounders.
Let T be its transition matrix under no interventions. We fur-
ther assume that:

1. P (Vtx+1|Vtx−1, do(X)) is identifiable and its values rep-
resented in a transition matrix A

2. For all t > tx + 1, P (Vt|Vt−1, do(X)) is identifiable
and its values represented in a transition matrix Mt

Then P (Y |do(X)) is identifiable and computed by

P (Y |do(X)) =
∑
Vty\Y

[
ty∏

t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

Proof Similar to the proof of Theorem 1. By Lemma 3, we
can compute the distribution up to time tx − 1 as

P (Vtx−1|do(X)) = T tx−1−t0P (Vt0).

Using the first assumption in the statement of the theorem,
by Lemma 4 we obtain

P (Vtx+1|do(X)) = AT tx−1−t0P (Vt0).
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Then, we compute the final P (Vty |do(X)) using the matri-
ces Mt from the statement of the theorem that allows us to
compute probabilities for subsequent time-slices. Namely,

P (Vtx+2|do(X)) =Mtx+2AT
tx−1−t0P (Vt0),

P (Vtx+3|do(X)) =Mtx+3Mtx+2AT
tx−1−t0P (Vt0),

and so on until we find

P (Vty |do(X)) =

[
ty∏

t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

Finally, the do-free expression of P (Y |do(X)) is obtained
by marginalization over variables of Vty not in Y . ut

Again, note that Theorem 3 holds without the assump-
tion of transition matrix time-invariance by replacing pow-
ers of T with products of matrices Tt.

4.2.1 DCN-ID Algorithm for DCNs with Dynamic Hidden
Confounders

Function DCN-ID(Y ,ty , X ,tx, G,C,C′,T ,P (Vt0
))

INPUT:

– DCN defined by a causal graph G on a set of variables V and a set
C ⊆ V ×V describing causal relations from Vt to Vt+1 for every
t, and a set C′ ⊆ V × V describing hidden confounder relations
from Vt to Vt+1 for every t

– transition matrix T for G derived from observational data
– a set Y included in Vty

– a set X included in Vtx

– distribution P (Vt0
) at the initial state,

OUTPUT: The distribution P (Y |do(X)), or else FAIL

1. let G′ be the graph consisting of all time slices in between (and
including) Gtx+1 and the time slice preceding the left-most time
slice connected to X by a hidden confounder path or, if there is no
hidden confounder path to X, Gtx−2;

2. run the standard ID algorithm for expression
P (Vtx+1|Vtx−1, do(X)) on G′; if it returns FAIL, return
FAIL;

3. else, use the resulting distribution to compute the transition matrix
A, where Aij = P (Vtx+1 = vi|Vtx−1 = vj , do(X));

4. for each t from tx + 2 up to ty :
(a) let G′′ be the graph consisting of all time slices in between

(and including) Gt and the time slice preceding the left-most
time slice connected to X by a hidden confounder path or, if
there is no hidden confounder path to X, Gtx−1;

(b) run the standard ID algorithm on G′′ for the expression
P (Vt|Vt−1, do(X)); if it returns FAIL, return FAIL;

(c) else, use the resulting distribution to compute the transi-
tion matrix Mt, where (Mt)ij = P (Vt = vi|Vt−1 =
vj , do(X));

5. return
∑

Vty\Y

[
ty∏

t=tx+2

Mt

]
AT tx−1−t0P (Vt0

);

Fig. 5 The DCN-ID algorithm for DCNs with dynamic hidden con-
founders

The DCN-ID algorithm for DCNs with dynamic hidden con-
founders is given in Figure 5.

Its soundness is immediate from Theorem 3, the sound-
ness of the ID algorithm [25], and Lemma 2.

Theorem 4 (Soundness) Whenever DCN-ID returns a dis-
tribution for P (Y |do(X)), it is correct. ut

Notice that this algorithm is more expensive than the
DCN-ID algorithm for DCNs with static hidden confounders.
In particular, it requires (ty − tx) calls to the ID algorithm
with increasingly larger chunks of the DCN. To identify a
single future effect P (Y |do(X)) it may be simpler to invoke
Lemma 2 and do a unique call to the ID algorithm for the
expression P (Y |do(X)) restricted to the causal graph Gid.
However, to predict the trajectory of the system over time
after an intervention, the DCN-ID algorithm for dynamic
hidden confounders directly identifies the post-intervention
transition matrix and its evolution. A system characterized
by a time-invariant transition matrix before the intervention
may be characterized by a time dependent transition ma-
trix, given by the DCN-ID algorithm, after the intervention.
This dynamic view offers opportunities for the analysis of
the time evolution of the system, and conditions for conver-
gence to a steady state.

To give an intuitive example of a DCN with dynamic
hidden confounders, let’s consider three roads in which the
traffic conditions are linked by hidden confounders from tr1

to tr2 the following day, and from tr2 to tr3 the day after.
After applying control mechanisms to tr1, the traffic transi-
tion matrix to the next day is different than the transition ma-
trix several days later, because it is not possible to d-separate
the future from the controlling action by just conditioning on
a given day. As a consequence the identification algorithm
must calculate every succesive transition matrix in the fu-
ture.

5 Complete DCN Identifiability

In this section we show that the identification algorithms
as formulated in previous sections are not complete, and
we develop complete algorithms for complete identification
of DCNs. To prove completeness we use previous results
[25]. It is shown there that the absence of a structure called
’hedge’ in the graph is a sufficient and necessary condition
for identifiability. We first define some graphical structures
that lead to the definition of hedge, in the context of DCNs.

Definition 8 (C-component) Let D be a DCN. Any maxi-
mal subset of variables of D connected by bidirected edges
(representing hidden confounders) is called a C-component.

Definition 9 (C-forest) Let D be a DCN and C one of its
C-components. If all variables in C have at most one child,
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then C is called a C-forest. The set R of variables in C that
have no descendants is called the C-forest root, and the C-
forest is called R-rooted.

Definition 10 (Hedge) Let X and Y be sets of variables
in D. Let F and F ′ be two R-rooted C-forests such that
F ′ ⊆ F , F ∩X 6= ∅, F ′ ∩X = ∅, R ⊂ An(Y )DX̄

. Then F
and F ′ form a Hedge for P (Y |do(X)) in D.

Notice that An(Y )DX̄
refers to those variables that are

ancestors of Y in the causal network D where incoming
edges to X have been removed. We may drop the subscript
as in An(Y ) in which case we are referring to the ances-
tors of Y in the unmodified network D (in which case, the
network we refer to should be clear from the context). More-
over, we overload the definition of the ancestor function and
we use An(Z, V ) to refer to the ancestors of the union of
sets Z and V , that is, An(Z, V ) = An(Z ∪ V ).

The presence of a hedge prevents the identifiability of
causal graphs [25]. Also any non identifiable graph neces-
sarily contains a hedge. These results applied to DCNs lead
to the following lemma.

Lemma 8 (DCN complete identification) LetD be a DCN
with hidden confounders. Let X and Y be sets of variables
in D. P (Y |do(X)) is identifiable iif there is no hedge in D
for P (Y |do(X)).

We can show that the algorithms presented in the pre-
vious section, in some cases introduce hedges in the sub-
networks they analyze, even if no hedges existed in the orig-
inal expanded network.

Lemma 9 The DCN-ID algorithms for DCNs with static
hidden confounders (Section 4.1) and dynamic hidden con-
founders (Section 4.2) are not complete.

Proof Let D be an DCN. Let X be such that D contains
two R-rooted C-forests F and F ′, F ′ ⊆ F , F ∩ X 6= 0,
F ′ ∩X = 0. Let Y be such that R 6⊂ An(Y )DX̄

. The con-
dition for Y implies that D does not contain a hedge, and
is therefore identifiable by Lemma 8. Let the set of vari-
ables at time slice tx + 1 of D, Vtx+1, be such that R ⊂
An(Vtx+1)DX̄

. By Definition 10, D contains a hedge for
P (Vtx+1|Vtx−1, do(X)). The identification of P (Y |do(X))

requires DCN-ID to identify P (Vtx+1|Vtx−1, do(X)) which
fails. ut

The proof of Lemma 9 provides the framework to build
a complete algorithm for identification of DCNs.

Fig. 6 Identifiable Dynamic Causal Network which the DCN-ID algo-
rithm fails to identify. F and F ′ are R-rooted C-forests, but since R is
not an ancestor of Y there is no hedge for P (Y |do(X)). However R
is an ancestor of Vtx+1 and DCN-ID fails when finding the hedge for
P (Vtx+1|Vtx−1, do(X)).

Figure 6 shows an identifiable DCN that DCN-ID fails
to identify.

5.1 Complete DCN identification algorithm with Static
Hidden Confounders

The DCN-ID algorithm can be modified so that no hedges
are introduced if none existed in the original network. This
is done at the cost of more complicated notation, because
the fragments of network to be analyzed do no longer corre-
spond to natural time slices. More delicate surgery is needed.

Lemma 10 LetD be a DCN with static hidden confounders.
Let X ⊆ Vtx and Y ⊆ Vty for two time slices tx < ty . If
there is a hedge H for P (Y |do(X)) in D then H ⊆ Vtx .

Proof By definition of hedge, F and F ′ are connected by
hidden confounders to X . As D has only static hidden con-
founders F , F ′ and X must be within tx. ut

Lemma 11 LetD be a DCN with static hidden confounders.
Let X ⊆ Vtx and Y ⊆ Vty for two time slices tx < ty .
Then, P (Y |do(X)) is identifiable if and only if the expres-
sion P (Vtx+1 ∩An(Y )|Vtx−1, do(X)) is identifiable.

Proof (if) By Lemma 8, if

P (Vtx+1 ∩An(Y )|Vtx−1, do(X))

=
P (Vtx+1 ∩An(Y ), Vtx−1|do(X))

P (Vtx−1)

is identifiable then there is no hedge for this expression inD.
By Lemma 10 if D has static hidden confounders, a hedge
must be within time slice tx. If time slice tx does not con-
tain two R-rooted C-forests F and F ′ such that F ′ ⊆ F ,
F ∩ X 6= 0, F ′ ∩ X = 0, then there is no hedge for any
set Y so there is no hedge for the expression P (Y |do(X))

which makes it identifiable. Now let’s assume time slice tx
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contains two R-rooted C-forests F and F ′ such that F ′ ⊆
F , F ∩ X 6= 0, F ′ ∩ X = 0, then R 6⊂ An(Vtx+1 ∩
An(Y ), Vtx−1)DX̄

. As R is in time slice tx, this implies
R 6⊂ An(Y )DX̄

and so there is no hedge for the expression
P (Y |do(X)) which makes it identifiable.

(only if) By Lemma 8, if P (Y |do(X)) is identifiable
then there is no hedge for P (Y |do(X)) in D. By Lemma 10
if D has static hidden confounders, a hedge must be within
time slice tx. If time slice tx does not contain two R-rooted
C-forests F and F ′ such that F ′ ⊆ F , F ∩X 6= 0, F ′∩X =

0, then there is no hedge for any set Y so there is no hedge
for the expression

P (Vtx+1 ∩An(Y )|Vtx−1, do(X))

=
P (Vtx+1 ∩An(Y ), Vtx−1|do(X))

P (Vtx−1)

which makes it identifiable. Now let’s assume time slice tx
contains two R-rooted C-forests F and F ′ such that F ′ ⊆
F , F ∩X 6= 0, F ′ ∩X = 0, then R 6⊂ An(Y )DX̄

(if R ⊂
An(Y )DX̄

D would contain a hedge by definition). As R is
in time slice tx, R 6⊂ An(Y )DX̄

implies R 6⊂ An(Vtx+1 ∩
An(Y ))DX̄

and R 6⊂ An(Vtx+1 ∩ An(Y ), Vtx−1)DX̄
so

there is no hedge forP (Vtx+1∩An(Y )|Vtx−1, do(X)) which
makes this expression identifiable. ut

Lemma 12 Assume that an expression P (V ′t+α|Vt, do(X))

is identifiable for some α > 0 and V ′t+α ⊆ Vt+α. Let A be
the matrix whose entries Aij correspond to the probabilities
P (V ′t+α = vj |Vt = vi, do(X)). Then P (V ′t+α|do(X)) =

AP (Vt|do(X)).

Proof Case by case evaluation of A’s entries. ut

Lemma 13 LetD be a DCN with static hidden confounders.
Let X ⊆ Vtx and Y ⊆ Vty for two time slices tx < ty . Then

P (Y |do(X)) =

[
ty∏

t=tx+2
Mt

]
P (Vtx+1 ∩ An(Y )|do(X))

where Mt is the matrix whose entries correspond to the
probabilities P (Vt ∩An(Y ) = vj |Vt−1 ∩An(Y ) = vi).

Proof For the identification of P (Y |do(X)) we can restrict
our attention to the subset of variables in D that are an-
cestors of Y. Then we repeatedly apply Lemma 7 on this
subset from t = tx + 2 to t = ty until we find P (Vty ∩
An(Y )|do(X)) = P (Y |do(X)). ut

Function cDCN-ID(Y ,ty , X ,tx, G,C,T ,P (Vt0
))

INPUT:

– DCN defined by a causal graph G on a set of variables V and a
set C ⊆ V × V describing causal relations from Vt to Vt+1 for
every t

– transition matrix T representing the probabilities P (Vt+1|Vt) de-
rived from observational data

– a set Y included in Vty

– a set X included in Vtx

– distribution P (Vt0
) at the initial state,

OUTPUT: The distribution P (Y |do(X)) if it is identifiable, or else
FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2, Gtx−1,
Gtx , and Gtx+1 by the causal relations given by C;

2. run the standard ID algorithm for expression P (Vtx+1 ∩
An(Y )|Vtx−1, do(X)) on G′; if it returns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition ma-
trix A, where Aij = P (Vtx+1 ∩ An(Y ) = vi|Vtx−1 =
vj , do(X));

4. let Mt be the matrix T marginalized as P (Vt ∩ An(Y ) =
vj |Vt−1 ∩An(Y ) = vi)

5. return

[
ty∏

t=tx+2

Mt

]
AT tx−1−t0 P (Vt0

);

Fig. 7 The cDCN algorithm for DCNs with static hidden confounders

Theorem 5 LetD be a DCN with static hidden confounders
and transition matrix T . Let X ⊆ Vtx and Y ⊆ Vty for
two time slices tx < ty . If P (Y |do(X)) is identifiable then

P (Y |do(X)) =

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0P (Vt0) where A

is the matrix whose entries Aij correspond to P (Vtx+1 ∩
An(Y )|Vtx−1, do(X)) and Mt is the matrix whose entries
correspond to the probabilities P (Vt ∩An(Y ) = vj |Vt−1 ∩
An(Y ) = vi).

Proof Applying Lemma 3, we obtain that

P (Vtx−1|do(X)) = T tx−1−t0P (Vt0).

By Lemma 11 P (Vtx+1 ∩An(Y )|Vtx−1, do(X)) is identifi-
able. Lemma 12 guarantees thatP (Vtx+1∩An(Y )|do(X)) =

AP (Vtx−1|do(X)) = AT tx−1−t0P (Vt0). Then we apply
Lemma 13 and obtain the resulting expression

P (Y |do(X)) =

[
ty∏

t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

ut

The cDCN-ID algorithm for identification of DCNs with
static hidden confounders is given in Figure 7.

Theorem 6 (Soundness and completeness) The cDCN-ID
algorithm for DCNs with static hidden confounders is sound
and complete.

Proof The completeness derives from Lemma 11 and the
soundness from Theorem 5. ut
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5.2 Complete DCN identification algorithm with Dynamic
Hidden Confounders

We now discuss the complete identification of DCNs with
dynamic hidden confounders. First we introduce the concept
of dynamic time span from which we derive two lemmas.

Definition 11 (Dynamic time span) Let D be a DCN with
dynamic hidden confounders and X ⊆ Vtx . Let tm be the
maximal time slice d-connected by confounders to X; tm−
tx is called the dynamic time span of X in D.

Note that the dynamic time span of X in D can be in
some cases infinite, the simplest case being when X is con-
nected by a hidden confounder to itself at Vtx+1. In this pa-
per we consider finite dynamic time spans only. We will la-
bel the dynamic time span of X as tdx.

Lemma 14 LetD be a DCN with dynamic hidden confounders.
Let X , Y be sets of variables in D. Let tdx be the dynamic
time span of X in D. If there is a hedge for P (Y |do(X)) in
D then the hedge does not include variables at t > tx+ tdx.

Proof By definition of hedge, F and F ′ are connected by
hidden confounders toX . The maximal time point connected
by hidden confounders to X is tx + tdx. ut

Lemma 15 LetD be a DCN with dynamic hidden confounders.
Let X ⊆ Vtx and Y ⊆ Vty for two time slices tx, ty . Let tdx
be the dynamic time span of X in D and tx + tdx < ty .
P (Y |do(X)) is identifiable if and only if P (Vtx+tdx+1 ∩
An(Y )|Vtx−1, do(X)) is identifiable.

Proof Similarly to the proof of Lemma 11, but replacing
”static” by ”dynamic”, Vtx+1 by Vtx+tdx+1, Lemma 10 by
Lemma 14, and ”time slice tx” by ”time slices tx to tx +

tdx”. ut

Theorem 7 LetD be a DCN with dynamic hidden confounders
and T be its transition matrix under no interventions. Let
X ⊆ Vtx and Y ⊆ Vty for two time slices tx, ty . Let tdx
be the dynamic time span of X in D and tx + tdx < ty . If
P (Y |do(X)) is identifiable then:

1. P (Vtx+tdx+1 ∩An(Y )|Vtx−1, do(X)) is identifiable by
matrix A

2. For t > tx+tdx+1,P (Vt∩An(Y )|Vt−1∩An(Y ), do(X))

is identifiable by matrix Mt

3. P (Y |do(X)) =

[
ty∏

t=tx+tdx+2
Mt

]
AT tx−1−t0P (Vt0)

Proof We obtain the first statement from Lemma 15 and
Lemma 12. Then if t > tx + tdx + 1, then the set (Vt ∩
An(Y ), Vt−1∩An(Y )) has the same ancestors than Y within
time slices tx to tx + tdx + 1, so if P (Y |do(X)) is identifi-
able then P (Vt ∩An(Y )|Vt−1 ∩An(Y ), do(X)) is identifi-
able, which proves the second statement. Finally we obtain

the third statement similarly to the proof of Theorem 3 but
using statements 1 and 2 as proved instead of assumed. ut

Function cDCN-ID(Y ,ty , X ,tx, G,C,C′,T ,P (Vt0
))

INPUT:

– DCN defined by a causal graph G on a set of variables V and a
set C ⊆ V × V describing causal relations from Vt to Vt+1 for
every t, and a set C′ ⊆ V × V describing hidden confounders
from Vt to Vt+1 for every t

– transition matrix T for G derived from observational data
– a set Y included in Vty

– a set X included in Vtx

– distribution P (Vt0
) at the initial state,

OUTPUT: The distribution P (Y |do(X)) if it is identifiable or else
FAIL

1. let G′ be the graph consisting of all time slices in between (and
including) Gtx+1 and the time slice preceding the left-most time
slice connected to X by a hidden confounder path or, if there is no
hidden confounder path to X, Gtx−2;

2. run the standard ID algorithm for expression P (Vtx+tdx+1 ∩
An(Y )|Vtx−1, do(X)) on G′; if it returns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition ma-
trix A, where Aij = P (Vtx+tdx+1 ∩ An(Y ) = vi|Vtx−1 =
vj , do(X));

4. for each t from tx + tdx + 2 up to ty :
(a) let G′′ be the graph consisting of all time slices in between

(and including) Gt and the time slice preceding the left-most
time slice connected to X by a hidden confounder path or, if
there is no hidden confounder path to X, Gtx−1;

(b) run the standard ID algorithm on G′′ for the expression
P (Vt ∩An(Y )|Vt−1 ∩An(Y ), do(X)); if it returns FAIL,
return FAIL;

(c) else, use the resulting distribution to compute the transition
matrix Mt, where (Mt)ij = P (Vt ∩An(Y ) = vi|Vt−1 ∩
An(Y ) = vj , do(X));

5. return

[
ty∏

t=tx+tdx+2

Mt

]
AT tx−1−t0P (Vt0

);

Fig. 8 The cDCN algorithm for DCNs with dynamic hidden con-
founders

The cDCN-ID algorithm for DCNs with dynamic hidden
confounders is given in Figure 8.

Theorem 8 (Soundness and completeness) The cDCN-ID
algorithm for DCNs with dynamic hidden confounders is
sound and complete.

Proof The completeness derives from the first and second
statements of Theorem 7. The soundness derives from the
third statement of Theorem 7. ut

6 Transportability in DCN

[22] introduced the sID algorithm, based on do-calculus, to
identify a transport formula between two domains, where
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the effect in a target domain can be estimated from exper-
imental results in a source domain and some observations
on the target domain, thus avoiding the need to perform an
experiment on the target domain.

Let us consider a country with a number of alternative
roads linking city pairs in different provinces. Suppose that
the alternative roads are all consistent with the same causal
model (such as the one in Figure 3, for example) but have
different traffic patterns (proportion of cars/trucks, toll prices,
traffic light durations...). Traffic authorities in one of the
provinces may have experimented with policies and observed
the impact on, say, traffic delay. This information may be us-
able to predict the average travel delay in another province
for a given traffic policy. The source domain (province where
the impact of traffic policy has already been monitored) and
target domain (new province) share the same causal rela-
tions among variables, represented by a single DCN (see
Figure 9).

Fig. 9 A DCN with selection variables s and s′, representing the dif-
ferences in the distribution of variables tr1 and tr1 in two domains
M1 and M2 (two provinces in the same country). This model can be
used to evaluate the causal impacts of traffic policy in the target domain
M2 based on the impacts observed in the source domain M1.

The target domain may have specific distributions of the
toll price and traffic signs, which are accounted for in the
model by adding a set of selection variables to the DCN,
pointing at variables whose distribution differs among the
two domains. If the DCN with the selection variables is iden-
tifiable for the traffic delay upon increasing the toll price,
then the DCN identification algorithm provides a transport
formula which combines experimental probabilities from the
source domain and observed distributions from the target
domain. Thus the traffic authorities in the new province can
evaluate the impacts before effectively changing traffic poli-
cies. This amounts to relational knowledge transfer learning
between the two domains [19].

Consider a DCN with static hidden confounders only.
We have demonstrated already that for identification of the
effects of an intervention at time tx we can restrict our at-
tention to four time slices of the DCN, tx−2, tx−1, tx, and
tx + 1. Let M1 and M2 be two domains based on this same
DCN, though the distributions of some variables in M1 and

M2 may differ. Then we have

PM2
(Y |do(X)) = T

ty−(tx+1)
M2

AM2
T tx−1−t0M2

P (Vt0),

where the entry ij of matrix AM2 corresponds to the transi-
tion probability PM2

(Vtx+1 = vi|Vtx−1 = vj , do(X)).
By applying the identification algorithm sID, with se-

lection variables, to the elements of matrixA we then obtain
a transport formula, which combines experimental distribu-
tions in M1 with observational distributions in M2. The al-
gorithm for transportability of causal effects with static hid-
den confounders is given in Figure 10.

Function DCN-sID(Y ,ty , X ,tx, G,C,TM2
,PM2

(Vt0
),IM1

)
INPUT:

– DCN defined by a causal graph G (common to both source and
target domains M1 and M2) over a set of variables V and a set
C ⊆ V × V describing causal relations from Vt to Vt+1 for
every t

– transition matrix TM2
for G derived from observational data in

M2

– a set Y included in Vty

– a set X included in Vtx

– distribution PM2
(Vt0

) at the initial state in M2

– set of interventional distributions IM1
in M1

– set S of selection variables

OUTPUT: The distribution PM2
(Y |do(X)) in M2 in terms of TM2

,
PM2

(Vt0
) and IM1

, or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2, Gtx−1,
Gtx , and Gtx+1 by the causal relations given by C;

2. run the standard sID algorithm for expression
P (Vtx+1|Vtx−1, do(X)) on G′; if it returns FAIL, return
FAIL;

3. else, use the resulting transport formula to compute the transition
matrix A, where Aij = P (Vtx+1 = vi|Vtx−1 = vj , do(X));

4. return
∑

Vty\Y
T ty−(tx+1) AT tx−1−t0 P (Vt0

);

Fig. 10 The DCN-sID algorithm for the transportability in DCNs with
static hidden confounders

For brevity we omit the algorithm extension to dynamic
hidden confounders, and the completeness results, which
follow the same caveats already explained in the previous
sections.

7 Experiments

In this section we provide some numerical examples of causal
effect identifiability in DCN, using the algorithms proposed
in this paper.

In our first example, the DCN in Figure 3 represents how
the traffic between two cities evolves. There are two roads
and drivers choose every day to use one or the other road.
Traffic conditions on either road on a given day (tr1, tr2)
affect the travel delay between the cities on that same day
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(d). Driver experience influences the road choice next day,
impacting tr1 and tr2. For simplicity we assume variables
tr1, tr2 and d to be binary. Let’s assume that from Mon-
day to Friday the joint distribution of the variables follow
transition matrix T1 while on Saturday and Sunday they fol-
low transition matrix T2. These transition matrices indicate
the traffic distribution change from the previous day to the
current day. This system is a DCN with static hidden con-
founders, and has a markov chain representation as in Fig-
ure 3.

T1 =



0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3



T2 =



0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1

0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1

0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1

0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1

0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0

0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0

0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0

0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0


The average travel delay d during a two week period is

shown in Figure 11.

Fig. 11 Average travel delay of the DCN without intervention.

Now let’s perform an intervention by altering the traf-
fic on the first road tr1 and evaluate the subsequent evolu-
tion of the average travel delay d. We use the algorithm for
DCNs with static hidden confounders. We trigger line 1 of
the DCN-ID algorithm in Figure 7 and build a graph consist-
ing of four time slices G′ = (Gtx−2, Gtx−1, Gtx , Gtx+1) as
shown in Figure 12.

Fig. 12 Causal graph G′ consisting of four time slices of the DCN,
from tx − 2 to tx + 1

The ancestors of any future delay at t = ty are all the
variables in the DCN up to ty , so in line 2 we run the stan-
dard ID algorithm forα = P (v10, v11, v12|v4, v5, v6, do(v7))
on G′, which returns the expression α:

∑
v1,v2,v3,v8,v9

P (v1, v2, ...v12)
∑
v7,v9

P (v7, v8, v9|v4, v5, v6)
P (v4, v5, v6)

∑
v9
P (v7, v8, v9|v4, v5, v6)

Using this expression, line 3 of the algorithm computes
the elements of matrix A. If we perform the intervention on
a Thursday the matrices A for v7 = 0 and v7 = 1 can be
evaluated from T1.

Av7=0 =



0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1

0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1



Av7=1 =



0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3

0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3



In line 4 we find that transition matricesMt are the same
than for the DCN without intervention. Figure 13 shows the
average travel delay without intervention, and with interven-
tion on the traffic conditions of the first road.
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Fig. 13 Average travel delay of the DCN without intervention, and
with interventions tr1 = 0 and tr1 = 1 on the first Thursday

In a second numerical example, we consider that the sys-
tem is characterized by a unique transition matrix T and the
delay d tends to a steady state. We measure d without inter-
vention and with intervention on tr1 at t = 15. The system’s
transition matrix T is shown below:

T =



0.02 0 0.03 0 0.26 0.13 0.34 0.22

0.02 0 0.03 0 0.26 0.13 0.34 0.22

0.02 0 0.03 0 0.26 0.13 0.34 0.22

0.02 0 0.03 0 0.26 0.13 0.34 0.22

0.34 0.1 0.24 0.21 0 0.02 0.09 0

0.34 0.1 0.24 0.21 0 0.02 0.09 0

0.34 0.1 0.24 0.21 0 0.02 0.09 0

0.34 0.1 0.24 0.21 0 0.02 0.09 0


Figure 14 shows the evolution of d with no intervention

and with intervention.

Fig. 14 Average d of the DCN without intervention and with interven-
tion on tr1 at t = 15.

As shown in the examples, the DCN-ID algorithm calls
ID only once with a graph of size 4|G| and evaluates the
elements of matrix A with complexity O((4k)(b+2), where
k = 3 is the number of variables per slice and b = 1 is the
number of bits used to encode the variables. The rest is the
computation of transition matrix multiplications, which can
be done with complexity O(n.b2), with n = 40− 15 in ex-
ample 2. To obtain the same result with the ID algorithm by
brute force, we would require processing n times the iden-
tifiability of a graph of size 40|G|, with overall complexity
O((k)(b+2) + (2k)(b+2) + (3k)(b+2) + ...+ (n.k)(b+2)).

8 Conclusions and Future Work

This paper introduces dynamic causal networks and their
analysis with do-calculus, so far studied thoroughly only
in static causal graphs. We extend the ID algorithm to the
identification of DCNs, and remark the difference between
static vs. dynamic hidden confounders. We also provide an
algorithm for the transportability of causal effects from one
domain to another with the same dynamic causal structure.

For future work, note that in the present paper we have
assumed all intervened variables to be in the same time slice;
removing this restriction may have some moderate interest.
We also want to extend the introduction of causal analysis
to a number of dynamic settings, including Hidden Markov
Models, and study properties of DCNs in terms of Markov
chains (conditions for ergodicity, for example). Finally, eval-
uating the distribution returned by ID is in general unfea-
sible (exponential in the number of variables and domain
size); identifying tractable sub-cases or feasible heuristics is
a general question in the area.
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