
Combining Digital Access and Parallel Partition for Quicksort and Quickselect

Leonor Frias∗ and Jordi Petit†

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

lfrias@lsi.upc.edu

Abstract

In this paper, we combine digital access to strings with
parallel partition to enhance parallel quicksort and quick-
select implementations. Previously, digital access had only
been combined with sequential comparison-based algo-
rithms and data structures. We present broadly our ap-
proach, not only algorithmically but from the design and
implementation point of view. Finally, we give some exper-
imental results that indicate its effectiveness in practice.

1. Introduction

The partitioning of an array is a basic building block of
many key algorithms, as quicksort and quickselect. Par-
titioning an array with respect to a pivot x consists of re-
arranging its elements such that, for some position s, all
elements at the left of s are smaller than x, and all other el-
ements are greater or equal than x. It is well known that
an array of n elements can be partitioned sequentially and
in-place using exactly n comparisons and m swaps, where
m is the number of greater elements than x whose original
position is smaller than s.

In parallelizing quicksort and quickselect, a key problem
is parallelizing the partition. Recently, in [6] a summary of
existing parallel partitioning algorithms and a further mod-
ification to obtain the minimal number of comparisons (i.e.
n) has been presented.

Note that partition is a comparison-based algorithm, i.e.
the keys are taken as a whole (atomic) to make comparisons.
This is simple, there is often no other way to compare keys,
and in many cases leads to a good performance. However,
for string keys this approach is rough and string keys are
indeed common.

∗Supported by grant number 2005FI 00856 of the Agència de Gestió
d’Ajuts Universitaris i de Recerca with funds of the European Social Fund
and by Spanish project ALINEX (ref. TIN2005-05446)

†Partially supported by FET proactive integrated project 15964 (AEO-
LUS) and by Spanish project FORMALISM (ref. TIN2007-66523)

String keys can be seen as a sequence of digits or charac-
ters, whose alphabet size is typically relatively small. Effi-
cient ad hoc string algorithms and data structures (i.e. tries
and its variants) exploit the digital structure of string keys
to avoid redundant character comparisons. However, their
worst-case performance is tied to the string length. Instead,
it is possible to specialize comparison-based data struc-
tures and algorithms, so that efficient string comparisons
are made whilst keeping the rest of combinatorial properties
(see [9, 7, 4]). The application of these techniques relies on
the relative order in which elements are compared. Specifi-
cally, information on the common prefixes between one el-
ement and its predecessor/successor in the access path must
be kept. In the case of binary search trees (BSTs) and sort-
ing (with an underlying BST structure), these techniques are
amenable to be implemented and result in competitive data
structures in practice. In particular, in [3] a detailed exper-
imental comparison between these and other string search-
ing data is presented.

However, to the best of our knowledge, digital ac-
cess techniques have not been combined with parallel
comparison-based algorithms or data structures. In order
to do so, some precautions must be taken. In this paper,
we describe how to perform digital access on string keys
for parallel partitioning based algorithms, namely parallel
quicksort and quickselect. We focus on currently widely
avaliable multi-core architectures. Besides, we show the ef-
fectiveness of our approach in practice on the top of basic
parallel quicksort and quickselect implementations.

The paper is structured as follows. First, we give an
overview of the two worlds we aim to combine, namely,
parallel partitioning based algorithms and the techniques to
enhance digital access on the top of comparison-based algo-
rithms. Second, we broadly describe how this can be done
from the algorithmic, design and implementation point of
view. Third, we present some experimental results for par-
allel quicksort and quickselect built using our approach. Fi-
nally, we sum up and discuss some possible future work.

2. Preliminaries

Parallelizing quicksort can be done in two (not exclu-
sive) ways: parallelizing the partition and parallelizing the
divide and conquer. In the case of quickselect, one can only
parallelize the partition. In the following, we first give an
overview of parallel partition for atomic keys. Then, we
summarize how sequential partition can be enhanced with
digital access.

2.1. Parallel partition for atomic keys

A summary of existing parallel partitioning algorithms
was presented in [6]. These include a simple algorithm by
Francis and Pannan [5] (STRIDED), a fetch-and-add algo-
rithm by Tsigas and Zhang [13] and a variation of the for-
mer avaliable in the MCSTL library [10] (F&A). Though
very different in nature, these algorithms can be divided
into three main phases: a) A sequential setup of each pro-
cessor’s work, b) a parallel main phase in which most of
the partitioning is done, and c) a cleanup phase, which is
usually sequential. In [6] it was noted that all the above
algorithms disregard part of the work done in the main par-
allel phase when cleaning up. In order to overcome this
drawback, an alternative parallel cleanup phase that uses
the whole comparison information of the parallel phase was
proposed. With that new method, scalable parallel parti-
tioning algorithms that compare each element exactly once
with the pivot are obtained. Moreover, a generalization of
STRIDED to blocks (BLOCKED) was proposed in order to
improve cache performance. For most of the aforemen-
tioned algorithms, though, it was shown experimentally that
avoiding those redundant key comparisons is not noticeable
in performance. Indeed, for fetch-and-add based algorithms
the number of extra comparisons is constant with respect to
n and for the rest of algorithms that number is expected to
be constant.

2.2. Sequential partition for digital keys

Combining efficient digital access with (sequential)
quicksort was particularly tackled in [9].

The following properties on the comparisons made
in quicksort are used. First, if the pivot is chosen
otherwise than comparing elements, comparisons are
made solely in partitioning. In particular, the parti-
tion compares each element exactly once against the
pivot. Besides, the implicit structure defined by the
recursive calls in quicksort corresponds to a BST, where
each pivot choice (and partitioning) constitutes a node
and base cases in the recursion correspond to leaves.
This relationship is depicted in Figure 1 with an ex-
ample: the array to sort is {quicksort, string,

partition, quickselect, parallel, tree,
sequential}, each dependent quicksort step is depicted
in a row where light gray squares correspond to pivot
choices and dark grey squares correspond to elements that
are already in their final position (previously chosen pivots).
Note that, in the case of quickselect (not explicitly tackled
in [9]), the structure of the recursive calls corresponds to a
path, which is a particular case of BST.

Then, we proceed as follows to enhance fast string com-
parisons. We keep for each string x the length of the max-
imum common prefix of x with its predecessor and succes-
sor in the implicit BST structure. We denote them respec-
tively p(x) and s(x). Thus, linear auxiliary space linear in
the number of elements n is needed (which is much smaller
than the sum of all string lengths). In Figure 1, for each
string x the maximum of p(x) and s(x) is shown in each
step. Finally, the following changes must be done in par-
tition. Let y be the string acting as pivot, and let x be an
string in the array to be partitioned. Then, the comparison
function of x against y must be specialized so that it uses
p(x), p(y), s(x) and s(y) to avoid redundant character com-
parisons, and updates p(x) and s(x) accordingly (p(y) and
s(y) remain unchanged). Besides, the swap function used in
partition to swap two strings x1 and x2 must be specialized
so that, in addition, p(x1) is swapped with p(x2), and s(x1)
is swapped with s(x2).

Note that for every string x, p(x) and s(x) must be ini-
tialized to 0 at the beginning of quicksort and quickselect
algorithms (i.e. initially, there are no common prefixes).
Moreover, the comparisons results are related between par-
titioning steps but not inside one partitioning step. In par-
ticular, the first call to partition must compare all the strings
from the beginning as in the non-specialized partitioning
algorithm and in addition, must update p(x) and s(x). How-
ever, from the second call on, the computed prefixes p(x)
and s(x) are used and updated accordingly to avoid redun-
dant character comparisons. Thus, specializing partition is
only beneficial if it is going to be used repetitively (as in
quicksort and quickselect) because the prefix information
gathered in previous iterations can be used.

3. Putting all together

In the previous section, we have seen that combining ef-
ficient digital access to strings with partitioning based al-
gorithms is based in the following properties. On the one
hand, partition compares each element exactly once against
the pivot. That is guaranteed precisely by the parallel par-
titioning algorithms in [6] . On the other hand, the im-
plicit structure defined by the recursive calls corresponds
to a BST. Indeed, the parallel execution of recursive calls
in the case of quicksort does not break the relative order of
calls. Thus, we can enhance digital access to strings on the

Figure 1. Relationship between quicksort and BSTs

aforementioned parallel partitioning algorithms to build ef-
ficient parallel quicksort and quickselect implementations.

In the following we describe how to do so in more detail.
We start from an outer view, related to the interface, then
comment on the main design and implementation issues,
and finally make some additional observations.

3.1. Outer changes

The parallel partitioning algorithms in [6] are provided
according to the specification of the partition algorithm
of the Standard Template Library (STL) of the C++ program-
ming language [8]. The input parameters of partition
and their based algorithm, sort and nth element, are a
sequence and a comparator. Sequences are defined in the
STL by a begin and end iterator (iterators are high level
pointers). In particular, we consider random access se-
quences, i.e. sequences that can be operated like an array.
Besides, the interface of sort in the Java API is similar to
the STL sort.

Unfortunately, in order to enhance (parallel or sequen-
tial) partition with digital access is not enough with pro-
viding an specialized comparator but a swap function
(see Section 2.2). Thus, we must provide a full re-
placement for string partition. In particular, we need
a replacement for the sequential and the parallel ver-
sion. We call them respectively string partition and
parallel string partition.

Note that string partition is not only needed
when the input data is too small but to be called by
parallel string partition. In particular, the imple-
mentation of some of the parallel partitioning algorithms in
[6] call sequential partition on virtual sequences made by
wrapping random access iterators into new ones (in the fol-
lowing, wrapper random access iterators), such that, a fixed
number of blocks or elements can be jumped transparently.

3.2. Design and implementation

We want to stick to the purpose of providing a
not intrusive specialization (minimal additional code) of
string partition and parallel string partition.
We propose the following. First of all, we store the informa-
tion on the common prefixes separately from the data itself,
in particular in some array A. The rank of the elements is
used to access both the elements themselves and A, in par-
ticular in comparison and swap functions. We have resorted
to define swap and comparison functions on random access
iterators. In the case of wrapper random access iterators,
we need to obtain the original random access iterator. In-
stead of modifying their definition, we provide a functor
class getRandAccIt for each of them.

In addition, we encapsulate the specialized comparison
and swap functions, together with the pivot and the rest
of attributes in a class called DigitalComparison. In
this way, only the following further two modifications are
needed. First, (parallel)string partition have an
instance of the class as an input paremeter. Second, the
calls to swap and comparison functions need to be updated
according to the new interface. Moreover, this approach
provides a flexible framework to be able to provide several
implementations of DigitalComparison. In particular, it
can be implemented trivially taking keys as a whole.

Furthermore, the pivot consists both on the string key
and its prefix information. We can either store an iterator
that gives access to them, or we can store both pieces of in-
formation (i.e. a reference to the string key and a reference
or copy to its prefix information). The second option gives
more flexibility and should be faster in practice.

Finally, given that several instances of
DigitalComparison may exist at a certain point
of a parallel quicksort execution, we resorted that
DigitalComparison stores only a reference to A. A must
be created once at the beginning of parallel quicksort and

quickselect and can be initialized in parallel.

3.3. Additional precautions

Many implementations of sequential and parallel quick-
sort and quickselect exist. Crucial aspects in their perfor-
mance are the choice of the pivot and how repeated ele-
ments are handled (see [2], [1]). However, in order to en-
hance digital access, these decisions must keep the prefixes
information consistent. In the following, we discuss how
this can be done.

Pivot choice. A good pivot choice is crucial for guaran-
teeing the quasilinear performance of quicksort. A good
choice is one that results in partitioning the input in two
pieces of asymptotically equal size. In order to guarantee
this property with high probability, typical approaches are
choosing randomly the pivot (random sampling), using the
median of 3 (or more elements) or combining both.

However, computing the median implies making com-
parisons and so, causing that some pair of elements are com-
pared twice. In principle, that would not allow enhancing
digital access. However, we can compare the elements as
long as the prefix information is not corrupted. One pos-
sibility is providing an additional comparison function that
does use prefix information but does not update it. Even
better, given that we are not that interested in the exact re-
sult, we can rely merely on prefix information to make a
decision (to the detriment of the quality of the partitioning).
We call the later technique approximate comparison.

Finally, we must avoid comparing the pivot against itself.
A typical approach is placing the element chosen as a pivot
in a fixed end of the input.

Handling repeated elements. Repeated elements are
also a source of biased size partitionings if these are not
dealt with carefully. Dealing with repetitions turns almost
obligatory with strings because most real data contain rep-
etitions. The most effective methods are always swapping
equal elements and the 3-way partition in [1].

In any case, both methods guarantee that no pair of el-
ements are compared twice, so they can be combined with
digital access smoothly.

4. Experimental analysis

In the following we present some performance results on
combining digital access to strings and parallel partitioning
based algorithms. Specifically, we analyse parallel quick-
sort and quickselect performance.

The tests have been run on a machine with 4 GB of main
memory and two sockets, each one with an Intel Xeon quad-
core processor at 1.66 GHz with a shared L2 cache of 4 MB

shared among two cores. Thus, there are 8 cores in total. We
have used the GCC 4.2.0 compiler with -O3 optimization.

All tests have been repeated 20 times; figures show aver-
ages.

This section is organized as follows. First, we present
our implementation. Then, we describe the tested datasets.
It follows an overview of sequential results. Finally, we
discuss parallel results.

4.1. Tested implementation

We have implemented
(parallel)partition string generically with re-
spect of the specific string type. In particular, our
implementation can tackle char* and std::string,
which add a level of indirection to be able to offer more
advanced features. In this sense, applying our approach
on the top of std::string has less relative overhead in
space and time. However, we present our results only for
char* because most existing implementations for string
algorithms are keyed for char* (actually, in most cases are
C implementations). Among these are the implementations
in [3] on combining digital-access with search trees and
burstsort [11], a cache-efficient (burst)-trie based sorting
algorithm.

With respect to the sequential partitioning algorithm, we
have implemented 3-way partition. With respect to the par-
allel partitioning algorithms, we have considered F&A and
BLOCKED. Besides, in order to choose the pivot we use
median of three with approximate and exact comparison.

Finally, the parallel partitioning algorithms in [6] are de-
fined using OpenMP. We have also used OpenMP to define
basic parallel implementation for quickselect and quicksort
on the top of them.

Whilst parallelizing quickselect relies merely on paral-
lelizing the partition, parallelizing quicksort can be done
additionally by parallelizing the independent work by di-
vide and conquer. In particular, we have implemented sim-
ple static distribution of the work. Anyway, any further en-
hancement that does not imply comparisons, such as load-
balancing techniques (see [10, 12]), are perfectly compati-
ble. It is out of the scope of this paper analysing how quick-
sort can be parallelized the best.

The implementation is available at: http://www.lsi.
upc.edu/˜lfrias/research/parstr/parstr.zip.

4.2. Datasets

We consider several string datasets that depend on string
parameters (such as string length and alphabet size) and on
the distribution of the string instances. We have run exper-
iments with synthetic and real datasets. In all cases, once

 0

 0.5

 1

 1.5

 2

 2.5

 10 100 1000

sp
ee

du
p

(w
ith

 r
es

pe
ct

 to
 a

to
m

ic
 k

ey
s)

l

 qselect n(1000000) thr(1)

rand
prefix

Lprefix
url

 0

 0.5

 1

 1.5

 2

 2.5

 10 100

sp
ee

du
p

(w
ith

 r
es

pe
ct

 to
 a

to
m

ic
 k

ey
s)

l

 qselect n(10000000) thr(1)

rand
prefix

Lprefix
url

Figure 2. Sequential quickselect with digital
access (left: n = 106; right: n = 107)

the data is generated, it is shuffled, so that any accidental
memory locality in generating the data is broken.

With respect to synthetic datasets we have evaluated the
following:

- string length (denoted by l): 10, 100, 1000
- alphabet: binary, A-Z
- distribution: uniformly random (denoted by rand),

common prefix of uniformly random length (denoted
by prefix), long prefix of fixed size (denoted by
lprefix).
In the case of prefix and lprefix the strings are
made of two parts: a prefix of length lp containing only
one distinct character, and a suffix of length l− lp ran-
domly generated. In the case of prefix, lp is chosen
randomly, in the case of lprefix, lp is the same for
all words.

With respect to real datasets we have considered the ones
in burstsort [11]. From them, we focus on an url dataset
(denoted by url) because the average length of the strings
is the highest. Recall that enhancing digital access on the
top of comparison-based algorithms is specially useful for
arbitrarily long strings and prefixes.

Finally, we have considered input sizes of 1 and 10 mil-
lion elements. In the latter case, the longest string length
considered is 100 because otherwise the dataset does not fit
in main memory.

4.3. Sequential performance

Figures 2 and 3 show respectively some performance re-
sults on sequential quickselect and quicksort with enhanced
digital access. The results are shown as speedups with re-
spect to the regular sequential quicksort and quickselect im-
plementations in which keys are considered atomic. We

 0

 2

 4

 6

 8

 10

 12

 10 100 1000

sp
ee

du
p

(w
ith

 r
es

pe
ct

 to
 a

to
m

ic
 k

ey
s)

l

 qsort n(1000000) thr(1)

rand
prefix

Lprefix
url

 0

 2

 4

 6

 8

 10

 12

 10 100

sp
ee

du
p

(w
ith

 r
es

pe
ct

 to
 a

to
m

ic
 k

ey
s)

l

 qsort n(10000000) thr(1)

rand
prefix

Lprefix
url

Figure 3. Sequential quicksort with digital ac-
cess (left: n = 106; right: n = 107)

.

consider several combinations of string length and num-
ber of elements. Specifically, we show results for words
in the A-Z alphabet generated following rand, prefix

and lprefix distributions. Moreover, we show the results
compared to the url dataset (the assigned string length is
arbitrary, just for plotting the results together). Finally, the
pivot is selected approximately (not significative differences
where shown in performance with respect to exact compar-
ison).

In the case of quickselect (Figure 2), enhancing digital
access for strings harms if the common prefixes are scarce
(i.e. random strings). Instead, in the case of quicksort (Fig-
ure 3), applying this technique is always beneficial. Recall
from Section 2.2 that the first partition always does more
work than atomic partition and it is as we go deeper into re-
cursion, that the gathered information on common prefixes
becomes really useful. In the case of quickselect, only part
of work done in one partitioning is used later, and so, the
overhead of the first recursive calls is more notorious.

Moreover, logically, as longer the common prefixes, the
performance with enhanced digital access is better and bet-
ter than without. Also the results for binary alphabets are
generally better because it is much more likely to generate
common prefixes when doing random choices.

4.4. Parallel performance

In the following, we describe performance results for
parallel quickselect (Figures 4 to 9) and parallel quicksort
(Figures 10 and 11). The results are shown both for atomic
and digital keys. Besides, we analyse the effect in parallel
performance of several combinations of string length and
number of elements. We focus in parallel quickselect re-
sults because the only source of parallelism is partitioning.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qselect n(1000000) l(100)

rand
prefix

Lprefix
url

Figure 4. Parallel quickselect with atomic
keys (n = 106, l = 100)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qselect n(1000000) l(100)

rand
prefix

Lprefix
url

Figure 5. Parallel quickselect with digital ac-
cess (n = 106, l = 100)

In all cases, the results are shown as speedups with re-
spect to the respective sequential implementation (i.e. the
parallel performance for atomic keys is compared against
the sequential performance for atomic keys and the par-
allel performance for digital keys is compared against the
sequential performance for digital keys). The words are
generated in the A-Z alphabet following rand, prefix

and lprefix distributions. Moreover, we show the results
compared to the url dataset (the assigned string length is
arbitrary, just for plotting the results together). Finally,
the results are for implementations build on the top of
F&A partitioning algorithms (the speedups obtained for
BLOCKED are similar, but generally worse).

For a fixed set of string parameters, the greatest speedups
are obtained when enhancing digital access (see Figures 4,
6, 8, 10 considering atomic keys against respectively Fig-

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qselect n(1000000) l(1000)

rand
prefix

Lprefix
url

Figure 6. Parallel quickselect with atomic
keys (n = 106, l = 1000)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qselect n(1000000) l(1000)

rand
prefix

Lprefix
url

Figure 7. Parallel quickselect with digital ac-
cess (n = 106, l = 1000)

ures 5, 7, 9 and 11 considering digital keys). Therefore,
combining digital access with parallel partitioning based al-
gorithms not only does not hurt scalability but generally im-
proves it.

Between our parallel quicksort and quickselect imple-
mentations, quickselect achieves higher parallelism. How-
ever, recall that our parallel quicksort distributes statically
the divide and conquer work, which definitely is not an opti-
mal strategy. Nonetheless, the absolute speedups for quick-
select are worst than those obtained in [6] for the same ma-
chine but for integers. First of all, the tested number of
elements is smaller (because otherwise the data does not
fit in main memory) and thus, parallelism is not so effec-
tive. Indeed, we can see comparing performance results for
quickselect (Figures 4 and 8, or 5 and 9), that for a fixed
string length, the speedups are better as larger the num-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qselect n(10000000) l(100)

rand
prefix

Lprefix
url

Figure 8. Parallel quickselect with atomic
keys (n = 107, l = 100)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qselect n(10000000) l(100)

rand
prefix

Lprefix
url

Figure 9. Parallel quickselect with digital ac-
cess (n = 107, l = 100)

ber of elements. That is also the case for quicksort. On
the other hand, partitioning strings is more memory inten-
sive than partitioning integers because to access the actual
string data a pointer must be followed (which might be far
in memory). Indeed, the best speedups, both for atomic and
digital keys, are obtained for the longest prefixes because
the cost of arithmetic operations (comparing characters and
using integer prefix information respectively) is more bal-
anced with the cost of memory accesses. That is particularly
true for quickselect (see Figures 6 and 7).

5. Conclusions

In this paper, we have shown how to combine digital ac-
cess to strings with parallel partitioning based algorithms,
namely, quicksort and quickselect. To the best of our knowl-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qsort n(10000000) l(100)

rand
prefix

Lprefix
url

Figure 10. Parallel quicksort with atomic keys
(n = 107, l = 100)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

 qsort n(10000000) l(100)

rand
prefix

Lprefix
url

Figure 11. Parallel quicksort with digital ac-
cess (n = 107, l = 100)

edge, this enhancement had not been applied before on the
top of parallel comparison-based algorithms or data struc-
tures. Actually, this approach is independent of parallelism
itself as long as the relative order between comparisons is
kept. The main issue in the case of parallel quicksort and
quickselect is that partition must compare each element at
most once. But this can be done relying on the modified
partitioning algorithms proposed in [6].

From an engineering perspective, we have described how
the C++ design and the implementation of these parallel
partitioning algorithms can be modified to provide an spe-
cialization for strings. Our proposal aims being the less
intrusive as possible. Besides, we have discussed on ad-
ditional precautions that must be taken, for instance, when
electing the pivot.

Finally, we have presented some experimental results

that indicate the practicability of this approach. Indeed, the
scalability of parallel quicksort and quickselect is generally
better when combined with digital access. However, the ab-
solute speedup results are far to be optimal. The next step is
applying our parallel partitioning algorithms for strings on
the top of highly-tunned and tested implementations of par-
allel quicksort and quickselect. We expect that doing so will
neither damage the scalability of the original algorithms. In
particular, it could be interesting to integrate this work into
some existing parallel implementation of the STL.

As further future work, digital access could be combined
with other parallel comparison-based algorithms and data
structures. That is interesting from a practical perspective
because many more parallelizations of comparison-based
algorithms exist than of ad hoc algorithms.

References

[1] J. L. Bentley and M. D. McIlroy. Engineering a sort func-
tion. Softw. Pract. Exper., 23(11):1249–1265, 1993.

[2] T. H. Cormen, C. Leiserson, R. Rivest, and C. Stein. In-
troduction to algorithms. The MIT Press, Cambridge, 2nd
edition, 2001.

[3] P. Crescenzi, R. Grossi, and G. F. Italiano. Search data struc-
tures for skewed strings. In Experimental and Efficient Al-
gorithms, Second International Workshop, WEA 2003, As-
cona, Switzerland, May 26-28, 2003, Proceedings, volume
2647 of Lecture Notes in Computer Science, pages 81–96.
Springer, 2003.

[4] G. Franceschini and R. Grossi. A general technique for man-
aging strings in comparison-driven data structures. In Pro-
ceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP), 2004.

[5] R. S. Francis and L. J. H. Pannan. A parallel partition for en-
hanced parallel quicksort. Parallel Computing, 18(5):543–
550, 1992.

[6] L. Frias and J. Petit. Parallel partition revisited. In Ex-
perimental Algorithms, 7th International Workshop, WEA
2008, Provincetown, MA, USA, May 30-June 1, 2008, vol-
ume 5038 of Lecture Notes in Computer Science, pages 142–
153. Springer, 2008.

[7] R. Grossi and G. F. Italiano. Efficient techniques for main-
taining multidimensional keys in linked data structures. In
ICALP ’99: Proceedings of the 26th International Collo-
quium on Automata, Languages and Programming, pages
372–381, London, UK, 1999. Springer-Verlag.

[8] International Standard ISO/IEC 14882. Programming lan-
guages — C++. American National Standard Institute, 1st
edition, 1998.

[9] S. Roura. Digital access to comparison-based tree data struc-
tures and algorithms. J. Algorithms, 40(1):1–23, 2001.

[10] J. Singler, P. Sanders, and F. Putze. The Multi-Core Standard
Template Library. In Euro-Par 2007: Parallel Processing,
volume 4641 of Lecture Notes in Computer Science, pages
682–694, Rennes, France. Springer Verlag.

[11] R. Sinha and J. Zobel. Cache-conscious sorting of large sets
of strings with dynamic tries. J. Exp. Algorithmics, 9:1.5,
2004.

[12] D. Traoré, J.-L. Roch, N. Maillard, T. Gautier, and
J. Bernard. Deque-free work-optimal parallel STL algo-
rithms. In Euro-Par ’08: Proceedings of the 14th inter-
national Euro-Par conference on Parallel Processing, pages
887–897, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] P. Tsigas and Y. Zhang. A simple, fast parallel implemen-
tation of quicksort and its performance evaluation on SUN
enterprise 10000. In 11th Euromicro Workshop on Paral-
lel, Distributed and Network-Based Processing (PDP 2003),
pages 372–381, 2003.

