Single-Pass List Partitioning

Leonor Frias1 \hspace{1cm} Johannes Singler2 \hspace{1cm} Peter Sanders2

1Dep. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

2Institut für Theoretische Informatik, Universität Karlsruhe

MuCoCos’08
Outline

1. Introduction
2. Problem Definition
3. The SINGLEPass Algorithm
4. Experiments
5. Conclusions
6. References
Motivation

Effectiveness of many parallel algorithms relies on partitioning the input into pieces.
Effectiveness of many parallel algorithms relies on partitioning the input into pieces.

BUT most descriptions disregard how this is actually done (or just assume index calculations) ...
Effectiveness of many parallel algorithms relies on partitioning the input into pieces.

BUT most descriptions disregard how this is actually done (or just assume index calculations) ...

ALTHOUGH there are common settings where the input cannot be partitioned so easily.
Effectiveness of many parallel algorithms relies on partitioning the input into pieces.

BUT most descriptions disregard how this is actually done (or just assume index calculations) ...

ALTHOUGH there are common settings where the input cannot be partitioned so easily.
Example: Sequences as input to algorithms in the Standard Template Library (STL), part of the C++ standard library.
Input given using *(forward) iterator*, abstract from the underlying data structure.
Input given using (**forward**) **iterator**, abstract from the underlying data structure.

Operations on a **forward iterator** `it`:
Algorithms in the STL

Input given using \textit{(forward) iterator}s, abstract from the underlying data structure.

Operations on a \textit{forward iterator} it:

- \texttt{*it}: Dereference.
Algorithms in the STL

Input given using (forward) iterator, abstract from the underlying data structure.

Operations on a forward iterator it:
 • *it: Dereference.
Input given using *(forward) iterator*, abstract from the underlying data structure.

Operations on a *forward iterator* `it`:

- `*it`: Dereference.
- `++it`: Advance to next element.
Algorithms in the STL

Input given using *(forward) iterator*, abstract from the underlying data structure.

Operations on a *forward iterator* it:
- *it: Dereference.*
- ++it: Advance to next element.
Algorithms in the STL

Input given using (forward) iterator, abstract from the underlying data structure.

Operations on a forward iterator it:
- *it: Dereference.
- ++it: Advance to next element.

Forward sequence
How to partition forward sequences or alike?

In compile-time:

1. The sequence is actually a **random access sequence** (e.g. an array)
 - More operations: \(it + k, it - k, it2 - it1, \ldots \)
 - Sequence length can be known in constant time

2. The sequence is **not** random access
 - Sequence length is **unknown** in constant time
Naïvely:

- **TRAVERSETWICE**
- **POINTERARRAY**
How to partition forward sequences or alike? (2)

Naïvely:

- **TRAVERSE_TWICE**
 1. Determine length (1st traversal)
 2. Partition (2nd traversal)

- **POINTER_ARRAY**
How to partition forward sequences or alike? (2)

Naïvely:

- **TRAVERSETWICE**
- **POINTERARRAY**
 1. Store pointers in a dynamic array (linear auxiliary memory)
 2. Trivial index calculation
How to partition forward sequences or alike? (2)

Naïvely:

- **TRAVERSE_TWICE**
- **POINTER_ARRAY**

Cannot this be done more efficiently?
How to partition forward sequences or alike? (2)

Naïvely:

- TRAVERSE_TWICE
- POINTER_ARRAY

Cannot this be done more efficiently?
Amdahl’s law: speedup limited by the sequential portion.
Our contribution

An efficient sequential algorithm to divide *forward sequences*.

- Only *one traversal*
- *Sub-linear* additional space
List Partitioning problem

Given a *forward sequence*, divide it into *p parts* of almost equal length.
List Partitioning problem

Given a forward sequence, divide it into \(p \) parts of almost equal length.

Quality ratio \(r \): \(1 \leq \frac{\text{longest part}}{\text{shortest part}} \)

\(r \) correlates to the efficiency of processing the parts in parallel (given that processing time is proportional to parts length)
Given a forward sequence, divide it into p parts of almost equal length.

Quality ratio r: $1 \leq \frac{|\text{longest part}|}{|\text{shortest part}|} \leq R$

r correlates to the efficiency of processing the parts in parallel (given that processing time is proportional to parts length)

R: constant, depends only on a tuning parameter, namely the oversampling factor σ.

$\sigma \in \mathbb{N} \setminus \{0\}$.

List Partitioning problem
List Partitioning as an online problem

Only one element is given at a time, no global information.
List Partitioning as an online problem

Only one element is given at a time, no global information.

Optimal offline algorithm: the difference in length between the parts is at most 1.

Quality ratio: \(r_{\text{OPT}} = \left\lfloor n/p \right\rfloor / \left\lceil n/p \right\rceil \xrightarrow{n \to \infty} 1. \)
Let $\sigma = 2$, $p = 3$

Algorithm

1. Initialization.
2. Iteratively append to S at most $2\sigma p$ elements from L.
3. While L has more elements do:
 1. Merge each two consecutive subsequences into one.
 2. Let $k := 2k$.
4. Iteratively append to S at most σp consecutive subsequences of length k from L.
5. Merge the subsequences in S to obtain p subsequences.
Algorithm

Let $\sigma = 2, \ p = 3$

L:

1. Initialization.

$k = 1, \ S = \{}$

$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15$
Let $\sigma = 2$, $p = 3$

1. Initialization.
2. Iteratively append to S at most $2\sigma p$ 1-elem subsequences from L.

L: \[0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15\]

$k = 1, \quad S = \{\}$
Algorithm

Let $\sigma = 2$, $p = 3$

$L:\begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}$

$k = 1, \quad S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

1. Initialization.
2. Iteratively append to S at most $2\sigma p$ 1-elem subsequences from L.
3. While L has more elements do:
Algorithm

Let $\sigma = 2$, $p = 3$

$L:$

$k = 1$, $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

1. Initialization.
2. Iteratively append to S at most $2\sigma p$ 1-elem subsequences from L.
3. While L has more elements do:
 1. Merge each two consecutive subsequences into one.
 $S[0, 1, 2, 3, 4, 5, 6] := S[0, 2, 4, 6, 8, 10, 12]$
Algorithm

Let $\sigma = 2$, $p = 3$

L: \[0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15\]

$k = 1$, $S = \{0, 2, 4, 6, 8, 10, 12\}$

1. Initialization.
2. Iteratively append to S at most $2\sigma p$ 1-elem subsequences from L.
3. While L has more elements do:
 1. Merge each two consecutive subsequences into one.
 \[S[0, 1, 2, 3, 4, 5, 6] := S[0, 2, 4, 6, 8, 10, 12]\]
 2. Let $k := 2k$.
Algorithm

Let $\sigma = 2$, $p = 3$

$L:\begin{array}{c}
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\end{array}
\end{array}$

$k = 2, \quad S = \{0, 2, 4, 6, 8, 10, 12\}$

1. Initialization.
2. Iteratively append to S at most $2\sigma p$ 1-elem subsequences from L.
3. While L has more elements do:
 1. Merge each two consecutive subsequences into one.
 $S[0, 1, 2, 3, 4, 5, 6] := S[0, 2, 4, 6, 8, 10, 12]$
 2. Let $k := 2k$.
 3. Iteratively append to S at most σp consecutive subsequences of length k from L.
Algorithm

Let $\sigma = 2$, $p = 3$

L:

$\begin{align*}
0 & \rightarrow 1 & \rightarrow 2 & \rightarrow 3 & \rightarrow 4 & \rightarrow 5 & \rightarrow 6 & \rightarrow 7 & \rightarrow 8 & \rightarrow 9 & \rightarrow 10 & \rightarrow 11 & \rightarrow 12 & \rightarrow 13 & \rightarrow 14 & \rightarrow 15 \\
\text{begin} & & & & & & & & & & & & & & & & & \text{next end}
\end{align*}$

$k = 2, \quad S = \{0, 2, 4, 6, 8, 10, 12, 14, 15\}$

1. Initialization.

2. Iteratively append to S at most $2\sigma p$ 1-elem subsequences from L.

3. While L has more elements do:

 1. Merge each two consecutive subsequences into one.
 $S[0, 1, 2, 3, 4, 5, 6] := S[0, 2, 4, 6, 8, 10, 12]$

 2. Let $k := 2k$.

 3. Iteratively append to S at most σp consecutive subsequences of length k from L.
Algorithm

Let $\sigma = 2$, $p = 3$

L:

\[k = 2, \quad S = \{0, 2, 4, 6, 8, 10, 12, 14, 15\} \]

1. Initialization.

2. Iteratively append to S at most $2\sigma p$ 1-elem subsequences from L.

3. While L has more elements do:
 1. Merge each two consecutive subsequences into one.
 \[S[0, 1, 2, 3, 4, 5, 6] := S[0, 2, 4, 6, 8, 10, 12] \]
 2. Let $k := 2k$.
 3. Iteratively append to S at most σp consecutive subsequences of length k from L.

4. Merge the subsequences in S to obtain p subsequences.
Getting p subsequences of similar length

$L:$

\[S = \{0, 2, 4, 6, 8, 10, 12, 14, 15\} \]

At the beginning of step 4:
\[\sigma p \leq s = |S| - 1 \leq 2\sigma p \] subsequences ($s = 8$)
Getting p subsequences of similar length

$L: \begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\text{begin} & \text{end}
\end{array}$

$S = \{0, 2, 4, 6, 8, 10, 12, 14, 15\}$

At the beginning of step 4:

$\sigma p \leq s = |S| - 1 \leq 2\sigma p$ subsequences ($s = 8$)

$s \mod p$ rightmost subsequences: $\text{merge } \left\lceil s/p \right\rceil$ subsequences
Getting p subsequences of similar length

L:

- \begin{align*} S &= \{0, 2, [4, 6, 8, [10), 12, 14, 15]\} \\
& \text{At the beginning of step 4:} \\
& \sigma p \leq s = |S| - 1 \leq 2\sigma p \text{ subsequences } (s = 8) \\
& s \mod p \text{ rightmost subsequences: } \text{merge } \lceil s/p \rceil \text{ subsequences} \end{align*}
Getting p subsequences of similar length

L:

\[S = \{0, 2, 4, 6, 8, 10, 12, 14, 15\} \]

At the beginning of step 4:

$\sigma p \leq s = |S| - 1 \leq 2\sigma p$ subsequences ($s = 8$)

$s \mod p$ rightmost subsequences: merge \(\lceil s/p \rceil \) subsequences

$p - (s \mod p)$ leftmost subsequences: merge \(\lfloor s/p \rfloor \) subsequences
Getting \(p \) subsequences of similar length

\[L : \]

\[S = \{[0, 2, 4), 6, 8, 10, 12, 14, 15\} \]

At the beginning of step 4:
\(\sigma p \leq s = |S| - 1 \leq 2\sigma p \) subsequences \((s = 8)\)

\(s \mod p \) rightmost subsequences: \(merge \lfloor s/p \rfloor \) subsequences

\(p - (s \mod p) \) leftmost subsequences: \(merge \lfloor s/p \rfloor \) subsequences
Getting \(p \) subsequences of similar length

\[L: \begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\text{begin} & \text{begin} \\
\text{end} & \text{end} \\
\end{array} \]

\(S = \{0, 2, 4, 6, 8, 10, 12, 14, 15\} \)

At the beginning of step 4:
\(\sigma p \leq s = |S| - 1 \leq 2\sigma p \) subsequences (\(s = 8 \))

\(s \mod p \) rightmost subsequences: \textit{merge} \(\lceil s/p \rceil \) subsequences

\(p - (s \mod p) \) leftmost subsequences: \textit{merge} \(\lfloor s/p \rfloor \) subsequences

Special care with the \textit{last subsequence} in \(S \), which may be \textit{not} full. The algorithm guarantees that two parts differ in length in at most in \(k \) elements.
Analysis

Auxiliary space (i.e. $|S|$): $\Theta(\sigma p)$

Time: $\Theta(n + \sigma p \log n)$.

- L traversal: $\Theta(n)$
- Step 3 visits $\Theta(\sigma p)$ elements of S in $\Theta(\log n)$ iterations.
Analysis

Auxiliary space (i.e. $|S|$): $\Theta(\sigma p)$

Time: $\Theta(n + \sigma p \log n)$.
- L traversal: $\Theta(n)$
- Step 3 visits $\Theta(\sigma p)$ elements of S in $\Theta(\log n)$ iterations.

Ratio:
- worst-case: r bounded by $\frac{\sigma + 1}{\sigma}$.
- average: $\mathbb{E}r < \frac{1}{\sigma p} \sum_{\ell = \sigma p}^{2\sigma p - 1} \frac{\ell}{p} \approx 1 + \frac{1}{\sigma p} ((p - 1) \ln(2))$
Analysis

Auxiliary space (i.e. $|S|$): $\Theta(\sigma p)$

Time: $\Theta(n + \sigma p \log n)$.
- L traversal: $\Theta(n)$
- Step 3 visits $\Theta(\sigma p)$ elements of S in $\Theta(\log n)$ iterations.

Ratio:
- worst-case: r bounded by $\frac{\sigma + 1}{\sigma}$.
- average: $\mathbb{E} r < \frac{1}{\sigma p} \sum_{\ell=\sigma p}^{2\sigma p-1} \frac{\lfloor \ell/p \rfloor}{\lfloor \ell/p \rfloor} \approx 1 + \frac{1}{\sigma p} ((p - 1) \ln(2))$

E.g. if $\sigma = 10$ and $p = 32$, then $r \leq 1.1$ and $\mathbb{E} r < 1.07$
Generalization of the \textsc{SINGLEPass} Algorithm

Performs \textit{merge} steps only every mth loop iteration. In the remaining iterations, \textit{S} is doubled in size, so that more subsequences can be added.
Generalization of the **SINGLEPASS** Algorithm

Performs *merge* steps only every m^{th} loop iteration.
In the remaining iterations, *S is doubled* in size, so that more subsequences can be added.
Thus, the total number of iterations is kept the same: $\Theta(\log n)$.

Generalization of the SINGLEPass Algorithm

Performs *merge* steps only every m^{th} loop iteration. In the remaining iterations, S is doubled in size, so that more subsequences can be added.

Thus, the total number of iterations is kept the same: $\Theta(\log n)$.

Equivalent to increasing the oversampling factor to σn^γ with $\gamma = 1 - 1/m$.
Analysis

\[n^\gamma = \frac{n}{\sqrt{m n}} = \sqrt[n]{n^{m-1}} \]

Auxiliary space (i.e. \(|S| \)): \(O(\sigma p n^\gamma) \).

Time: \(\Theta(n + \sigma p(n^\gamma + \log n)) \).
Analysis

\[n^{\gamma} = \frac{n}{\sqrt[\gamma]{n}} = \sqrt[\gamma]{n^{m-1}} \]

Auxiliary space (i.e. \(|S| \)): \(O(\sigma pn^{\gamma}) \).

Time: \(\Theta(n + \sigma p(n^{\gamma} + \log n)) \).

Ratio:
\[
\frac{|\text{longest}|}{|\text{shortest}|} = \frac{(\sigma n^{\gamma} + 1)k}{\sigma n^{\gamma}k} = 1 + \frac{1}{\sigma n^{\gamma}} = 1 + \frac{m \sqrt{n}}{\sigma n} \xrightarrow{n \to \infty} 1
\]
Choosing m

The choice of m trades off time and space versus solution quality (better r as m larger).
Choosing m

The choice of m trades off time and space versus solution quality (better r as m larger).

Some interesting cases:

- $m = 1$: $merge$ is performed each iteration \rightarrow simple SINGLEPass Algorithm
- $m = 2$: $merge$ is performed once each two iterations
 - $n^\gamma = \sqrt{n}$
 - Auxiliary space: $O(\sigma p \sqrt{n})$
 - Time: $\Theta(n + \sigma p(\sqrt{n} + \log n))$.
 - Ratio: $1 + \frac{1}{\sqrt{n}}$
Choosing m

The choice of m trades off time and space versus solution quality (better r as m larger).

Some interesting cases:

- $m = 1$: merge is performed each iteration → simple SINGLEPass Algorithm
- $m = 2$: merge is performed once each two iterations
 - $n^\gamma = \sqrt{n}$
 - Auxiliary space: $O(\sigma p \sqrt{n})$
 - Time: $\Theta(n + \sigma p (\sqrt{n} + \log n))$.
 - Ratio: $1 + \frac{1}{\sqrt{n}}$

$m = 2$ appears to be a good compromise.
C++ implementation

Algorithms

- generalized SINGLEPass
 - included in the MCSTL [SSP]
 MCSTL = Multicore STL, parallel implementation of the STL

- TRAVERSETWICE

- POINTERARRAY
Testing

Performance and quality results for $p = 4$. Quality evaluated according the overhead $h = r - 1$.

Setup

- AMD Opteron 270 (2.0 GHz, 1 MB L2 cache).
- GCC 4.2.0 + libstdc++, optimization (-O3).

Parameters for **SINGLEPASS**

- $(o = 1, \ m = 1)$, $\Theta(p)$ space
- $(o = 10, \ m = 1)$, $\Theta(10p)$ space
- $(o = 1, \ m = 2)$, $\Theta(\sqrt{np})$
Time results

- **PointerArray**
- **TraverseTwice**
- **SinglePass o=1,m=1**
- **SinglePass o=10,m=1**
- **SinglePass o=1,m=2**

Running time [ns] / n vs Number of elements (n)
Quality results

![Graph showing quality results](image-url)

- **Overhead r-1 (%)** vs **Number of elements (n)**
- Trivial
- SinglePass $o=1,m=1$
- SinglePass $o=10,m=1$
- SinglePass $o=1,m=2$

Legend:
- Trivial
- SinglePass $o=1,m=1$
- SinglePass $o=10,m=1$
- SinglePass $o=1,m=2$
Conclusions

We have solved the list partitioning problem using only one traversal and sub-linear additional space.
Conclusions

We have solved the list partitioning problem using only one traversal and sub-linear additional space.

Our experiments have shown that our algorithm is very efficient in practice.
We have solved the list partitioning problem using only one traversal and sub-linear additional space.

Our experiments have shown that our algorithm is very efficient in practice.

The larger m, the better the quality, trading off memory. In the worst-case:

- $m = 1$: $h = 1/\sigma$
- $m > 1$: h decreases exponentially with n.

For large input instances and in most practical situations, no difference with optimally partitioned sequences.
[SK08] describes some of the problems and challenges in parallelizing algorithms in the context of the C++ standard library.
References
