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SINGLE-PASS LIST PARTITIONING

LEONOR FRIAS∗, JOHANNES SINGLER†, AND PETER SANDERS†

Abstract. Parallel algorithms divide computation among several threads. In many cases, the input must also be divided.
Consider an input consisting of a linear sequence of elements whose length is unknown a priori. We can evenly divide it näıvely by
either traversing it twice (first determine length, then divide) or by using linear additional memory to hold an array of pointers to
the elements. Instead, we propose an algorithm that divides a linear sequence into p parts of similar length traversing the sequence
only once, and using sub-linear additional space. The experiments show that our list partitioning algorithm is effective and fast in
practice.
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1. Introduction. An algorithm is a well-defined computational procedure that takes input values and
produces output values. A parallel algorithm divides computation among several threads. For data-parallel
algorithms, the input must be also divided into (independent) parts of similar size, so that parallel computation
is effective. Most parallel algorithm descriptions disregard how the input is actually divided (or assume that
the input can be divided by index computations). If we want to use such algorithms in practice, we have to
deal with sequences that are non-trivial to partition.

In particular, we focus on the algorithms in the Standard Template Library (STL), which is a part of the
C++ programming language [1]. In this setting, the input consists of a sequence of elements, given as a pair of
iterators. The standard requires these to satisfy only the forward iterator concept. The only feasible operations
for a forward iterator are dereferencing, and advancing to the next element. Thus, a forward iterator sequence
is a linear sequence of unknown length (e. g. a sequence implemented as a singly-linked list). Traversing it is
inherently sequential. Even if the sequence comes with an associated length variable, this information is lost
when passing iterators, as required by most STL algorithms. Also, keeping the length up to date is inefficient
for operations like splitting one list into two, at a known iterator. This is why std::list, for example, does
not guarantee the calculation of size() to take only constant time.

However, the speedup of a parallelized program is limited by the sequential portion, according to Amdahl’s
law. Hence, making the sequential partition before the paralleling processing as fast as possible, is of utmost
importance.

Given that the length of the sequence is unknown, one could think of first traversing the sequence to
determine its length, and then traversing it a second time to actually divide the sequence. We call this algorithm
TraverseTwice. However, traversing the sequence can be expensive, so we do not want to pay for it twice.
The elements can be spread in memory cache-unfriendly, and/or calculating the next element may be costly. To
avoid this, one could also think of using a dynamic array, storing the pointers to the elements there, effectively
converting the sequence to a randomly accessible one. We call this algorithm PointerArray. However, this
is very costly in terms of additional space. We subsume both algorithms as the trivial solutions.

In this paper, we present an algorithm that divides such a linearly traversable sequence into p parts of
similar length using only a little additional space, and accessing each element exactly once. In the next section,
we first formally define the problem, called list partitioning. Then, we present our single-pass list partitioning
algorithm. Next, we present some experiments on list partitioning: we evaluate the algorithms by themselves
as well as their impact in parallel performance. Finally, we sum up the results.

2. Problem Definition. A linearly traversable sequence of unknown length n, given by two forward
iterators, is to be divided into p parts of almost equal length. Let the ratio r be the quotient of the length of
the longest part and the length of the shortest part. It is a good quality measure for the partitioning, since it
correlates to the efficiency of processing the parts in parallel, given that processing time is proportional to a
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Fig. 2.1. Basic SinglePass list partitioning algorithm scheme.

part’s length. Thus, to guarantee good efficiency, r should be upper-bounded by a constant R at any time, only
depending on a tuning parameter, namely the oversampling factor σ ∈ N \ {0}.

W. l. o. g. we assume that the input sequence has length at least σp, i. e. n ≥ σp. Otherwise, if p ≤ n, we
can lower σ down so that σp ≤ n. If p > n, we reduce p to n to avoid that any part is empty (and therefore,
r = ∞), which would not be sensible for our purposes.

Actually, we can consider this an online problem because the input is given one element at a time, without
information about the whole problem. Thus, we can define a competitive ratio between the optimal offline
algorithm and our online algorithm. For the optimal offline algorithm, the difference in part lengths is at
most 1, which gives a ratio rOPT = ⌈n/p⌉/⌊n/p⌋ n→∞→ 1.

3. The SinglePass Algorithm. Let L be a forward linearly traversable input sequence (e. g. a linked list).
Our single-pass algorithm, denoted SinglePass, keeps a sequence of boundaries S[0 . . . p], where [S[i], S[i+ 1])
defines the ith subsequence of L. Inserting a subsequence into S means storing its boundaries in the appropriate
places. A boundary is identified by its rank in L.
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The basic SinglePass algorithm works as follows:
1. Let k := 1, S := {}.
2. Iteratively append to S at most 2σp 1-element consecutive subsequences from L.

S = {0, 1, 2, . . . , 2σp}
3. While L has more elements do:

Invariant : |S| := 2σp, S[i + 1] − S[i] = k
(a) Merge each two consecutive subsequences into one subsequence.

S[0, 1, 2, . . . , σp] := S[0, 2, 4, . . . , 2σp]
This results in σp subsequences of length 2k.

(b) Let k := 2k.
(c) Iteratively append to S at most σp consecutive subsequences of length k from L.

S := {0, k, . . . σpk, (σp + 1)k, (σp + 2)k, . . . , l},
σpk < l ≤ 2σpk
If L runs empty prematurely, the last subsequence is shorter than k.

4. The σp ≤ |S| ≤ 2σp subsequences are divided into p parts of similar lengths as follows. The |S| mod p
rightmost parts are formed by merging ⌈|S|/p⌉ consecutive subsequences each, from the right end. The
remaining p− (|S| mod p) leftmost parts are formed by merging ⌊|S|/p⌋ consecutive subsequences each,
from the left end.

The algorithm (visualized in Figure 2.1) takes special care of the rightmost subsequence E, which might be
shorter than the others, i. e. |E| ≤ k. Let T be the part containing E, there is no part that consists of more
subsequences than T . So, if exactly one part is longer than all the others (i. e. |S| mod p = 1), this is specifically
T . In this case, T differs from the other parts in |E| elements. As a whole, the algorithm guarantees that in
the worst-case, two parts differ at most in one complete subsequence (i. e. in at most k elements).

The basic SinglePass algorithm needs Θ(σp) additional space to store S. The time complexity is Θ(n +
σp log n). This is proved as follows. We need to traverse the whole sequence, taking Θ(n) time. In addition,
step 3 visits Θ(σp) elements of S in Θ(log n) iterations.

The worst case ratio r is bounded by σ+1

σ . The worst case occurs when just one complete subsequence was
appended after reducing the list. W. l. o. g., to analyze the average ratio, we consider only complete subsequences,
therefore σp ≤ |S| < 2σp. The average ratio is upper-bounded by
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E. g., for σ = 10 and p = 32, the longest subsequence is at most 10% longer than the shortest one, expectedly
7% longer.

A generalization of this algorithm performs step 3a and 3b only every mth loop iteration. In the remaining
iterations of the main loop, S is doubled in size, so that space for additional subsequences is needed. This is
equivalent to increasing the oversampling factor to σnγ with γ = 1 − 1/m.

The generalized SinglePass algorithm needs as many iterations of Step 3 as the basic algorithm, i. e.
Θ(log n) iterations. The additional space increases, but sub-linearly, growing with O(σpnγ). The time com-
plexity of this algorithm is Θ(n + σp(nγ + log n)).

In the worst case, the longest sequence and the shortest sequence have length (nγ + 1)k and (nγ)k, respec-

tively. It holds σpnγk ≈ n, so k ≈ n1/m

σp . Subsuming this, the lengths of the subsequences do at most differ

by n1/m

σp elements, i. e. the difference decreases relatively to n, as n grows. Therefore, the bound for r also
converges to 1.
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Fig. 4.1. Running times of the list partitioning algo-
rithms for p = 4.
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Fig. 4.2. Quality of the list partitioning algorithms for
p = 4. We show the worst-case overhead ratio h = r − 1, as
well as its expectancy. The results are in %. Note that the
missing points are actually 0.

Generally speaking, the choice of m trades of time and space versus solution quality. The larger m, the more
memory and time is used, but r becomes better. This is the same effect as would be caused by a dynamically
growing σ. Choosing m = 2 appears to be a good compromise.

4. Experiments. We have implemented our SinglePass algorithm in the general form, so it subsumes the
two variants. We have implemented it in C++ and we have included it into the MCSTL [2]. MCSTL stands for
Multi-Core Standard Template Library and is a parallel implementation of the standard C++ library. Besides,
we have implemented the two näıve algorithms, namely TraverseTwice and PointerArray algorithms.
Dynamic arrays have been implemented using the STL vector class.

We have performed two kinds of experiments. First, we present the evaluation of the list partitioning
algorithms isolatedly. Then, we present the impact of the list partitioning algorithm as part of two parallelized
STL algorithms.

4.1. Comparison of List Partitioning Algorithms. We have compared all the algorithms both mea-
suring the running time as well as the quality of the results. Concerning quality, we have computed both
the worst-case ratio r and its expectancy. For a better plot reading, we have rescaled these results using the
overhead ratio h. h is defined from the ratio r as h = r − 1. It must be noted that the actual quality of the
results is deterministic with respect to a problem size. That is, the quality of our solution does not depend on
the specific input data but only on its size.

Setup.. We have tested our program on an AMD Opteron 270 (2.0 GHz, 1 MB L2 cache). We have used
GCC 4.2.0 as well as its libstdc++ implementation, compiling with optimization (-O3).

Parameters for Testing. We have repeated our experiments at least 10 times. The focus is on results for
p = 4. Recall that as p grows, r becomes smaller.

For SinglePass, there are the following parameter combinations: 1) (o = 1, m = 1), 2) (o = 10, m = 1)
and 3) (o = 1, m = 2). Therefore, it uses Θ(p), Θ(10p), and Θ(

√
np) additional space, respectively.

Results. Figure 4.1 summarizes the performance results, and Figure 4.2 the quality results. We see that
the performance of the SinglePass algorithm is very good. In particular, it takes only half the time compared
to the TraverseTwice algorithm, and even less compared to the PointerArray algorithm. That is, we can
divide a sequence into parts using virtually the same time as for only traversing it once. Further, the varying
running times for PointerArray must be due to the amortization of the vector doubling cost (i. e. depending
on how much of the allocated memory has been actually used by the vector).

The quality of the solution for our algorithm improves with the amount of additional space allowed for the
auxiliary sequence S (i. e. increased o or m). The simplest variant (o = 1, m = 1) has a worst-case ratio of 2
and an average ratio of 1.5. In addition, the overhead r − 1 is divided by o (in our case, o = 10). When setting
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Fig. 4.3. Speedup for STL list sort using
TraverseTwice partitioning.
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Fig. 4.4. Speedup for STL list sort using SinglePass

partitioning.
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Fig. 4.5. Speedup for accumulate using TraverseTwice
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 0

 1

 2

 3

 4

 5

100 1000 10000 100000 10
6

S
p
e
e
d
u
p

Number of elements (n)

seq
1 thr
2 thr
3 thr
4 thr
5 thr
6 thr
7 thr
8 thr

Fig. 4.6. Speedup for accumulate using SinglePass par-
titioning.

m to 2, our algorithm behaves very well, converging to zero overhead. The average overhead ratio decreases
exponentially with the input size n. Note that the (optimal) worst-case ratio achieved by the näıve algorithms
also decreases exponentially, even faster.

4.2. Parallelization Using List Partitioning. After having evaluated the isolated performance for the
list partitioning algorithms, we will investigate their impact in their intended domain, data-parallel algorithms.

Two interesting examples are accumulate and list::sort from the STL.
accumulate computes the sum (or some other reduction based on an associative binary operation) of a sequence
of elements, starting with some initial value. Here, we consider the case of a sequence with forward iterators as
input. list::sort stably sorts a doubly-linked list, whose size is not stored (in favor of fast splice operations).
Its implementation is typically based on mergesort1. In the following, we first present parallel implementations
using list partitioning for both algorithms. Then, we evaluate the impact in performance of different list
partitioning algorithms.

Parallel Implementations. Parallelizing accumulate is straightforward. Let the desired number of threads
be p. The list is partitioned into p parts, using one of the described algorithms. In parallel, each thread
accumulates its part. After that, the p results are combined sequentially.

1Note that mergesort can be implemented without explicitly splitting the sequence in the middle by using a bottom-up approach.
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For the list sort, we partition the list as above and split it into the respective sublists. These are sorted by
one thread each, in parallel. Recursive tree-shaped merging combines the results in log2 p steps, each merge per
se being done sequentially.

Parameters for Testing. We have repeated our experiments at least 10 times and report the average running
time.

For SinglePass we have used the parameters o = 1 and m = 2. Deduced from the results in Section
4.1, this choice produces a high quality partitioning at a low overhead in running time and additional space.
The data type for list::sort is a 16-byte element containing an 8-byte integer key. The values are randomly
generated. As use case for accumulate, we approximately multiply double-precision floating-point numbers by
summing up their logarithms.

Setup. We have run these experiments on an dual-socket AMD Opteron 2350 (2×4 cores, 2.0GHz, 2×2MB
L3 cache).

Results. Figures 4.3 and 4.4 show the speedup for parallel list::sort using the TraverseTwice and
SinglePass list partitioning algorithms, respectively. The PointerArray variant is not compared here since
it has a linear space overhead.

In both cases shown, the achieved speedups in absolute terms are not particularly good. This is probably
mostly due to the bad collective memory bandwidth caused by the random accesses to traverse the more and
more scattered sublists. Nonetheless, for a large number of elements, the SinglePass list partitioning algorithm
is significantly better than TraverseTwice because the sequential fraction is sped up by a factor of 2, and
the parts are of very similar size.

Figures 4.5 and 4.6 show the speedup for parallel accumulate using the TraverseTwice and SinglePass

list partitioning algorithms, respectively.
In this case, the achieved speedups in absolute terms are better because summing the logarithm of floating-

point numbers is quite compute-intensive. Again, the performance using SinglePass is much better than with
TraverseTwice, in particular for a large number of elements.

Overall, for large inputs, SinglePass obtains much better speedups than TraverseTwice both for
list::sort and accumulate.

5. Conclusions. We have presented a simple though non-trivial algorithm to solve the list partitioning
problem using only one traversal and sub-linear additional space. Our algorithm divides a linearly traversable
sequence of unknown length n in time Θ(n + σp(n1−1/m + log n)) using O(σpn1−1/m) additional space. σ and
m are tuning parameters of the algorithm.

Our experiments have shown that our algorithm is very efficient in practice. It takes almost the same time
as if the list was just traversed, without any processing. Besides, very high quality solutions can be obtained.
The larger m, the better the quality, trading off memory. If m = 1, the worst-case overhead ratio 1 is divided
by the oversampling factor σ. If m > 1, the worst-case overhead ratio decreases exponentially with n.

Therefore, for large input instances and in most practical situations, processing perfectly equal parts and
almost equal parts should take about the same time, because the time to process each of the parts fluctuates in
the same order of magnitude. In addition to this, our approach computes the partitioning twice as fast as the
näıve approach.

As a result, using our list partitioning algorithm as a substep of parallel algorithms, the overall performance
is significantly improved compared to a näıve implementation.
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