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Overview

Goal: Improve STL lists perfomance in most common settings
using a cache-conscious data structure.

Previous work: Either

2 double-linked lists implementations: easily cope with
standard requirements

2 theoretical cache-conscious data structures: do not take into
account any of these requirements

Main contribution: merging both approaches.

Main problem: dealing with STL lists iterator functionality.

Work done: analysis, design, implementation and
comprehensive experimental study.
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Standard Template Library (STL)

Core of C++ standard library [International Standard ISO/IEC 14882

1998].

Elements:

2 containers: list, vector, map...

2 iterators: high-level pointers

2 algorithms: sort, reverse, find...

Implementation: classical literature on algorithms and data
structures.



Improve performance

Use memory hierarchy effectively
for known / regular access patterns
→ cache-conscious algorithms &
data structures
General idea: organize data s.t.
logical access pattern
≈ physical memory locations.
Models:

2 cache-aware

2 cache-oblivious [Frigo et al. 1999]



STL lists

Forward and backward traversal container, that supports
insertion and deletion in constant time.

STL list iterators properties:

2 arbitrary number

2 operations cannot invalidate them

Straightforward implementation:

This is what all known STL implementations do!



Double-linked lists cache performance

Pointer-based data structures cannot guarantee good cache
performance.
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It is worth trying a cache-conscious approach!



Index

1. Introduction and motivation

2. Problem and our approach

3. Design

4. Experiments

5. Conclusions and further work



Previous work on cache-conscious lists

[Demaine 2002]

Cache-aware: partition of Θ(n/B) pieces with (B/2, B) elems.

2 Traversal: O(n/B) amortized

2 Update: constant

Cache-oblivious: uses the packed memory structure,
array of Θ(n) size with uniformly distributed gaps.

2 Traversal: O(n/B) amortized

2 Update: O((log2 n)/B) (lower by partitioning the array)

. Amortized constant with self-organizing structures
(updates may break the uniformity until the list is
reorganized when traversed).



Problem

Pointers + cache-conscious data structure:
physical/logical location are not independent.

No trivial pointers ⇒ reach iterators whenever a modification
occurs.

Main issue: unbounded number of iterators pointing to the
same element.

Achieving Θ(1) operations:

2 number of iterators arbitrarily restricted

2 iterators pointing to the same element share some data

STL lists are not traversed as a whole but step by step ⇒ NO
self-organizing strategies.



Our approach

Efficient data access + full iterator functionality +
(constant) worst case costs compliant with the Standard

Base: cache-aware solution.

Common list usages:

2 Only a few iterators on a list instance

2 Many traversals are performed due to sequential access

2 Frequent modifications at any position

2 Small/Plain old data (POD) types
(*)Implicit or explicit in general cache-conscious literature
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Basic design

Double-linked list of buckets.

What more?

1. how to arrange the elements inside a bucket

2. how to reorganize the buckets on insertion/deletion

3. how to manage iterators

4. bucket capacity? → Experimentally



Arrangement of elements



Reorganization of buckets

Preserve data structure invariant after modification

2 minimum bucket occupancy

2 arrangement coherency

2 . . .

Main issue: Keeping balance between:

2 high occupancy

2 few bucket accessed

2 few elements movements



Iterators management

Key idea: all the iterators referred to an element are identified
with a dynamic node (relayer) that points to it.

Figure 1: Bucket of
pairs

Figure 2: 2-level-
list
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Set up

Our three implementations:

2 bucket-pairs

2 2-level-cont

2 2-level-link

against libstdC++ in GCC 4.01.

Basic environment :

2 64-bit Sun Workstation, AMD Opteron CPU at 2.4 Ghz

2 1 GB main memory

2 64 KB + 64 KB 2-associative L1 cache, 1024 KB 16-associative L2

cache and 64 bytes per cache line.

Other : Pentium 4, 3.06 GHz hyperthreading CPU, 900 Mb of main

memory and 512 Kb L2 cache.



Which experiments

Performance measures:

2 wall-clock times

2 cache performance data: Pin [Luk et al. 2005]

Types of experiments:

2 lists with no iterators

2 lists with iterators

2 lists with several bucket capacities

2 LEDA

Lists before and after elements reorganization (by sorting).



Traversal before
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Traversal after
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Pin Traversal after
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Insert before
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Insert after
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Intensive insertion
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Internal sort
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Effect of bucket capacity
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Iterators
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LEDA
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Conclusions (1)

Pioneering to show the importance of porting existing theory
and practice on cache-conscious data structures to standard
libraries, as the STL.

Provided three standard compliant cache-conscious lists
implementations. This is not straightforward, although based
on simple existing data structures.

2 Kept with standard requirements, in particular with
iterators. We have provided two standard compliant
iterators designs.

2 The algorithms involved must be designed carefully to keep
up some properties.



Conclusions (2)

Provided a comprehensive experimental study.

Our implementations are prefferable in many (common)
situations to classical double-linked list implementations, such
as GCC (or LEDA).

Specifically,

2 5-10 times faster traversals

2 3-5 times faster internal sort

2 still competitive with (unusual) big load of iterators

2 bucket capacity is not a critical parameter

Between our implementations:

2 2-level linked implementation

2 linked bucket implementation



What next?

My webpage: www.lsi.upc.edu/~lfrias

Extended article: reorganization algorithm analysed in detail.

2 Using amortized analysis, we show that the number of
created/destroyed buckets is assymptotically optimal.



Thank you

Questions?
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