
Lists Revisited: Cache Conscious STL Lists

Leonor Frias?, Jordi Petit??, and Salvador Roura? ? ?

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Campus Nord, edifici Omega
08034 Barcelona (Spain).

{lfrias,jpetit,roura}@lsi.upc.edu

Abstract. We present three cache conscious implementations of STL
standard compliant lists. Up to now, one could either find simple double
linked list implementations that easily cope with standard strict require-
ments, or theoretical approaches that do not take into account any of
these requirements in their design. In contrast, we have merged both ap-
proaches, paying special attention to iterators constraints. In this paper,
we show the competitiveness of our implementations with an extensive
experimental analysis. This shows, for instance, 5-10 times faster traver-
sals and 3-5 times faster internal sort.

1 Introduction

The Standard Template Library (STL) is the algorithmic core of the C++ stan-
dard library. The STL is made up of containers, iterators and algorithms. Con-
tainers consist on basic data structures such as lists, vectors, maps or sets. Itera-
tors are a kind of high-level pointers used to access and traverse the elements in a
container. Algorithms are basic operations such as sort, reverse or find. The C++

standard library [1] specifies the functionality of these objects and algorithms,
and also their temporal and spatial efficiency, using asymptotical notation.

From a theoretical point of view, the knowledge required to implement the
STL is well laid down on basic textbooks on algorithms and data structures
(e.g. [2]). In fact, the design of current widely used STL implementations (in-
cluding SGI, GCC, VC++, . . .) is based on these.

Nevertheless, the performance of some data structures can be improved tak-
ing advantage of the underlying memory hierarchy of modern computers. Not
in vain, in the last years the algorithmic community has realized that the old
unitary cost memory model is turning more inaccurate with the changes in com-
puter architecture. This has raised an interest on cache conscious algorithms
? This author has been supported by grant number 2005FI 00856 of the Agència de

Gestió d’Ajuts Universitaris i de Recerca with funds of the European Social Fund
and ALINEX project under grant TIN2005-05446.

?? This author has been supported by GRAMARS project under grant TIN2004-07925-
C03-01 and ALINEX project under grant TIN2005-05446.

? ? ? This author has been supported by AEDRI-II project under grant MCYT TIC2002-
00190 and ALINEX project under grant TIN2005-05446.

and data structures that take into account the existence of a memory hierar-
chy, mainly studied under the so-called cache aware (see e.g. [3,4]) and cache
oblivious models (see e.g. [5,6]).

However, if these data structures are to be part of a standard software li-
brary, they must conform to its requirements. As far as we know, no piece of
work has taken this into account. Our aim in this paper is to propose standard
compliant alternatives that perform better than traditional implementations in
most common settings. Specifically, we have analyzed one of the most simple
but essential objects in the STL: lists. We have implemented and experimen-
tally evaluated three different variants of cache conscious lists supporting fully
standard iterator functionality. The diverse set of experiments shows that great
speedups can be obtained compared to traditional double linked lists found for
instance in the GCC STL implementation and in the LEDA library [7].

The remainder of the paper is organized as follows: In Sect. 2, we describe
STL lists and the cache behavior of a traditional double linked implementation.
The observations drawn there motivate the design of cache conscious STL lists
that we present in Sect. 3. Our implementations are presented and experimen-
tally analyzed in Sect. 4. Conclusions are given in Sect. 5.

2 Motivation for cache conscious STL lists

A list in the STL library is a generic sequential container that supports forward
and backward traversal using iterators, as well as single insertion and deletion at
any iterator position in O(1) time. Additionally, it offers internal sorting, several
splice operations, and others (see further documentation in [8]). Finally, it must
also be able to deal with an arbitrary number of iterators on it and ensure that
operations cannot invalidate them. That is, iterators must point to the same
element after any operation has been applied (except if the element is deleted).

In order to fulfill all these requirements, a classical double linked list to-
gether with pointers for iterators suffices. Indeed, this is what all known STL
implementations do.

The key property of any pointer-based data structure as this is that even
though the physical position of each element is permanent, its logical position
can be changed just modifying the pointers in the data structure. Consequently,
iterators are not affected by these movements.

Further, pointer-based data structures use memory allocators to get and
free nodes. These allocators typically answer consecutive memory requests with
consecutive addresses of memory (whenever possible). In the list case, if we add
elements at one end (and no other allocations are performed at the same time),
there is a good chance that logically consecutive elements are also physically
consecutive, which leads to a good cache performance. However, if elements are
inserted at random points or if the list is shuffled, logically consecutive elements
will be rarely at physically nearby locations. Therefore, a traversal may incur in
a cache miss per access, thus increasing dramatically the execution time.

In order to give evidence of the above statement, we have performed the
following experiment with the GCC list implementation: Given an empty list,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal using libstdc++

no-modification
1-insert-erase
2-insert-erase
4-insert-erase
8-insert-erase

16-insert-erase
32-insert-erase
64-insert-erase

sort

Fig. 1. Time measurements for list
traversal before modifying it and af-
ter being modified in several ways.
The vertical axis is scaled to the list
size (that is, time has been divided by
the list size before being plotted).

n random integers are pushed back one by one. Then, we measure the time to
fully traverse it. Afterwards, we modify the list, and again we measure the time
to fully traverse it. The modification consists either on sorting (thus randomly
shuffling the links between nodes), or on k iterations of the so-called k-insertion-
erase test. In the i-th iteration of this test (1 ≤ i ≤ k): first, the list is traversed
and an element is inserted at each position with probability 1/(3 + i) , then
the list is traversed again and each element is erased with probability 1/(4 + i).
Traversal times before modifying the list and after each kind of modification are
shown in Fig. 2. Except for very small lists, it can be seen that the traversal of
the shuffled list is about ten times slower than the traversal of the original list;
and the only difference can be in the memory layout (and so, in the number of
cache misses). Besides, note that four iterations of the insertion-erase test are
enough to register half the worst case time.

Taking into account that lists are used when elements are often reorganized
(e.g. sorted) or inserted and deleted at arbitrary positions (if we only wished to
perform insertions at the ends, we would better have used a vector, stack, queue
or dequeue rather than a list), it is worth to try to improve the performance of
lists using a cache conscious approach.

3 Design of cache conscious STL lists

In this section we first consider previous work on cache conscious lists. Then, we
present the main issues on combining them with STL list requirements. Finally,
we present our proposed solutions.

3.1 Previous work
Cache conscious lists have already been analyzed before; see a good summary
in [5]. The operations taken into account are traversal (as a whole), insertion
and deletion and their cost measured as the number of memory transfers.

Let be n the list size and B be the cache line size. The cache aware solution
consists on a partition of Θ(n/B) pieces, each between B/2 an B consecutive
elements, achieving O(n/B) amortized traversal cost and constant update cost.
The cache oblivious solutions are based on the packed memory structure [9],
basically an array of Θ(n) size with uniformly distributed gaps. To guarantee

this uniformity updates require O((log2 n)/B), which can be slightly lowered by
partitioning the array in smaller arrays. Finally, self-organizing structures [9]
achieve the same bounds as the cache aware but amortized. There, updates
breaking the uniformity are allowed until the list is reorganized when traversed.

Therefore, theory shows that cache conscious lists fasten scan based opera-
tions and hopefully, do not rise significantly update costs compared to traditional
double linked lists. However, none of the previous designs take into account com-
mon requirements of software libraries. In particular, combining iterator require-
ments and cache consciousness rule out some of the more attractive choices.

3.2 Preliminaries
Before proceeding to the actual design, the main problems to be addressed must
be identified. In our case, these concern to iterators. Secondly, it may be useful
to determine common scenarios in which lists appear to guide the design.

Iterators concerns. In cache conscious structures, the physical and logical loca-
tions of an element are heavily related. In the case of STL list, this makes difficult
to implement iterators trivially with pointers while enforces being able to reach
iterators to keep them coherent whenever a modification in the list occurs.

The main issue is that an unbounded number of iterators can point to the
same element. Therefore, Θ(1) modifying operations can be guaranteed only if
the number of iterators is arbitrarily restricted, or if iterators pointing to the
same element share some data that is updated when a modification occurs.

Hypotheses on common list usages. From our experience as STL programmers, it
can be stated that a lot of common list usages are in keeping with the following:
– A particular list instance has typically only a few iterators on it.
– Given that lists are based on sequential access, many traversals are expected.
– The list is often modified and at any position: insertions, deletions, splices.
– The stored elements are not very big (e.g. integers, doubles, . . .).

Note that the last hypothesis, which also appears implicitly or explicitly in
general cache conscious data structures literature, can be checked in compile
time. In case it did not hold, a traditional implementation could be used instead
and this can be neatly achieved with template specialization.

3.3 Our design
Our design combines cache efficient data access with full iterator functionality
and (constant) worst case costs compliant with the Standard. Besides, our ap-
proach is specially convenient when the hypotheses on common list usages hold.

The data structure core is inspired by the cache aware solution previously
mentioned (note that self-organizing strategies are not convenient here because
STL lists are not traversed as a whole but step by step via iterators). Specifically,
it is a double linked list of buckets. A bucket contains a small array of bucket
capacity elements, pointers to the next and previous buckets, and extra fields
to manage the data in the array. This data structure ensures locality inside the
bucket, but logically consecutive buckets are let to be physically far.

Finally, it must be decided a) how to arrange the elements inside a bucket,
b) how to reorganize the buckets when inserting or deleting elements, and c)
how to manage iterators. Besides, the appropriate bucket capacity must be fixed
(this has been studied experimentally, see end of Sect. 4.1).
a) Arrangement of elements. We devise three possible ways to arrange the ele-

ments inside a bucket:
– Contiguous: The elements are stored contiguously from left to right and

so, insertions and deletions must shift all the elements on its left or right.
– With gaps: Elements are still stored from left to right but gaps between

elements are allowed. In this way, we expect to reduce the average num-
ber of shifts. However, an extra field per element is needed to distinguish
real elements from gaps. Additionally, more computation may be needed.

– Linked : The order of the elements inside the bucket is set by internal
links instead of the implicit left to right order. This requires extra space
for the links, but avoids shifts inside the bucket. Thus, this solution is
scalable for large bucket (and cache line) sizes.

b) Reorganization of buckets. The algorithms involved in the reorganization of
buckets preserve the data structure invariant after an insertion or deletion.
This includes: keeping a minimum bucket occupancy to guarantee the lo-
cality of accesses, preserving the arrangement coherency (e.g. if contiguous
arrangement is used, gaps between the elements cannot be created),...
The main issue is keeping a good balance between high occupancy, few bucket
accesses per operation, and few elements movements. Besides, it should be
guaranteed that no sequence of alternated insertions and deletions can tog-
gle infinitely between creating and destroying a bucket. This is a must for
performance unless we fully manage bucket allocation/deallocation.

c) Iterator management. Finally, it must be decided how iterators are imple-
mented. Recall from Sect. 3.2 that this cannot be done trivially with pointers.
Specifically, we have decided to identify all the iterators referred to an ele-
ment with a dynamic node (relayer) that points to it. The relayer must be
found in constant time and keep count of how many iterators are referring
the element (so that it can be destroyed when there are none). Besides, we
only need to update the relayer when the physical location of the element
changes. We propose two possible solutions (see Fig. 2):
– Bucket of pairs: In this solution, for each element, a pointer to its relayer

is kept. This is easy to do and still uses less space than a traditional
double linked list because it needs two pointers per element.

– 2-level : In this solution, we maintain a double linked list of active relay-
ers. Note that O(1) time access to the relayers can be guaranteed because
STL lists are always accessed through iterators. This solution uses less
space compared to the previous one (if there are not much iterators).

Unfortunately, the locality of iterator accesses decreases with the number of
elements with iterators because relayers addresses can be unrelated. Anyway,
dealing with just a few iterators is not a big matter because in particular,
there is a good chance to find them in cache memory. In any case, our two
approaches conform the Standard whatever the number of iterators.

(a) Bucket of pairs (b) 2-level list

Fig. 2. Standard compliant iterators policies.

4 Performance evaluation

We developed three implementations. Two of them use contiguous bucket ar-
rangement, one of which uses bucket of pairs iterator solution and another bucket
of pairs. The last implementation uses a linked bucket arrangement and the 2-
level iterator solution. All these can be found under
http://www.lsi.upc.edu/∼lfrias/lists/lists.zip. Notice that in contrast to a flat dou-
ble linked list, our operations deal with several cases and each of them with more
instructions. This makes our code 3 or 4 times longer (in code lines).

In this section, we experimentally analyze the performance of our implemen-
tations and show their competitiveness in a lot of common settings.

The results are shown for a Sun workstation with Linux and an AMD Opteron
CPU at 2.4 GHz, 1 GB main memory, 64 KB + 64 KB 2-associative L1 cache,
1024 KB 16-associative L2 cache and 64 bytes per cache line. The programs were
compiled using the GCC 4.0.1 compiler with optimization flag -O3. Comparisons
were made against the current STL GCC implementation and LEDA 4.0 (in the
latter case the compiler was GCC 2.95 for compatibility reasons).

All the experiments were carried with lists of integers considering several list
sizes that fit in main memory. Besides, all the plotted measurements are scaled
to list size for a better visualization.

With regard to performance measures, we collected wall-clock times, that
were repeated enough times to obtain significative averages (variance was always
observed to be very low). Furthermore, to get some insight on the behavior of
the cache, we used Pin [10], a tool for the dynamic instrumentation of programs.
Specifically, we have used a Pin tool that simulates and gives statistics of the
cache hierarchy (using typical values of the AMD Opteron).

In the following we present the most significant results. Firstly, we analyze
the behavior of lists with no iterators involving basic operations and common
access patterns. Then, we consider lists with iterators. Finally, we compare our
implementations against LEDA, and consider other hardware environments.

4.1 Basic operations with no iterator load

Insertion at the back and at the front. Given an initially empty list, this exper-
iment compares the time to get a list of n elements by successively applying n
calls to either the push back or push front methods.

The results for push front are shown in Fig. 3(a); a similar behavior was
observed for push back. In these operations, we observe that our three imple-
mentations perform significantly better than GCC. This must be due to manage
memory more efficiently: firstly, the allocator is called only once for all elements
in a bucket and not for every element. Secondly, our implementations ensure
that buckets get full or almost full in these operations, and so, less total memory
space is allocated.

Traversal. Consider the following experiment: First, build a list; then, create an
iterator at its begin and advance it up to its end four times. At each step, add
the current element to a counter. We measure the time taken by all traversals.

Here, the way to construct the list plays an important role. If we just build
the list as in the previous experiment, the traversal times are those summarized
in Fig. 3(b). These show that performance does not depend on list size and that
our 2-level contiguous list implementation is specially efficient even compared
to the other 2-level implementation. Our linked bucket implementation is slower
than the contiguous implementation because, firstly, its buckets are bigger for the
same capacity and so, there are more memory accesses (and misses). Secondly,
the increment operation of the linked implementation requires more instructions.

Rather, if we sort this list before doing the traversals, and then measure
the time, we obtain the results shown in Fig. 3(c). Now, the difference between
GCC’s implementation and ours becomes very significant and increases with list
size (our implementation turns to be more than 5 times faster). Notice also that
there is a big slope just beginning at lists with 20000 elements.

The difference in performance is due to the different physical arrangement of
elements in memory (in relation to their logical positions). To prove this claim,
we repeated the same experiment using the Pin tool, counting the number of
instructions and L1 and L2 cache accesses and misses. Some of these results are
given in Fig. 4(a). Firstly, these show that indeed our implementations incur in
less caches misses (both in L1 and L2). Secondly, the scaled ratio of L1 misses is
almost constant because even small lists do not fit in L1. Besides, the big slope
in time performance for the GCC implementation coincides with a sudden rise
in L2 cache miss ratio, which leads to a state in which almost every access to
L2 is a miss. This transition also occurs in our implementations, but much more
smoothly. Nevertheless, the L2 access ratio (that is, L1 miss ratio) is much lower
because logically close elements are in most cases in the same bucket and so,
already in the L1 cache (because bucket capacity is not too big).

Insertion. In this experiment, we deal with insertions at arbitrary points. Firstly,
a list is built (using the two abovementioned ways). Then, it is forwardly tra-
versed four times. At each step, with probability 1

2 , an element is inserted before
the current. We measure the time of doing the traversal plus the insertions.

Results are shown in Figs. 3(d) and 3(e), whose horizontal axis corresponds
to the initial list size. Similar results were obtained with the erase operation.

Analogously to plain traversal, performance depends on the way the list is
built. However, as in this case the computation cost is greater, the differences
are smoother. In fact, when the list has not been shuffled, the bucket of pairs list

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Front push (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(a) push front

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal before shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(b) Traversal before shuffling

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal after shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(c) Traversal after shuffling

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Insert traversal before shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(d) Insertion before shuffling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Insert traversal after shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(e) Insertion after shuffling

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Insert after shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(f) Intensive insertion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Sort (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(g) Internal sort

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

bucket capacity

Insert traversal after shuffling (486* 10^4 list size and 0% it load)

gcc
bucket-pairs
2-level-cont
2-level-link

(h) Effect of bucket capacity: Inser-
tion after shuffling (list size 486000)

Fig. 3. Experimental results for basic operations with no iterator load.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 n

um
be

r
of

 L
2

ca
ch

e
ac

ce
ss

es

list size (in 10^4)

Traversal after shuffling (0% it load and bucket capacity 100)

gcc (misses)
bucket-pairs (misses)
2-level-cont (misses)
2-level-link (misses)

gcc (total)
bucket-pairs (total)
2-level-cont (total)
2-level-link (total)

(a) Traversal

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 n

um
be

r
of

 L
2

ca
ch

e
ac

ce
ss

es

list size (in 10^4)

Sort (0% it load and bucket capacity 100)

gcc (misses)
bucket-pairs (misses)
2-level-cont (misses)
2-level-link (misses)

gcc (total)
bucket-pairs (total)
2-level-cont (total)
2-level-link (total)

(b) Internal Sort

Fig. 4. Simulation results on the cache performance (the vertical axis is logarithmic).

performs worse than GCC’s. Our two other implementations perform similarly
to GCC’s though. On the other hand, when the list has been shuffled, GCC’s
time highly increases, while ours is almost not affected.

It is interesting to observe that the linked arrangement implementation does
not outperform the contiguous ones even though it does not require shifting
elements inside the bucket. This must be due to the fact that more memory ac-
cesses (and misses) are performed and this is still dominant. This was confirmed
performing the analogous Pin experiment. Instead, if an intensive insertion test
is performed, in which a lot of insertions per element are done and almost no
traversal is performed, then this gain is not negligible. This is shown in Fig. 3(f).

Internal sort. The STL requires an O(n log n) sort method that preserves the
iterators on its elements. Our implementations use a customized implementation
of merge sort.

Results of executing the sort method are given in Fig. 3(g). These show that
our implementations are between 3 and 4 times faster than GCC. Taking into
account that GCC also implements a merge sort, we claim that the significant
speedup is due to the locality of data accesses inside the buckets. To confirm
this, Fig. 4(b) shows the Pin results. Indeed, GCC does about 30 times more
cache accesses and misses than our implementations.

Effect of bucket capacity. The previous results were obtained for buckets with
capacity of 100 elements. Anyway, this choice did not appear to be critical.
Specifically, we repeated the previous tests with lists with other capacities, and
observed that once the bucket capacity was not very small (less than 8-12 ele-
ments), a wide range of values behaved neatly. Note that a bucket of integers with
capacity of 8 elements is yet 40-80 bytes long (depending on the implementation
and address length) and a typical cache line is 64 or 128 bytes long.

To illustrate the previous claims, we show in Fig. 3(h) insertion results on
a shuffled list with initially about 5 million elements. These show that for con-
tiguous arrangement implementations, time decreases until a certain point and
then starts to increase. In these cases, increasing the bucket size increases the
intrabucket movements which finally results more costly than the achieved local-
ity of accesses. In contrast, the linked arrangement implementation seems to be

not affected because no such operations are performed, accesses of a bucket do
not interfere between them, and our insert reorganization algorithm takes into
account at most three buckets at a time.

If we perform the last test with several instances at the same time, a smooth
rise in time for all implementations can be seen, in particular for big bucket
capacities. In fact, it is common dealing with several data structures at the same
time. In this case, some interferences within the different objects accesses can
occur, which are more probable as the number of instances grows. Therefore, it
is advisable to keep a relatively low bucket size.

4.2 Basic operations with iterator load

Now, we repeat the previous experiments on lists that do have iterators on their
elements. We use the term iterator load to refer to the percentage of elements
of a list that have one or more iterator on them.

Results are shown for tests in which elements have already been shuffled,
iterator loads range from 0% to 100% and a big list size is fixed (about 5 million
elements) because then is crucial to manage data in the cache efficiently.

Traversal. When there are no iterators on the list, our implementations traversal
is very fast because the increment operation is simple and elements are accessed
with high locality. However, when there are some iterators, it may turn slower be-
cause the increment operation depends whether there are other iterators pointing
to the element or its successor. In contrast, the increment operation on tradi-
tional double linked lists is independent of it, and so, performance must be not
affected. When the list has not been shuffled, this is exactly the case.

In contrast, when the elements are shuffled, which changes iterators logical
order, iterators accesses may score low locality. Results for this case are shown
in Fig. 5(a), which show indeed that the memory overhead become the most im-
portant factor in performance. Nevertheless, the good locality of accesses to the
elements themselves makes our implementations more competitive than GCC’s
up to 80% iterator load even for relatively small lists (about 100000 elements).

Insertion. When an element is inserted in a bucket with several iterators, some
extra operations must be done but are much less than in the traversal case in
relative terms. Therefore, performance should be less affected.

Results are shown after the elements have been shuffled in Fig. 5(b).
The results are analogous to the traversal test but with smoother slopes, as

happened with no iterator load. Specifically, when the list has been shuffled, our
implementations are more convenient up to 80% iterator load.

Internal sort. Guaranteeing iterators consistency in our customized merge sort
is not straightforward, specially in the case of 2-level approaches that need some
(though small) auxiliary arrays. Performance results are shown in Fig. 5(c).

The results indeed show that the 2-level implementations are more sensitive
to the iterator load. Anyway, any of our implementation are faster than GCC
for iterators loads lower than 90%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

percentage of iterator load

Traversal after shuffling (486* 10^4 list size and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(a) Traversal after shuffling (I)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

percentage of iterator load

Insert traversal after shuffling (486* 10^4 list size and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(b) Insertion after shuffling (I)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

percentage of iterator load

Sort (486* 10^4 list size and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

(c) Internal sort (I)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal after shuffling (0% it load and bucket capacity 100)

gcc
leda

2-level-link

(d) Traversal after shuffling (L)

Fig. 5. Experimental results depending on the iterator load for a list of size 4.86∗106 (I)
and LEDA results (L).

4.3 Comparison with LEDA

Here, we compare our lists with the LEDA well-known implementation, which
uses a customized memory allocator. Although LEDA does not follow the STL,
its interface is very similar and as GCC, it uses classical double linked lists.

In Fig. 5(d), we show the results for traversal operation after shuffling. These
make evident the limitations in performance of using a double linked list com-
pared to our cache conscious approach. LEDA’s times are just slightly better
than GCC’s, but remain worse than our implementations.

We omit the rest of plots with LEDA, because its results are just slightly
better than GCC. The only exception is its internal sort (a quicksort) which
is very competitive. Nevertheless, it requires linear extra space, does not keep
iterators (items in LEDA jargon) and is not faster than ours.

4.4 Other environments

The previous experiments have been run in a AMD Opteron machine. We have
verified that the results we claim also hold on other environments. These include
an older AMD K6 3D Processor at 450 MHz with a 32 KB + 32 KB L1 cache,
512 KB L2 off-chip (66 MHz) and a Pentium 4 CPU at 3.06 GHz, with a 8KB
+ 8KB L1 cache and 512 KB L2 cache. On both machines, similar results are
obtained in relative terms, and better as newer the machine and compiler.

5 Conclusions
In this paper we have presented three cache conscious lists implementations that
are compliant with the C++ standard library. Cache conscious lists were studied
before but did not cope with library requirements. Indeed, these goals enter in
conflict, particularly preserving both constant costs and iterators requirements.

This paper shows that it is possible to combine efficiently and effectively
cache consciousness with STL requirements. Furthermore, our implementations
are useful in many situations, as is shown by our wide range of experiments.
The experiments compare our implementations against double linked list imple-
mentations such as GCC and LEDA. These show for instance that our lists can
offer 5-10 times faster traversals, 3-5 times faster internal sort and even with an
(unusual) big load of iterators be still competitive. Besides, in contrast to double
linked lists, our data structure does not degenerate when the list is shuffled.

Further, the experiments show that the 2-level implementations are specially
efficient. In particular, we would recommend using the linked bucket implemen-
tation, although its benefits only evince when the modifying operations are really
frequent, because it can make more profit of eventually bigger cache lines.

Given that the use of caches is growing in computer architecture (in size and
in number) we believe that cache conscious design will be even more important
in the future. Therefore, we think that it is time that standard libraries take into
account this knowledge. In this sense, this article sets a precedence but there is
still a lot of work to do. To begin with, similar techniques could be applied to
more complicated data structures. Moreover, current trends indicate that in the
near future it will be common to have multi-threaded and multi-core computers.
So, we should start thinking how to enhance these features in modern libraries.

References

1. International Standard ISO/IEC 14882: Programming languages — C++. 1st edn.
American National Standard Institute (1998)

2. Cormen, T.H., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. 2
edn. The MIT Press, Cambridge (2001)

3. Lamarca, A.: Caches and algorithms. PhD thesis, University of Washington (1996)
4. Sen, S., Chatterjee, S.: Towards a theory of cache-efficient algorithms. In: SODA

’00, SIAM (2000) 829–838
5. Demaine, E.: Cache-oblivious algorithms and data structures. In: EEF Summer

School on Massive Data Sets. LNCS. (2002)
6. Frigo, M., Leiserson, C., Prokop, H., Ramachandran, S.: Cache-oblivious algo-

rithms. In: FOCS ’99, IEEE Computer Society (1999) 285
7. Mehlhorn, K., Naher, S.: LEDA — A platform for combinatorial and geometric

computing. Cambridge University Press (1999)
8. Josuttis, N.: The C++ Standard Library : A Tutorial and Reference. Addison-

Wesley (1999)
9. Bender, M., Cole, R., Demaine, E., Farach-Colton, M.: Scanning and traversing:

Maintaining data for traversals in memory hierarchy. In: ESA ’02. (2002) 152–164
10. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: PLDI ’05, Chicago, IL (2005)

