
Norms in Multiagent Systems:
some Implementation Guidelines

Javier Vázquez-Salceda, Huib Aldewereld, and Frank Dignum

Institute of Information and Computing Sciences
Utrecht University, The Netherlands
{javier, huib, dignum}@cs.uu.nl

Abstract. Norms are commonly used in MAS to formally express the expected
behaviour of agents in open environments. Current norm formalisms focus on the
declarative nature of norms. However, in order to be implemented, norms should be
translated into operational representations. In this paper we continue our work on
the implementation of norms by discussing issues on norm enforcement, verifiability
and defeasibility. We propose some implementation guidelines, including some mech-
anisms to be added in agent platforms in order to ease norm implementation.

1 Introduction

In open societies, where heterogeneous agents might deviate from expected behaviour, mech-
anisms are needed in order to systematize, defend and recommend right and wrong be-
haviour, along with safe environments to support those mechanisms, thereby inspiring trust
into the agents that will join the society. 1 One example of such safe environments is an Elec-
tronic Institution [10] [12], where the expected behaviour of agents is described by means of
an explicit specification of norms. Such norm specification should be a) expressive enough,
b) readable by agents, and c) easy to maintain.

Current work on normative systems’ formalization (mainly focused in Deontic-like for-
malisms [16]) is declarative in nature, focused on the expressiveness of the norms, the defini-
tion of formal semantics and the verification of consistency of a given set. In previous work
[9] [11] we have focused on the formal definition of norms by means of some variations of
deontic logic that includes conditional and temporal aspects [5] [8], and we provided formal
semantics. Although the declarative aspects of norms are important, norms should not only
have a declarative meaning but also an operational one in order to be used in MAS. This
means that, to be used in practice, norms should be operationally implemented.

It is important to note that implementing norms is not implementing a theorem prover
that, using the norm semantics, checks whether a given interaction protocol complies with
the norms. The implementation of norms should consider two perspectives: a) the agent
perspective, analyzing the impact of norms in the agents’ reasoning cycle (work on this
perspective can be found in [3] [4] [7]), and b) the institutional perspective, implementing a
safe environment (including the enforcing mechanisms) to ensure trust among parties. As
far as we know, the most complete model in literature considering some operational aspects
of norms for MAS is the extension of the SMART agent specification framework by López y
López, Luck and d’Inverno [17] [18]. The framework aims to represent different kinds of agent
societies based on norms. However, no implementation of the architecture applying it to a
1 Some foundational work in this direction has been done in the ALFEBIITE project [14], in

particular in [2].

real problem has been reported in literature, there are no tools to support the development
and implementation of a normative multiagent system, and there are no mechanisms defined
from the institutional perspective in order to enforce the norms.

In this paper we complement our previous work on norm formalization by focusing on
how norms should be operationally implemented in MAS from an institutional perspective
(i.e. How to check a norm? How to detect a violation of a norm? How to handle it?). In order
to analyze the problem we categorize norms depending on a) whether they are restrictive
(norms permitting/forbidding actions or situations) or impositive (norms forcing an entity
to do an action or to reach a state), b) how the start and end of an obligation are detected,
and c) the different aspects of the norms to be specified. We also propose a first draft of
a machine-readable format for expressing norms, which is not only expressive enough for
complex norms (such as those present in eCommerce, eGovernment or eCare domains) but
also useful for implementation in MAS. Our implementation guidelines use the ISLANDER
framework for institutions and platform as a starting point.

The paper is organized as follows. In the next section we discuss how normative specifica-
tion is currently done in the ISLANDER formalism, being the most appropriate for defining
institutions. Then, in §3, we discuss the different types of norms one can distinguish and
their implementation related issues (including verifiability and violation handling). In §4
we analyze the implementation of combinations of norms where some of the norms become
defeasible. We end this paper with our conclusions and outline future lines of research. To
illustrate that our approach is quite general and can be used on several domains, we use
examples of norms throughout this paper coming from three different domains (electronic
auction houses such as Fishmarket, organ and tissue allocation for human transplantation
purposes and the access to Dutch police criminal registers).

2 Norms in ISLANDER

The ISLANDER formalism [12] provides a formal framework for institutions [21]. It has
proven to be well-suited to model practical applications; ISLANDER has been mainly used
in eCommerce scenarios, and was used to model and implement an electronic Auction house
(the Fishmarket).

This formalism views an agent-based institution as a dialogical system where all the
interactions inside the institution are a composition of multiple dialogic activities (message
exchanges). These interactions are structured through agent group meetings called scenes
that follow well-defined protocols. A second key element of the ISLANDER formalism is
the notion of an agent’s role. Each agent can be associated to one or more roles, and these
roles define the scenes the agent can enter and the protocols it should follow. Finally, this
formalism defines a graphical notation that not only allows to obtain visual representations
of scenes and protocols but is also very helpful while developing the final system, as they
can be seen as blueprints.

Furthermore, the AMELI platform [13] allows the execution of electronic institutions,
based on the rules provided by ISLANDER specifications, wherein external agents may
participate.

2.1 Restrictive Norms in ISLANDER

Most of the norms that can be expressed in ISLANDER are restrictive norms in the in-
teraction2 of agents, enforcing that agents utter only acceptable illocutions according to an
intended interaction protocol expressed by means of the performative structure.

The performative structure defines the conversations that can take place within the
institution and how agents, depending on their role, can move among them. A performative
structure can be depicted as:

– a collection of multiple, concurrent scene nodes. All constraints in the interaction that
apply inside a scene are expressed by the scene protocol. A scene protocol is specified
by a finite state directed graph where the nodes represent the different states of the
conversation and the directed arcs connecting the nodes are labeled with the illocutions
that make the scene state evolve.

– transition nodes, devoted to mediate different types of connections among scenes and
establishing synchronization and parallelism points.

– labeled arcs, specifying the role or roles that are able to pass from one to another node
in the diagram.

Restrictive norms on the agents’ behavour are implicitly represented in the performative
structure and scene protocol graphs. Between scenes, an agent cannot pass from one scene
to another if there is no explicit path of arcs and transitions in the performative structure
connecting both scenes for the role or roles the agent is enacting. Inside the scenes, for each
state of the scene protocol graph any illocution that is not explicitly represented as allowed
(by means of an outgoing arc) is forbidden. All these restrictions are managed in the AMELI
platform by means of the Governors, the Scene Managers and the Transition Managers. In
AMELI, external agents do not interact with the e-institution (and other agents in the e-
institution) directly, but throught the use of Governors. Governors filter the messages of
the agents and exclude illegal and (from an institutional perspective) unknown messages.
Norms implemented in the design of the institution are checked and enforced by the Scene
and Transition managers that deny access to states and scenes if the role of an agent or its
illocutions do not match those specified by the designer of the e-institution.

2.2 Impositive norms in ISLANDER

Apart of the restrictive norms expressed in the performative structure, ISLANDER also
allows the introduction of norms to trigger obligations. These norms express the consequences
of some key actions (e.g. winning an auction) within the institutions. The consequences are
expressed as obligations that agents will acquire or satisfy depending on their illocutions
within the different scenes (e.g. the obligation to pay the items the agent won). The definition
of this kind of norms is composed by:

– antecedent : the set of illocutions that, when uttered in a given scene satisfying the
given conditions, will trigger the norm, making the set of obligations expressed in the
consequent hold.

– defeasible antecedent : defines the illocutions that must be uttered in the defined scenes
in order to fulfil the obligations

2 As the ISLANDER formalism views a MAS from a dialogical perspective, the only actions that
can be modelled and controlled are messages (the illocutions [20]).

– consequent : a list of obligation expressions.

This kind of norms are handled by the governors. Each governor keeps, at any moment,
the pending obligations of its associated agent and checks whether agent interactions (the
uttered and received illocutions) activate or de-activate the obligations (by checking the
antecedent and the defeasible antecedent of the norm).

2.3 Discussion

ISLANDER is a framework which provides a sound model for the domain ontology and has
a formal semantics [21]. This is an advantage of its dialogical approach to organizations.
However, in ISLANDER the normative aspects are reduced to the afore mentioned protocol
(expressed in the performative structure) plus the specification of constraints for scene tran-
sition and enactment (the only allowed interactions are those explicitly represented by arcs
in scenes), along with the definition of norms that uniquely allow for the firing of obligations.
Thus, ISLANDER does not offer expressiveness to specify norms involving prohibitions, per-
missions, or sanctions. Furthermore, it does not allow the use of temporal operators. And
finally, ISLANDER does not allow for the specification of non-dialogical actions.

Our aim is to extend the norms in the ISLANDER formalism with more expressive,
abstract norms while providing some mechanisms to implement the enforcement of these
norms from the institutional perspective.

3 Norms: types, components and implementation issues

In this section we will focus on indicating possible implementation guidelines related with
the different kinds of norms and the components in each of them. There are two main
assumptions in our approach. First of all we assume that norms can sometimes be violated
by agents in order to keep their autonomy, which can also be functional for the system as a
whole as argued in [6]. The violation of norms is handled from the organizational point of
view by violation and sanction mechanisms. Secondly we assume that from the institutional
perspective the internal state of the external agents is neither observable nor controlable
(external agents as black boxes). Therefore, we cannot avoid a forbidden action to be in the
goals and intentions of an agent, or impose an obligatory action on an agent to be in their
intentions.

In order to implement enforcement mechanisms that are well-found, one has to define
some kind of operational semantics first. In general, an operational semantics for norms
always comes down to either one of the following:

– Defining constraints on unwanted behaviour.
– Detecting violations and reacting to these violations.

The choice between these two approaches is highly dependent on the amount of control
over the addressee of the norms.3 Prevention of unwanted behaviour can only be achieved
if there is full control over the addressee; otherwise, one should define and handle violations
(see §3.4).
3 An analysis of the different kinds of addressee of norms and their impact on implementation is

presented in [22].

3.1 Norm Condition Expression Language.

In [22] we characterized norms4 by whether a) they refer to a state or an action, b) they are
conditional, c) they include a deadline, or d) they are norms concerning other norms. Based
on this classification, we can specify a generic language for expressing norm conditions.
Although this language can be given a formal semantics, we refrain from doing so for now,
but refer to [8] [11].

Definition 1 (Norm Condition).

NORM CONDITION := N(a, S 〈IF C〉) | OBLIGED(a ENFORCE(N(a, S 〈IF C〉)))
N := OBLIGED | PERMITTED | FORBIDDEN

S := P | DO A | P TIME D | DO A TIME D

C := proposition5

P := proposition

A := action expression

TIME := BEFORE | AFTER

Definition 1 shows that norm conditions can either be concerning states, e.g. for a norm
such as

FORBIDDEN(buyer, account(buyer, A)∧ A < 0)

or concerning actions, e.g.

FORBIDDEN(seller DO bid(product, price))

The definition allows the norm condition to be conditional, allowing the expression of norms
like

OBLIGED((user DO include(source(Suspect data), Criminal Register))
IF (done(include(Suspect data, Criminal Register))))

as well as norm conditions including temporal aspects in the form of deadlines, for instance

OBLIGED((allocator DO assign(heart, recipient))
BEFORE (time(done(extraction(heart, donor))) + 6hours))

The other group of norm conditions that can be expressed in the language defined in defi-
nition 1 are those concerning enforcement of norms on other agents.

OBLIGED(ONT ENFORCE(FORBIDDEN(person DO sell(organ))))

3.2 Implementation guidelines for norm enforcement

The elements present in the norm expressions (or norm condition) have a direct impact on
norm enforcement. For all the norms above, the implementation of enforcement is composed
of three related processes:
4 Note that we will use the term norms wherever Obligations (OBLIGED) as well as Permissions

(PERMITTED) or Prohibitions (FORBIDDEN) are meant.
5 The conditions (C) and propositions (P) are expressed in some kind of propositional logic. This

logic can use deontic (cf. [9] [11]), or temporal (cf. [5] [8]) operators. Note however that this logic
should at least include some operational operators like, for instance, DONE and RUNNING.

a) the detection of when a norm is active,
b) the detection of a violation on a norm, and
c) the handling of the violations.

In this section we are going to focus on the detection mechanisms, as they are central in
the enforcement of norms. We talk more about violations, sanctions and repairs in §3.4. In
order to support the task of agents enforcing norms, the agent platform should provide time-
efficient services to help those agents to enforce proper behaviour in large agent societies.

– Detection of the occurrence of an action. In the case of agent actions, there are
three possible points to be detected: a) when the action is going to be performed, b) it
is being performed, or c) it is done. In an agent platform with several agents performing
different actions at the same time, a question arises on how to implement the detection
of the occurrence of actions. The agents enforcing norms may become overloaded on
trying to check any action on any time. Therefore in [22] we proposed to create two
plaftorm mechanisms: a) a black list mechanism of actions to be checked, and b) an
action alarm mechanism that triggers an alarm when a given action A on the black
list attempts to start, is running or is done. This trigger mechanism has to do no further
checks, only to make the enforcer agent aware of the occurrence of the action. The action
alarm mechanism can only be done with actions defined in the institutions’ ontology,
which specifies the way each action is to be monitored. For instance, when the perfor-
mance of the action assign(organ, recipient) should be checked, the action is registered
by an enforcer agent on the black list. Then as soon as assign(organ, recipient) occurs,
the trigger mechanism sends an alarm to the enforcer, that will check if the action was
legal or illegal given the norms for that context.
When actions are performed by users through an user interface, the action alarm mech-
anism can be placed in the interface itself. In the case of the following norm:

PERMITTED(administrator DO include(Suspect Data, Criminal Register))

The inclusion of the personal data of the suspect is done by all users through a special
form. Therefore the interface knows when the user is filling in suspect data, and at the
moment of submission of such data to the system can send an alarm to the enforcer.

– Detection of activation and deactivation of norms. In the case of conditional
norms we have to detect the activation of the norm (when condition C is true) and the
deactivation of the norm (when predicate P or action A is fulfilled or C does not hold).
An additional issue is to establish the allowed reaction time between the activation and
deactivation of an obligation, i.e. the time that is allowed for the completion of the
obligation when it becomes active (e.g. immediately, in some minutes). 6 The length
of the reaction time for each norm is highly dependent on the application domain. A
violation does not occur when the norm becomes active but when the reaction time has
passed. The manner and the moment to check the norm conditions is highly dependent
on the verifiability levels of each check (see §3.3).

– Deadlines. Deadlines represent a special case in the implementation of conditional
norms, as they are not that easy to check. Deadlines require a continuous check (second

6 In theoretical approaches, the semantics are defined in a way that when an obligation becomes
active, it has to be fulfilled instantly. But this is impractical for implementation, because agents
need some time between detection and reaction.

by second) to detect if a deadline is due. If the institution has lots of deadlines to track, it
will become computationally expensive. We propose to include within the agent platform
a clock trigger mechanism that sends a signal when a deadline has passed. The idea
is to implement the clock mechanism as efficiently as possible (some operating systems
include a clock signal mechanism) to avoid the burden on the agents.

3.3 Verifiability levels

It is easy to see that a protocol or procedure satisfies a norm when no violations occur during
the execution of the protocol. The real problem in norm checking lies, however, in deter-
mining when that violation occurs. For instance, in criminal investigations, a police officer
should not have more (sensitive or private) information than needed for the investigation.
So an officer is doing fine as long as no violation occurs (i.e. he does not have too much
information). The real problem lies in determining when the officer actually has too much
information.

Therefore, the implementation of the enforcement of norms is depending on two proper-
ties of the checks to be done: a) the checks being verifiable (i.e. a condition or an action that
can be machine-verified from the institutional point of view, given the time and resources
needed) and b) the checks being computational (i.e. a condition or action that can be checked
on any moment in a fast, low cost way). Using these two properties, we can analyze their
impact on the implementation of norm enforcement:

– Norms computationally verifiable: verification of all predicates and actions can be
done easily, all the time. For instance:

PERMITTED((user DO appoint(regular user))
IF (access level(user, register, ‘full control’)))

In this case it is clear that the verification can be easily done, because authorization
mechanisms should be included on any multiagent platform to ensure security in open
MAS.
Implementation Guideline: In this case the verification can be performed each time that
it is needed.

– Norms not computationally verifiable directly, but by introducing extra re-
sources. In this case the condition or action is not directly (easily) verifiable, but can be
so by adding some extra data structures and/or mechanisms to make it easy to verify.
The action alarm and clock trigger mechanisms are examples of extra resources. For
instance, in

OBLIGED((buyer DO bid(product, price))
BEFORE (buyer DO exit(auction house)))

checking that a buyer has done at least one bid in the auction house (i.e., checking all
the logs of all the auction rounds) may be computationally expensive if there are no
data structures properly indexed in order to check it in an efficient way (e.g. the agent
platform keeping, for each buyer, a list of bids uttered, or having a boolean that says
whether the buyer has uttered a bid). Another example is the following:

OBLIGED((user DO include(source(Suspect data), Criminal Register))
IF (done(include(Suspect data, Criminal Register))))

The detection of the inclusion of data is done by an action alarm mechanism placed in
the user interface.
Implementation Guideline: include the extra data structures and/or mechanisms, and
then do verification through them.

– Non-computationally verifiable: the check is too time/resource consuming to be
done at any time.
Implementation Guideline: verification is not done all the time, but is delayed, doing a
sort of “garbage collection” that detects violations. There are three main families:
• Verification done when the system is not busy and has enough resources.
• Verification scheduled periodically. E.g. each night, once a week.
• Random Verification (of actions/agents), like random security checkings of passen-

gers in airports.
– Observable from the institutional perspective, but not decidable: That is, ver-

ifiable by other (human) agents that have the resources and/or the information needed.
For instance:

OBLIGED((register admin DO correct(data)) IF (incorrect(data)))

It is unfeasible for the system to check whether the information provided by users is
incorrect without other sources of information. Therefore this check has to be delegated
appropriately.
Implementation Guideline: delegation of only those checks that cannot be performed by
the system.

– Indirectly observable from the institutional perspective: These can be internal
conditions, internal actions (like reasoning) or actions which are outside the ability of
the system to be observed or detected (like sending a undetectable message between
auctioneers in an auction).
Implementation Guideline: try to find other conditions or actions that are observable
and that may be used to (indirectly) detect a violation.

3.4 Violations, sanctions and repairs

Because there may be illegal actions and states which are outside the control of the enforcer,
violations should be included in the normative framework. In order to manage violations,
each violation should include a plan of action to be executed in the presence of the violation.
Such a plan not only includes sanctions but also countermeasures to return the system to
an acceptable state.

In order to link the norm conditions and the detection of activation and violation of
norms with the violation management, we propose that a norm description includes, at
least, the following:

– The norm condition: denotes when the norm becomes active and when it is achieved.
– The violation state condition: a formula derived from the norm to express when a vio-

lation occurs (e.g. for the norm OBLIGED((a, P) IF C) this is exactly the state when C
occurs and P does not, that is, the state where the norm is active, but not acted upon).

– The violation detection mechanism: a set of actions that can be used to detect the
violation. This plan may include any of the proposed detection mechanisms described
in §3.2.

– The sanction: the sanction is a plan (a set of actions) which should be executed when a
violation occurs. This plan defines punishment mechanisms, either direct (fines, expulsion
of the system) or indirect (social trust or reputation).

– The repairs : a contingency plan (set of actions) to recover the system from the violation.

An example (extracted from organ and tissue allocation regulations) is the following:

Norm FORBIDDEN(allocator DO assign(organ, recipient))
condition IF NOT(allocator DONE ensure compatibility(organ, recipient)))
V iolation NOT(done(ensure compatibility(organ, recipient)) AND
condition done(assign(organ, recipient))
Detection {detect alarm(assign,′ starting′);
mechanism check(done(ensure compatibility(organ, recipient))); }
Sanction inform(board, ”NOT(done(ensure compatibility(organ, recipient))

AND done(assign(organ, recipient))”)
Repairs {stop assignation(organ);

record(”NOT(done(ensure compatibility(organ, recipient)) AND
done(assign(organ, recipient))”, incident log);
detect alarm(ensure compatibility,′ done′);
check(done(ensure compatibility(organ, recipient)));
resume assignation(organ); }

4 Combining Norms

In previous sections we have focussed on the structure of one norm at a time. We have
seen how the type and verifiability of a norm influences its implementation. However, when
considering a set of norms (e.g. norms in a lawbook for a particular topic), there is an extra
issue to handle, the defeasibility present in a set of norms, which has an important impact
on implementation.

Defeasibility in a set of norms occurs when one or several norms can be defeated by the
addition of more norms. There are two kinds of defeasibility, in this paper we will only focus
on the latter:

– Defeasibility of classification: The semantic meaning of the concepts appearing in the
norms may be extended, reduced or altered by the introduction of an extra set of norms.

– Defeasibility of norms : The impact and/or applicability of the obligations, permissions
or prohibitions expressed in a given norm may be altered or even become unapplicable
by the introduction of a extra set of norms introducing variations for some specific cases.

4.1 Defeasibility of norms

Norms in human regulations are formulated in a manner that is very similar to non-
monotonic logics and default reasoning techniques [1] [15] [19]. That is, laws are generally
specified in several levels of abstraction. On the most abstract level, normally the constitu-
tional laws, a law defines the default, i.e. it defines what actions to take (or which predicates
should hold) when certain conditions hold or specified situations arise. The “lower” levels
of abstraction (e.g. applied law and decrees) generally specify exceptions to this default.
They specify that certain situations do not follow the general norm and ask for a different
approach.

Article 13
1. Any procurement that occurs directly through automated manner is recorded, as

far as these procurements are not dispensed by decree of the Minister of Justice.
5. A procurement is not recorded in accordance with the first item, when it is a

result of a linkage and a report of the linkage has been drawn up.

The example above is extracted from Dutch regulations on the management of Severe
Criminality Registers. Article 13.1 specifies the obligation to record in the system log files
any automated procurement of data that has not been stated in a decree from the Minister
of Justice. This describes a quite clear situation, easy to be included in the decission making
of the recording procedure of the system. We can express article 13.1 as follows:

A13.1 OBLIGED((system DO record(procurementi, sys logs))
IF NOT(origin(procurementi, decree(Minister Of Justice))))

The addition of Article 13.5 suddenly defeats what is stated in Article 13.1, as it intro-
duces a special, exceptional case where the first article does not hold. In principle we can
express Article 13.5 as follows:

A13.5 NOT(OBLIGED((system DO record(procurementi, sys logs))
IF (origin(procurementi, linkagej) AND reported(linkagej , sys logs))))

By this example we can see how defeasibility impacts in the reasoning process. There
will be situations where both norms A13.1 and A13.5 will be triggered, and therefore two
contradictory results (the obligation of recording and NOT the obligation of recording)
appear. In this simple example it is quite clear that A13.5 overrides what is stated in A13.1
(by considering A13.1 the default case and A13.5 an exceptional case), but solving collisions
at run-time for all possible combinations of norms is a complex and time-inefficient task.

Computational Guideline: Introducing the handling of defeasibility of norm sets in the
reasoning mechanism is not a good option, as there is no efficient implementation of defea-
sible logics. Therefore there is a need to bypass defeasible reasoning, by solving all collisions
off-line. Depending on the rate of changes in the law, there are two possible options to handle
defeasibility of norms in implementation:

– Changes in the law almost never occur : As defeasible reasoning is computationally too
complex, one possible option would be to avoid the defeasibility directly in the logical
representation of the norms (i.e. the logical representation extracted from the human
regulations re-structures the conditions for the base case and the exceptions in a way
that it is not defeasible). In order to do so, the conditions that express when the excep-
tions occur should be introduced in the original norm as pre-conditions. For the previous
example, expressions A13.1 and A13.5 can be fussioned in a single, non-defeasible ex-
pression as follows:

A13.1 5 OBLIGED((system DO record(procurementi, sys logs))
IF (NOT(origin(procurementi, decree(Minister Of Justice)))
AND NOT(origin(procurementi, linkagej)
AND reported(linkagej, sys logs))))

The problems of this approach are that a) defeasibility should be completely handled by
the designer or the knowledge engineer while building the computational representation,

and b) there is no longer a direct mapping from each of the articles of the human law to
the norm expressions in the computational representation, and therefore maintenance
of the computational representation when there are changes in the law becomes highly
difficult (e.g. what is to be changed in expression A13.1 5 if there is a new article that
expresses an exception to the exception in Article 13.5?).

– Changes in the law often occur (periodically): In this case the alternative is to build a
defeasible computational representation of the norms, where each of the articles in the
human law is mapped. In order to use the computational representation, an automated
process seaches for those norms that become defeasible because of other norms and solves
the problem by moving and/or adding conditions. The original defeasible representation
of norms should include new objects in the object language to express the relations
between expressions. For instance, Articles 13.1 and 13.5 could be represented as follows:

A13.1 OBLIGED((system DO record(procurementi, sys logs))
IF (NOT(origin(procurementi, decree(Minister Of Justice)))
AND NOT(CONDITIONAL EXCEPTION(A13.1))))

A13.5 CONDITIONAL EXCEPTION(A13.1)
IF (origin(procurementi, linkagej)
AND reported(linkagej, sys logs)))

In this case the representation explicitly specifies that expression A13.5 only impacts the
conditions in expression A13.1. This information will be used by the automated process
to generate the final, non-defeasible representation, getting automatically the expression
A13.1 5 above.
The advantage of this approach (that is a work in progress) is that each time there
is a change in the law, the change can be easily made in the defeasible computational
representation, which then automatically can be processed to eliminate defeasibility
before its use.

5 Conclusions

In this paper we have focused on the operational aspects of institutional norms in MAS.
We have looked at classifications of norms and have analyzed the verifiability of states and
actions in norm expressions. We have also proposed and discussed several implementation
guidelines on the enforcement of norms (i.e. detection and management) and several mech-
anisms that can be included to simplify norm enforcement on multiagent platforms.

We have presented a first draft of a machine-readable format for expressing complex
norms, and using this format we have proposed a norm description, which includes the
norm condition and violation detection and repair techniques, in order to make the first
steps in implementing norm enforcement in MAS by means of violation handling.

We have discussed the problems of defeasibility of norms taht might arise when consid-
ering sets of norms.

Currently we are taking the first steps towards implementing the enforcement mecha-
nisms presented here by introducing our norm model into ISLANDER. Besides that we are
still examining how to mechanise the translation from defeasible norm sets to useable and
implementable norms.

References

1. G. Antoniou. Nonmonotonic Reasoning. MIT Press, Cambridge, MA, 1997.
2. A. Artikis. Executable Specification of Open Norm-Governed Computational Systems. PhD

thesis, Department of Electrical & Electronic Engineering, Imperial College London, November
2003.

3. G. Boella and L. van der Torre. Fulfilling or violating norms in normative multiagent systems.
In Proceedings of IAT 2004. IEEE, 2004.

4. G. Boella and L. van der Torre. Normative multiagent systems. In Proceedings of Trust in
Agent Societies Workshop at AAMAS’04, New York, 2004.

5. J. Broersen, F. Dignum, V. Dignum, and J.-J. Ch. Meyer. Designing a Deontic Logic of Dead-
lines. In 7th Int. Workshop on Deontic Logic in Computer Science (DEON’04), Portugal, May
2004.

6. C. Castelfranchi. Formalizing the informal?: Dynamic social order, bottom-up social control,
and spontaneous normative relations. Journal of Applied Logic, 1(1-2):47–92, February 2003.

7. C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur. Deliberative normative agents: Principles
and architectures. In N. Jennings and Y. Lesperance, editors, ATAL ’99, volume 1757 of LNAI,
pages 364–378, Berlin Heidelberg, 2000. Springer Verlag.

8. F. Dignum, J. Broersen, V. Dignum, and J.-J. Ch. Meyer. Meeting the Deadline: Why, When
and How. In 3rd Goddard Workshop on Formal Approaches to Agent-Based Systems (FAABS),
Maryland, April 2004.

9. F. Dignum, D. Kinny, and L. Sonenberg. From Desires, Obligations and Norms to Goals.
Cognitive Science Quarterly, 2(3-4):407–430, 2002.

10. V. Dignum and F. Dignum. Modeling agent societies: Coordination frameworks and institutions.
In P. Brazdil and A. Jorge, editors, Progress in Artificial Intelligence, LNAI 2258, pages 191–
204. Springer-Verlag, 2001.

11. V. Dignum, J.-J.Ch. Meyer, F. Dignum, and H. Weigand. Formal Specification of Interaction
in Agent Societies. In 2nd Goddard Workshop on Formal Approaches to Agent-Based Systems
(FAABS), Maryland, Oct. 2002.

12. M. Esteva, J. Padget, and C. Sierra. Formalizing a language for institutions and norms. In
J.-J.CH. Meyer and M. Tambe, editors, Intelligent Agents VIII, volume 2333 of LNAI, pages
348–366. Springer Verlag, 2001.

13. M. Esteva, J.A. Rodŕıguez-Aguilar, B. Rosell, and J.L. Arcos. AMELI: An Agent-based Mid-
dleware for Electronic Institutions. In Third International Joint Conference on Autonomous
Agents and Multi-agent Systems, New York, US, July 2004.

14. A Logical Framework for Ethical Behaviour between Infohabitants in the Infor-
mation Trading Economy of the Universal Information Ecosystem (ALFEBIITE).
http://www.iis.ee.ic.ac.uk/~alfebiite/ab-home.htm.

15. V. Lifschitz. Circumscription. In D. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook
of Logic in Artificial Intelligence and Logic Programming, pages 297–352. Clarendon Press,
Oxford, 1994.

16. A. Lomuscio and D. Nute, editors. Proc. of the 7th Int. Workshop on Deontic Logic in Computer
Science (DEON04), volume 3065 of LNCS. Springer Verlag, 2004.

17. F. López y López and M. Luck. Towards a Model of the Dynamics of Normative Multi-Agent
Systems. In G. Lindemann, D. Moldt, M. Paolucci, and B. Yu, editors, Proc. of the Int.
Workshop on Regulated Agent-Based Social Systems: Theories and Applications (RASTA ’02),
volume 318 of Mitteilung, pages 175–194. Universität Hamburg, 2002.

18. F. López y Lopez, M. Luck, and M. d’Inverno. A framework for norm-based inter-agent depen-
dence. In Proceedings of The Third Mexican International Conference on Computer Science,
pages 31–40. SMCC-INEGI, 2001.

19. J. McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial Intelligence,
13(1-2):27–39, 1980.

20. P. Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. PhD thesis, Inst.
d’Investigació en Intel.ligència Artificial, 1997.

21. J.A. Rodriguez. On the Design and Construction of Agent-mediated Electronic Institutions.
PhD thesis, Inst. d’Investigació en Intel.ligència Artificial, 2001.

22. J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Implementing norms in multiagent sys-
tems. In G. Lindemann, J. Denzinger, I.J. Timm, and R. Unland, editors, Multagent System
Technologies, LNAI 3187, pages 313–327. Springer-Verlag, 2004.

