
Seto: a framework for the decomposition of Petri
nets and transition systems

Viktor Teren Jordi Cortadella Tiziano Villa

Università degli Studi di Verona Universitat Politècnica de Catalunya Università degli Studi di Verona

viktor.teren@univr.it jordi.cortadella@upc.edu tiziano.villa@univr.it

Abstract—This paper presents an overview of different ap-
proaches, based on theory of regions, for Transition System
and Petri net decomposition into a synchronous product of
restricted subclasses of Petri nets. A decomposition targeting
State Machines was implemented in a prototype software, by
reduction to maximal independent set which computes minimal
sets of irredundant state machines. Then, states of single state
machines were merged by reduction to the Boolean satisfiabil-
ity problem (SAT). Furthermore, an extension to Free-choice
Petri net decomposition was implemented, reducing the whole
decomposition process to a series of SAT problems. We report
experimental results that show a good trade-off between quality of
results vs. time of computation, including different variants of the
decomposition flows. In particular, we introduce a new approach
allowing a simultaneous search of components, exploiting Binary
Decision Diagrams and the excitation-closure property provided
by theory of regions.

I. INTRODUCTION

This paper presents Seto1 a framework for the decompo-
sition of Labeled Transition Systems (LTSs) and Petri nets
(PNs) into a synchronous product of State Machines (SMs)
or Free-choice Petri nets (FCPNs). The bridge that enables the
decomposition process is the theory of regions [1] already used
for decades in PN synthesis. The theory of regions allows not
only to create a versatile decomposition framework, but also to
prove the existence of a bisimulation between the set of derived
synchronized SMs [2] and FCPNs [3] and the initial LTS or
PN. In the next sections we will present the new improvements
introduced in the decomposition flows presented in [3], [4].
The main contributions of this paper are:

• A simultaneous decomposition flow with a heuristic and
an optimal version of the algorithm: a new approach
based on BDDs and the theory of regions (Sec. VII);

• A method to ensure only safe FCPNs as result of a
decomposition (Sec. VIII).

A. Overview
The LTS decomposition can be used in multiple ways. The

most intuitive contribution is to obtain a compact representa-
tion of highly concurrent behaviors, with explicit disentangle-
ment of key components, as in the case of Figs. 1 and 2. This
example shows a clear distinction between two parts of the

1available at https://github.com/viktorteren/Seto

s0

s1 s2

s3 s4

s5

s6

s7 s8

s9

s11

s10

s12

x

x

x

x

a

a

a

y

y

z

z

z

b

b
c

c

d

d

x

y

d

d

c

c

c

Fig. 1: Transition System.

p0

p3 p4

p1 p2

a

b

dc

(a) FCPN0

p5

p4 p7

b y

d z

(b) FCPN1

p8

p6

p7

x

y

z

(c) FCPN2

Fig. 2: Three FCPNs distilled from the LTS in Fig. 1

behavior, with alphabets {a, b, c, d} and {x, y, z}, respectively,
shown at the left (a) and right (c) of the picture and an
arbitration process (b) that creates a mutual exclusion between
{b, d} and {y, z}. The benefit of the decomposition can also
be valued when a single PN represents a “spaghetti” structure,
very difficult to analyze.

s0

s1 s2 s3 s4 s5

s6s7s8s9

a

g b d a

f

cbed

Fig. 3: ECTS.

The power of the decom-
position process consists also
in the discovery of hidden
behaviors like in the case
of Fig. 3, representing an
apparently sequential behav-
ior which is hiding different
concurrent flows, indeed the
FCPN decomposition of ECTS in Fig. 3 is represented by two
components (Fig. 4). This kind of property plays an important

669

2023 26th Euromicro Conference on Digital System Design (DSD)

2771-2508/23/$31.00 ©2023 IEEE
DOI 10.1109/DSD60849.2023.00096

r0r7

r3 r5

r1r6

r4

a

gf

c
b e

d

(a) FCPN0

r9

r8 r4

r2

g

f

c

e

(b) FCPN1

Fig. 4: FCPNs derived from LTS in Fig. 3.

role in the process mining environment, indeed, decomposition
has already an important place in process mining, especially
in Business Process Management (BPM) [5]–[8]. Instead of
creating a PN from event logs, we could easily create an
LTS [9], [10] and directly decompose it with our algorithm.

The purpose of our algorithm is to provide a new exploration
framework to work in synergy with established process mining
technologies, without replacing them.

B. State-of-the-art
Referring to PN and LTS decomposition, in [11], an LTS is

decomposed iteratively into an interconnection of n component
LTSs with the objective to extract a PN from them. In [11]
the decomposition allows the extraction of a PN, but the
decomposed set of LTSs cannot be used as an intermediate
model. This approach is flexible in choosing how to split
the original LTS, but it does not provide any minimization
algorithm, so that the redundancy due to overlapping states
in the component LTSs translates into redundant places of
the final PN. Another method presented in [12] is based on
the decomposition of LTSs into “slices”, where each LTS is
separately synthesized into a PN, and in case of PNs “hard”
to understand the process can be recursively repeated on one
or more “slices” creating a higher number of smaller PNs.
With respect to the aforementioned methods, our approach
yields by construction a set of PNs restricted to the desired
subclass and applies to them minimization criteria. The results
of [13] instead show how complex processes can be formally
represented by process windows, where each window covers
a part of process behavior. In our case, each PN could be
interpreted as a window representing a part of the entire
process.

II. PRELIMINARIES

This section provides the background material of the paper.

Definition 1 (TS/LTS [1]). A Labeled Transition System (LTS,
or simply TS) is defined as a 4-tuple (S,E,Δ, s0) where:

• S is a non-empty set of states
• E is a set of events
• Δ ⊆ S × E × S is a transition relation

• s0 ∈ S is an initial state

Henceforth, s
e→ s′ will denote the fact that (s, e, s′) ∈ Δ.

Every LTS is assumed to meet the following properties:

• It does not contain-self loops, i.e., s
e→ s′ =⇒ s �= s′.

• Each event has at least one occurrence, i.e.,
∀e ∈ E : ∃s e→ s′.

• Every state s ∈ S is reachable from the initial state, i.e.,

there is a sequence s0
e1→ s1, s1

e2→ s2, . . . , sn−1
en→ sn

such that sn = s.
• It is deterministic, i.e., s

e→ s′, s e→ s′′ =⇒ s′ = s′′.

Definition 2 (Bisimulation). Given two transition systems
TS1 = (S1, E, T1, s0,1) and TS2 = (S2, E, T2, s0,2), a bi-
nary relation B ⊆ S1 × S2 is a bisimulation, denoted by
TS1 ∼B TS2, if (s0,1, s0,2) ∈ B and if whenever (p, q) ∈ B:

• ∀(p, e, p′) ∈ T1 : ∃q′ ∈ S2 such that (q, e, q′) ∈ T2 and
(p′, q′) ∈ B

• ∀(q, e, q′) ∈ T2 : ∃p′ ∈ S1 such that (p, e, p′) ∈ T1 and
(p′, q′) ∈ B.

Two LTSs are said to be bisimilar if there is a bisimulation
between them.

The operation Ac deletes from an LTS all the states that
are not reachable or accessible from the initial state and all
transitions attached to them.

Definition 3 (Synchronous product). Given two LTSs
TS1 = (S1, E1, T1, s0,1) and TS2 = (S2, E2, T2, s0,2), the
synchronous product is defined as

TS1||TS2 = Ac(S,E1 ∪ E2, T, (s0,1, s0,2))

where S ⊆ S1 × S2, (s0,1, s0,2) ∈ S, T ⊆ (S1 × S2) × E ×
(S1 × S2) is defined as follows:

• if a ∈ E1 ∩ E2, (s1, a, s
′
1) ∈ T1 and (s2, a, s

′
2) ∈ T2

then ((s1, s2), a, (s
′
1, s

′
2)) ∈ T ,

• if a ∈ E1, a /∈ E2 and (s1, a, s
′
1) ∈ T1 then

((s1, s2), a, (s
′
1, s2)) ∈ T ,

• if a /∈ E1, a ∈ E2 and (s2, a, s
′
2) ∈ T2 then

((s1, s2), a, (s1, s
′
2)) ∈ T ,

• nothing else belongs to T .

The synchronous product is associative, so we can extend
the previous definition to more than two LTSs.

Definition 4 (Ordinary Petri net, PN [14]). An ordinary Petri
net is a 4-tuple, N = (P, T, F,M0) where:

• P = {p1, p2, ..., pm} is a finite set of places,
• T = {t1, t2, ..., tn} is a finite set of transitions,
• F ⊆ (P × T)∪ (T × P) is a set of arcs (flow relation),
• M0 : P → {0, 1, 2, 3, ...} is an initial marking,
• P ∩ T = ∅ and P ∪ T �= ∅.

For any x ∈ P ∪ T , then •x = {y | (y, x) ∈ F}. Similarly,
x• = {y | (x, y) ∈ F}.
Definition 5 (Firing rule). Let N = (P, T, F,M0) be a PN.
A transition t ∈ T is enabled in marking M , represented as
M [t〉, if M(p) > 0, ∀p ∈ •t. If t is enabled in M , then t can

670

be fired leading to another marking M ′, denoted as M [t〉M ′,
such that:

M ′(p) =

⎧⎨
⎩
M(p)− 1 if p ∈ •t\t•
M(p) + 1 if p ∈ t•\•t
M(p) otherwise

We call [M〉 the set of markings that can be reached from M
by firing sequences of enabled transitions.

Definition 6 (Reachability graph [15, p. 20]). Given a safe
PN N = (P, T, F,M0), the reachability graph of N is the
LTS RG(N) = ([M0〉, T, Δ,M0) defined by (M, t,M ′) ∈ Δ
if M ∈ [M0〉 and M [t〉M ′.

Definition 7 (State Machine, SM [14]). A State Machine is
a Petri net N = (P, T, F,M0) such that each transition t ∈ T
has exactly one incoming and one outgoing arc, i.e., |•t| =
|t•| = 1.

An SM with only one token on the initial marking cannot
model concurrency, but it can model choice.

Definition 8 (Free-choice Petri net, FCPN [14]). A Free-
choice Petri net is an ordinary Petri net N = (P, T, F,M0)
such that every arc from a place is either a unique outgoing
arc or a unique incoming arc to a transition, i.e.,

for all p ∈ P , |p•| ≤ 1 or •(p•) = {p}; equivalently,
for all p1, p2 ∈ P , p•1 ∩ p•2 �= ∅ ⇒ |p•1| = |p•2| = 1.

III. REGIONS: THE BRIDGE BETWEEN TRANSITION

SYSTEM AND PETRI NET

In this paper we propose a procedure for the decomposition
of Transition Systems based on the theory of regions.

Definition 9 (Region). Given an LTS TS = (S,E, T, s0), a
region is defined as a non-empty set of states r � S such that
the following properties hold for each event e ∈ E:

enter(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬exit(e, r)
exit(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬enter(e, r)
no cross(e, r) =⇒ ¬enter(e, r) ∧ ¬exit(e, r)

where
in(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ ∈ r
out(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ /∈ r

enter(e, r) ≡ ∃(s, e, s′) ∈ T : s /∈ r ∧ s′ ∈ r
exit(e, r) ≡ ∃(s, e, s′) ∈ T : s ∈ r ∧ s′ /∈ r

no cross(e, r) ≡ in(e, r) ∨ out(e, r)

Definition 10 (Minimal region). A region r is called minimal if
there is no other region r′ strictly contained in r (�r′ | r′ ⊂ r).

Definition 11 (Pre-region (Post-region)). A region r is a pre-
region (post-region) of an event e if there is a transition labeled
with e which exits from r (enters into r). The set of all pre-
regions (post-regions) of the event e is denoted by ◦e (e◦).

If the transition system is strongly connected all the regions
are also pre-regions.

p0

p1 p2

p3

p4 p5

a

b c

d e

f

(a) FCPN0

p7

p6

p8

b e

c d

(b) FCPN1

Fig. 5: Two FCPNs with FCPN0 unsafe.

Definition 12 (Excitation set). The excitation set of event e,
ES(e), is the maximal set of states such that for every s ∈
ES(e) there is a transition s

e→.

Definition 13 (Excitation-closed Transition System, ECTS).
An LTS with the set of labels E and the pre-regions ◦e is an
ECTS if the following conditions are satisfied:

• Excitation-closure: ∀e ∈ E :
⋂

r∈◦e r = ES(e)
• Event effectiveness: ∀e ∈ E : ◦e �= ∅
If the initial LTS does not satisfy the excitation-closure

or event effectiveness property, label splitting [1] can be
performed to obtain an ECTS.

IV. SAFE COMPOSITION OF UNSAFE FREE-CHOICE PETRI

NETS

(p0, p6)

(p1p2, p6)

(p2p3, p7)

(p2p5, p6)

(p3p5, p8)

(p1p3, p8)

(p1p4, p6)

(p3p4, p7)

(p4p5, p6)

a

b

e

c

d

c

d

b

e

Fig. 6: Synchronous
product of the
reachability graphs of
FCPNs in Fig. 5.

Given a set of FCPNs from a
decomposition, even if the com-
position of FCPNs is safe, single
components considered without syn-
chronizations could be unsafe, still
preserving the synchronous product
of the reachability graphs with the
original ECTS. Fortunately, in [16]
the authors proved the existence of
a safe PN starting from an ECTS.
In our case the decomposition into
sets of FCPNs can be seen as a spe-
cial case. The decomposition into
a set of synchronized SMs can be
interpreted as the S-covering of a
PN, which is proven to be safe.
For FCPNs the existence of a safe
SM decomposition implies also the
existence of an FCPN decomposi-
tion, where in the worst case all
components would be SMs.

In the next sections, we will see different ways to decompose
an LTS into SMs and FCPNs. In case of SMs, it is sufficient to
avoid multiple initial places to keep safe an SM. For FCPNs,
a direct safeness check will be needed.

671

Let’s see an example of a safe composition with unsafe
PNs. In Fig. 5 we have one unsafe FCPN. Possible sequences
which bring to an unsafe marking in FCPN0 could be “abc”
and “acb”. Even if FCPN0 is unsafe, the synchronization
with FCPN1 makes unreachable all unsafe markings. Indeed,
Fig. 6 represents the composition of the reachability graphs of
the PNs, which never reaches an unsafe marking.

V. DECOMPOSITION INTO A SET OF SYNCHRONIZED

FREE-CHOICE PETRI NETS OR STATE MACHINES

As we have seen in Section I-A, there are plenty of different
methods to perform a decomposition, our framework performs
it relying on the theory of regions, therefore, given a set of
SMs or FCPNs N , derived from an ECTS TS, the set of
all regions R of N , the set of labels E of TS, the sets of
pre-regions •e of the TS for all e ∈ E, the set of events
Ek and regions Rk of PN k, to guarantee the existence of
a bisimulation between the initial model and the resultant set
of synchronizing components, the following properties must
be satisfied:

• Excitation-closure: ∀e ∈ E :
⋂

r∈(•e∩R) r = ES(e)
• Event effectiveness: ∀e ∈ E : ∃r ∈ R | r ∈ •e
• Place-connectedness:

∀r ∈ R : (r ∈ Rk, ei ∈ (•r ∪ r•)) =⇒ ei ∈ Ek

The first property guarantees that for each event of the
original PN there is a sufficient number of its pre-regions
across the derived PNs, so that, given a marking in the
decomposed set of PNs, a transition representing the event
can fire iff a transition with the same event fires in the original
PN. An insufficient number of pre-regions of an event would
relax the constraint allowing the activation of events whose
activation is not allowed in the original PN.

The second property guarantees that for each event of the
original PN there is a region from which the event is enabled
to fire.

The third property guarantees that, if a region represents
a place in one of the derived PNs, this place will keep the
connections of the region to all events for which the region is
a pre-region or a post-region.

The main steps to obtain a set of synchronizing SMs or
FCPNs, reported in [3], [17], are:

1) Transformation of the PN into an LTS: reachability
graph extraction

2) If LTS is not an ECTS label splitting is performed
3) Computation of all minimal regions
4) Generation of a set of SMs or FCPNs with EC property
5) Optional: removal of redundant PNs
6) Optional: merge between regions preserving EC

The first three steps of the flow can be easily found in
literature and in the section on preliminaries. For the other
steps, instead, some methodologies are shown in this section.

In order to decompose an LTS/PN in a set of synchronized
PNs the excitation-closure property has to be maintained, since
it is necessary and sufficient for a correct behavior of the
decomposed PN. The decision on how to choose the regions
for each component may affect the size of the result, but if
it is excitation-closed it will preserve the original behavior.

The result can have a lot of redundancy, especially because
the most efficient flows rely on heuristic steps and pass
through a Saturated Petri net (SPN), which describes the
maximally redundant set of places. For this reason, after the
decomposition, redundant PNs can be removed. In some cases
it is not possible to remove entire PNs but only redundant
parts of them. For a further insight on the optimization steps
we refer to [3], [17].

There is not only one way to generate a set of synchronizing
PNs from an LTS, especially if we restrict the resultant
PNs to different subclasses.In the next sections the following
approaches will be presented for the decomposition into sets
of synchronizing SMs or FCPNs:

• Sequential search: based on an approximated method,
obtains really scalable and suitable results.

• Simultaneous search: guarantees the minimality of the
number of PNs but, as seen in the following sections, the
performance depends a lot on the desired PN subclass
decomposition.

Approximated methods were exploited since an exact algo-
rithm would not be suitable, with runtime and memory limits
reachable with around 15 regions, when a standard benchmark
could have more than one hundred regions (see Table I).

VI. DECOMPOSITION APPROACHES PREVIOUSLY

ADOPTED BY OUR FRAMEWORK

Both SM and FCPN decomposition flows share the same
first steps available in literature, including the generation of
the minimal regions by a greedy algorithm, which checks
minimality while creating regions [1] [15, p. 103] [18].

A. Sequential generation of State Machines with Excitation-
closure property

The generation of a set of SMs is performed by reducing it to
an instance of maximal independent set (MIS)2, and by calling
a MIS solver on the graph whose vertices correspond to the
minimal regions with edges connecting regions that intersect.
Each MIS of the aforementioned graph corresponds to a set
of disjoint regions that define an SM. The detailed algorithm
can be found in [2].

The set of derived SMs satisfies the EC property because by
construction each region is included in at least one independent
set, therefore starting from the set of all minimal regions the
condition ∀e ∈ E :

⋂
r∈◦e r = ES(e) is satisfied, otherwise,

if there would be an event which does not satisfy the EC,
the initial LTS would not be an ECTS either. Also, event
effectiveness holds because, starting from all minimal regions
of the initial ECTS, for each event e there is at least one
region r ∈ ◦e �= ∅ which is also in at least one SM. Finally,
the place connectedness property also holds because the choice
of a MIS does not allow to split two or more different paths
outgoing from a region, because alternative paths will always

2Given an undirected graph G = (V,E), an independent set is a subset
of nodes U ⊆ V such that no two nodes in U are adjacent. An independent
set is maximal if no node can be added without violating independence.

672

have independent regions and therefore all these regions will
be included in the same MIS result.

Sometimes a set of regions given from the MIS solver could
actually represent two (or more) SMs, since no constraint on
the complete connection of all regions has been added. That
is not a problem, since we can split the disconnected sets of
regions as separate SMs forbidding the smallest ones. In this
way sooner or later a solution with only one SM will be found
and it will be the largest available SM. A solution with smaller
SMs would be valid, but heuristically without these small SMs
a solution with a minor number of SMs would be more likely
to be found.

B. Sequential Free-choice Petri net search

In this case as a starting point we could take the flow
presented for SMs, which already satisfy also the constraints
for the FCPNs, but we could do even better: FCPNs are
less restrictive than SMs allowing concurrency inside the
components, therefore we could take advantage from the
previously presented flow, adopting some changes. In addition
to excitation-closure, event effectiveness and place connected-
ness, we show the properties which must be satisfied when a
set of regions Rk represents an FCPN:

• Event connectedness. If an event e is present, at least
one pre-region and one post-region of e must belong to
Rk.

• Free-choiceness. if r is a choice present in the FCPN,
then r must be the only selected pre-region of its post-
events. Formally, if r ∈ Rk, |r•| > 1, e ∈ r•, r′ ∈ •e,
and r �= r′, then r′ �∈ Rk.

In order to create a restricted set of FCPNs also the
following constraints have to be taken into account during the
creation of a new FCPN:

• Maximization function: given the set of minimal regions,
during the creation of a new FCPN, maximize the usage
of regions not included in any of the previously created
FCPNs;

• (Optional) Minimization function: minimize the number
of the total used regions in the new FCPN keeping
constant the maximum number of new used regions.

The purpose of the first functions is to create as few FCPNs
as possible: the maximization function forces the creation of
the largest possible FCPNs, so that the number of regions
is sufficient to achieve a set of synchronized FCPNs can be
reached reducing the number of used FCPNs. The second
function instead is used in order to minimize the number of
redundant regions during the creation of a new FCPN, keeping
constant the result obtained by the previous constraint.

Looking into the implementation of this kind of decompo-
sition, differently from the SMs, in this case, in order to find a
set of synchronized FCPNs a SAT solver is used. Each of the
previously described properties was encoded into a set of CNF
clauses, then, using binary search in the range [0, n], instances
of SAT problems were solved trying to find a new FCPN with
i ∈ [0, n] new regions, where the maximum number of unused
regions is n. Afterward, keeping fixed the number of obtained

FCPNs, single FCPN minimization can be performed (merging
algorithm).

VII. NEW DECOMPOSITION APPROACH IMPLEMENTED IN

OUR FRAMEWORK

A. Decomposition into k State Machines/Free-choice Petri nets
simultaneously

In this paper, we present a novel method for the decom-
position of LTSs into sets of synchronized SMs/FCPNs. This
method has a lot of similarities to the method used for the
sequential FCPN search, but the approach is different since the
search is performed simultaneously on k components. This is
allowed by the encoding of excitation-closure property, using
the set of minimal regions obtained from the LTS. In order to
encode the excitation-closure, for each event, all possible sets
of minimal regions that satisfy EC are found. The complexity
of this step is O(2n), where n is the number of pre-regions
of the event. Fortunately, the maximum number of pre-regions
for an event hardly exceeds a dozen. Once all possible sets
of pre-regions which satisfies EC for each event were found,
these sets were encoded into binary decision diagrams (BDDs),
using the CUDD package [19]. Each BDD represents a set of
choices of regions in order to satisfy excitation-closure for
the given event. It is important to notice that each BDD is
composed by pre-regions for the given event and not all regions
of an LTS. The path from the root to a leaf represents a set of
choices of the pre-regions of the given event, which can bring
to the satisfaction of excitation-closure or not. Taking all paths
that satisfy EC, a set of DNF clauses which represents the EC
satisfaction can be created. In our case, we need them in CNF
form to be fed to a SAT solver, therefore the complement is
taken, i.e., all paths that do not satisfy EC. In detail: a path
root-leaf can be represented as a clause where each literal
is a region which could be true or false, i.e., according to
whether the region is taken or not, for example (r1 ∧ r2 ∧ r3)
represents a set of three pre-regions for an event where r1
and r2 are taken and r3 not. This path could lead to an
unsatisfied excitation-closure, as many other paths could do.
For the satisfaction of the EC property, it is sufficient to avoid
each of these unsatisfiable paths. Given the set of clauses
C where each clause represents a set of region assignments
that bring to unsatisfied excitation-closure, a set of clauses∧

ci∈C ci is created to represent that each clause ci ∈ C has
to be avoided. Being each clause ci a conjunction of literals,
ci becomes a disjunction of literals, bringing the entire set
of clauses into CNF form. The aforementioned method works
with any number of clauses, but we can do even better, noticing
that sometimes there is a special case with only one set of
regions satisfying excitation-closure, in which case not all
possible unsatisfiable paths should be visited, since a set of
CNF clauses representing the usage of all involved regions
can be directly created. For example, if for a given event e
two pre-regions r1 and r2 are sufficient to ensure EC, it is
possible to create a set of two clauses: (r1) ∧ (r2).

Combining the new EC encoding procedure with the previ-
ously presented decomposition flow we obtain the following
set of constraints which has to be satisfied:

673

1) Excitation-closure;
2) Place connectedness: if a region r is used in an FCPN,

then all events with incoming or outgoing edges with
respect to r must appear in it;

3) Event connectedness: structural connection between
events and regions; if an event is taken, at least one
pre-region and one post-region of this event should be
in the SM/FCPN, this constraint guarantees structurally
simple components;

4) • FCPN structure: prohibits symmetric choice,
asymmetric choice and conflict structures;

• SM structure: prohibits synchronization of parallel
flows, symmetric choice, asymmetric choice and
conflict structures;

5) (Optional) Event usage: each event has to be taken at
least once: this constraint can be derived from the com-
bination of constraints 1 and 2, but the usage of clauses
with only one literal can speed up the computation.

Having encoded the excitation-closure into a set of clauses,
also all remaining constraints for a set of k SMs/FCPNs can be
encoded, and with k = 1 a linear search can start, increasing k
until a SAT result is found. Also, in this case, once a SAT result
is found, a minimization function can be used, minimizing the
number of used regions, and keeping the result satisfiable with
a fixed number of components.

As it has been seen for the sequential search, also in case of
the simultaneous one, a satisfiable set of regions could actually
represent two (or more) components. It means that given the
solution of the simultaneous method, the disconnected sets of
regions can still be divided as separate SMs/FCPNs, reaching
a suboptimal result. In order to be sure that the achieved result
is optimal, it is possible to sign the set of regions representing
more than one component as a forbidden result, continuing the
search for the optimal solution. This method is very simple,
but it is not applied really often and does not produce a drastic
performance drop.

If we performed the search for the optimal result there is no
need for the greedy FCPN removal since we know that there
is no solution with fewer FCPNs. Regarding the minimality of
the final components, the simultaneous algorithm still needs a
further merge of regions, as in case of the sequential versions.

In Fig. 7 is represented a flowchart combining the previous
contributions and the newly introduced simultaneous decom-
position with an in depth representation of the new contribution
in Fig. 8.

VIII. CONSTRAINT FOR SAFE FREE-CHOICE PETRI NETS

Even if the safeness of single components is not necessary to
have safe synchronization of FCPNs, a method to guarantee
also the safeness of single components was proposed. This
method works with the sequential FCPN search and consists
in the addition of counters in order to address the search to
safe FCPNs. The idea is very simple: every time an FCPN
is found a check on safeness is performed, if the FCPN is
unsafe, it is marked as forbidden and the search continues.
Since without changing the previously presented sequential
approach, the search would result “blind”, here the counters

Fig. 7: Flowchart representing different flows implemented
in our framework, highlighting the parts introduced in the
previous versions and the one introduced in this paper.

enter into the picture. To improve the search, every time an
unsafe FCPN is found, the counters are updated to show the
regions which probably should be avoided in order to find a
safe FCPN. How do these counters work? Each region has a
dedicated counter, when an unsafe FCPN is found, the counter
of the region is increased only if the region is a post-region of
a fork transition, and the check is done only with respect to the
set of regions appearing in the unsafe FCPN found as last. In
the few cases with unsafe FCPNs, this method allows finding
a set of safe FCPN within a reasonable time. The addition
of the new constraint increases, both the decomposition time
and the number of derived components. If the performance
is very important at the expense of the size, an alternative
can be the search of a set of SMs, which are also FCPNs by
definition, since the provided algorithm natively extracts only
safe components.

IX. EXPERIMENTAL RESULTS

For our tests, we used two sets of benchmarks, both from
the world of asynchronous controllers: the first set (the same as
in [20]), with smaller transition systems; the second one with
large transition systems containing parametrized controllers
(art m n) from [21] and two parametrized controllers from the
set in [22]: “pparb 2 3” and “pparb 2 6”. Basic statistics of
the used benchmarks are reported in Table I.

674

Fig. 8: The main steps of the simultaneous SM or FCPN set generation represented in Fig. 7.

The running environment consists in a computer with 4 cores
and 8 threads CPU, 16 GB of RAM and Ubuntu 22.04.1 LTS.
Our software is written in C++ with calls to PBLib [23] for the
encoding and resolution of SAT formulas. The resolution of
the MIS problem is performed by the NetworkX library [24],
run on Python. The BDD encoding instead is performed by
the CUDD library [19].

A. State Machines

We implemented the method presented in Sec. VII-A ap-
plying the SM structure constraint. In order to ensure only
safe SMs, an additional constraint was added to limit to only
one initially marked place, since multiple marked places could
lead to unsafe markings. Table II compares the results with the
sequential SM search. The new method can yield an almost
minimal number of components, e.g., in the examples “isend”,
“pparb 2 3” and “pparb 2 6”. In most cases, instead, the
number of components remains unchanged. The average de-
composition time spent is about five times higher with respect
to the sequential approach, therefore the new method cannot
directly compete with the previous one, but in the few cases
with a reduced number of components the decomposition time
is also reduced with respect to the sequential FCPN search. It
means that it is still possible to run both methods in parallel,

TABLE I: LTS statistics

Input States Transitions Events Regions

alloc-outbound 17 18 14 15
art 3 05 4000 11300 30 34
art 3 10 32000 93200 60 64
art 3 15 108000 317700 90 94
art 3 20 256000 756800 120 124
art 4 03 10368 37152 24 30
art 4 09 839808 3242592 72 78
clock 10 10 4 11
dff 20 24 7 20
espinalt 27 31 20 23
fair arb 13 20 8 11
future 36 44 16 19
intel div3 8 8 4 8
intel edge 28 36 6 27
isend 53 66 15 128
lin edac93 20 28 8 10
master-read 8932 36 26 33
pe-rcv-ifc 46 62 16 7
pparb 2 3 1088 3392 22 42
pparb 2 6 69632 321536 34 77
pulse 12 12 6 33
rcv-setup 14 17 10 11
seq 40 164 164 164 164
vme read 255 668 26 44
vme write 821 2907 30 51

TABLE II: Comparison between sequential SM search using
previously created heuristics (sequential version) and the new
approach (simultaneous version) directly encoding excitation-
closure property.

Input

Number of derived SMs Decomposition time [s]
sequential

version
simultaneous

version
sequential

version
simultaneous

version

alloc-outbound 2 2 0.12 0.03
art 3 05 5 5 0.36 0.04
art 3 10 5 5 2.26 8.29
art 3 15 5 5 10.51 45.22
art 3 20 5 5 31.30 146.27
art 4 03 7 7 0.63 1.62
art 4 09 7 7 62.98 456.23
clock 3 3 0.12 0.02
dff 3 3 0.25 0.18
espinalt 3 3 0.21 0.13
fair arb 2 2 0.12 0.02
future 3 3 0.13 0.04
intel div3 2 2 0.13 0.02
intel edge 3 3 0.39 0.38
isend 7 5 0.68 0.40
lin edac93 3 3 0.11 0.02
master-read 8 8 1.04 1.70
pe-rcv-ifc 2 2 0.35 0.31
pparb 2 3 12 7 0.56 0.28
pparb 2 6 18 15 41.24 47.02
pulse 2 2 0.12 0.02
rcv-setup 2 2 0.17 0.02
seq 40 1 1 0.75 1.42
vme read 8 8 0.34 0.44
vme write 10 10 0.75 1.00
AVERAGE 5.12 4.72 6.22 28.44

and probably the first method that completes will exhibit also
the better result.

B. Free-Choice Petri nets
For the FCPN decomposition we used the same setup as in

case of SM decomposition.
Table III shows the comparative results between the two

main methods to extract FCPNs: sequential vs simultaneous
decomposition and also the optimal version of the simultane-
ous approach. Differently from SMs, in case of FCPNs the
simultaneous approach achieved good results: it was possible
to dramatically decrease the average number of components
keeping the decomposition time at the same level as before,
even improving it a bit. Having performed also the optimal
decomposition it is possible to see how the simultaneous
version is close to the optimal result (1.96 FCPNs on average
vs 1.92 FCPNs in the optimal case), and furthermore we can
see that the average time to perform the optimal simultaneous
decomposition requires more than twice the time required
by the simultaneous version only to ensure the optimality

675

TABLE III: Comparison between sequential and simultaneous
FCPN search.

Input

Number of derived FCPNs Decomposition time [s]

sequential
version

simultaneous
version

simultaneous
version

(optimal)

sequential
version

simultaneous
version

simultaneous
version

(optimal)

alloc-outbound 2 2 2 0.03 0.03 0.03
art 3 05 2 1 1 0.64 0.46 0.44
art 3 10 2 1 1 10.11 8.50 9.87
art 3 15 2 1 1 45.42 43.94 45.23
art 3 20 2 1 1 151.09 143.00 1142.90
art 4 03 2 1 1 1.60 1.40 1.40
art 4 09 2 1 1 480.48 539.80 534.60
clock 2 2 2 0.01 0.02 0.01
dff 3 3 3 0.23 0.27 0.28
espinalt 2 2 2 0.07 0.06 0.06
fair arb 2 2 2 0.01 0.02 0.02
future 2 2 2 0.01 0.02 0.02
intel div3 2 2 2 0.01 0.02 0.02
intel edge 3 3 3 0.41 0.47 0.39
isend 6 4 4 40.97 1.73 1.56
lin edac93 3 2 2 0.01 0.01 0.01
master-read 2 1 1 1.85 1.42 1.53
pe-rcv-ifc 3 2 2 43.06 0.32 0.36
pparb 2 3 3 2 2 0.40 0.20 0.20
pparb 2 6 3 4 3 49.78 52.78 85.23
pulse 2 2 2 0.01 0.01 0.01
rcv-setup 1 1 1 0.02 0.01 0.01
seq 40 1 1 1 1.30 1.27 1.26
vme read 3 3 3 0.45 0.46 0.49
vme write 3 3 3 0.88 0.90 0.93
AVERAGE 2.40 1.96 1.92 33.15 31.88 73.07

(31.88 s vs 73.07 s). It is important to notice that the gap
between the simultaneous version and the optimal one could
grow exponentially with the increase of the number of regions
used for the FCPN creation, taking even hours to perform
the decomposition. As a conclusion, the simultaneous FCPN
decomposition achieves the best trade-off between minimality
of the number of derived components and decomposition time,
due to a reduced number of pre-regions for each event. We can
see that the second column (“Maximum number of pre-regions
for an event”) of Table III never exceeds a dozen, therefore
the excitation-closure encoding does not cause problems, even
if it is exponential.

The decomposition times for FCPNs have still the same
order of magnitude of SM decomposition, often the times are
smaller because of the usage of a SAT solver during FCPN
creation and the merge procedure. There are still some cases
which have a higher order of magnitude with respect to others
because of a high number of regions extracted from the initial
transition system. But it should be noted that FCPNs are not
guaranteed to be safe, meanwhile SMs are.

The time spent for the generation of regions is still the same
as the one of SMs, therefore it was not reported in the new
table and still represents the bottleneck of the decomposition
algorithm.

Even if the methods shown previously do not guarantee the
safeness of the derived FCPNs, actually only three bench-
marks produced unsafe FCPNs: “vme write”, “pparb 2 3”
and “pparb 2 6”. For these benchmarks Table IV shows the
impact of the safeness check, presented in Sec. VIII. This table
shows two approaches to guarantee a set of safe FCPNs: one
oriented to the performance, actually searching SMs with the

TABLE IV: Comparison between the best approaches to de-
compose an LTS into a set of synchronizing FCPNs with and
without guarantee on the safeness of the components, in the
few cases where unsafe FCPNs can be found.

Unsafe FCPN
search

Safe FCPN search
(performance oriented)

Safe FCPN search
(size oriented)

#
comp.

decomp.
time [s]

#
comp.

decomp.
time [s]

#
comp.

decomp.
time [s]

pparb 2 3 2 0.20 10 0.62 5 19.67
pparb 2 6 4 52.78 16 81.81 10 1092.79
vme write 3 0.90 10 1.70 7 4.60
AVERAGE 3 17.96 12 28.04 7.33 372.53

method presented in [17], the second approach (size oriented)
trying to find only FCPNs at the expense of the decomposition
time. Since, searching for safe FCPNs represents the addition
of a new constraint, there is a drawback which can affect the
number of derived components or the decomposition time.
Keeping the decomposition time more or less 50% higher
with respect to the case of unsafe FCPNs, the average number
of derived components increased from 3 to 12. Searching a
solution with a reduced number of components, the decom-
position time increases by more or less 13 times, scoring
an average of 7.33 components. As expected, we observe
an inverse relation between the number of components and
the decomposition time. Since cases with unsafe FCPNs are
very rare, considering the entire set of available benchmarks,
searching a solution with the size oriented approach, on the
average the decomposition time is only doubled with respect to
unsafe FCPN search, generating on average 2.48 components
vs 1.96 unsafe ones.

X. CONCLUSION

This paper presents our framework for Transition System
decomposition into sets of synchronizing SMs or FCPNs. We
showed a novel decomposition method, based on encoding
excitation-closure by BDDs, improving already good results
for FCPN decomposition. Furthermore, we described different
approaches to obtain an FCPN decomposition with only safe
components.

We expect further future improvements thanks to the evolu-
tion of modern MIS/SAT solvers and BDD encoders.

REFERENCES

[1] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Deriv-
ing Petri nets from finite transition systems,” IEEE Transactions on
Computers, vol. 47, no. 8, pp. 859–882, Aug 1998.

[2] V. Teren, J. Cortadella, and T. Villa, “Decomposition of transition
systems into sets of synchronizing state machines,” 2021.

[3] ——, “Decomposition of transition systems into sets of synchronizing
free-choice petri nets,” in 2022 25th Euromicro Conference on Digital
System Design (DSD), 2022, pp. 165–173.

[4] ——, “Generation of synchronizing state machines from a transition
system: A region-based approach,” International Journal of Applied
Mathematics and Computer Science (AMCS), vol. 33, no. 1, pp. 133–
149, 2023.

[5] W. M. Van der Aalst, “Decomposing process mining problems using
passages,” in International Conference on Application and Theory of
Petri Nets and Concurrency. Springer, 2012, pp. 72–91.

676

[6] ——, “Decomposing Petri nets for process mining: A generic ap-
proach,” Distributed and Parallel Databases, vol. 31, no. 4, pp. 471–
507, 2013.

[7] H. Verbeek and W. M. Van der Aalst, “Decomposed process mining:
The ILP case,” in International Conference on Business Process Man-
agement. Springer, 2014, pp. 264–276.

[8] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining.” in Proceedings
of the 9th International Conference on Cloud Computing and Services
Science - CLOSER,, INSTICC. SciTePress, 2019, pp. 153–164.

[9] W. M. Van der Aalst, V. Rubin, H. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther, “Process mining: a two-step approach
to balance between underfitting and overfitting,” Software & Systems
Modeling, vol. 9, no. 1, p. 87, 2010.

[10] J. Carmona, J. Cortadella, and M. Kishinevsky, “Divide-and-conquer
strategies for process mining,” in International Conference on Business
Process Management. Springer, 2009, pp. 327–343.

[11] A. A. Kalenkova, I. A. Lomazova, and W. M. van der Aalst, “Process
model discovery: A method based on transition system decomposition,”
in International Conference on Applications and Theory of Petri Nets
and Concurrency. Springer, 2014, pp. 71–90.

[12] J. de San Pedro and J. Cortadella, “Mining structured Petri nets for the
visualization of process behavior,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, 2016, pp. 839–846.

[13] A. Mokhov, J. Cortadella, and A. de Gennaro, “Process windows,” in
2017 17th International Conference on Application of Concurrency to
System Design (ACSD). IEEE, 2017, pp. 86–95.

[14] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[15] E. Badouel, L. Bernardinello, and P. Darondeau, Petri net synthesis.
Berlin: Springer, 2015.

[16] J. Carmona, J. Cortadella, and M. Kishinevsky, “New region-based
algorithms for deriving bounded petri nets,” IEEE Transactions on
Computers, vol. 59, no. 3, pp. 371–384, 2009.

[17] V. Teren, J. Cortadella, and T. Villa, “Decomposition of transition
systems into sets of synchronizing state machines,” in 2021 24th
Euromicro Conference on Digital System Design (DSD). IEEE, 2021,
pp. 77–81.

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on
information and Systems, vol. 80, no. 3, pp. 315–325, 1997.

[19] F. Somenzi, “Cudd: Cu decision diagram package release 2.5. 0,”
University of Colorado at Boulder, 2012.

[20] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Syn-
thesizing Petri nets from state-based models,” in Proceedings of IEEE
International Conference on Computer Aided Design (ICCAD). IEEE,
1995, pp. 164–171.

[21] J. Carmona, J.-M. Colom, J. Cortadella, and F. Garcı́a-Vallés, “Syn-
thesis of asynchronous controllers using integer linear programming,”
IEEE Transactions on computer-aided design of integrated circuits and
systems, vol. 25, no. 9, pp. 1637–1651, 2006.

[22] V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state encoding
conflicts in STG unfoldings using SAT,” Fundamenta Informaticae,
vol. 62, no. 2, pp. 221–241, 2004.

[23] T. Philipp and P. Steinke, “Pblib – a library for encoding pseudo-boolean
constraints into cnf,” in Theory and Applications of Satisfiability Testing
– SAT 2015, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds. Springer International Publishing, 2015, vol. 9340,
pp. 9–16.

[24] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure,
dynamics, and function using NetworkX,” in Proceedings of the 7th
Python in Science Conference (SciPy 2008), Pasadena, CA, 2008, pp.
11–15.

677

