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Abstract McMillan and Dill’s algorithm [20]. If some of the failure traces

The incorporation of timing makes circuit verification compu- cannot be proven to be timing inconsistent, then the system is in-
tationally expensive. This paper proposes a new approach for thecorrect.
verification of timed circuits. Rather than calculating the exact ~ The idea of using event structures for timing analysis was al-
timed state space, a conservative overestimation that fulfills the ready proposed in [17]. However, no algorithm was presented that
property under verification is derived. Timing analysis with abso- can handle a general class of transition systems for verification.
lute delays is efficiently performed at the level of event structures ~ The approach presented in this paper not only verifies the cir-
and transformed into a set of relative timing constraints. cuit, but also provides a set of timing constraints required for its

With this approach, conventional symbolic techniques for correctness. For speed-independent circuits, the method does not
reachability analysis can be efficiently combined with timing anal- involve any additional overhead with regard to the conventional
ysis. Moreover, the set of timing constraints used to prove the Symbolic methods (e.g. [10]). In [21], an approach with similar
correctness of the circuit can also be reported for backannotation goals, butlimited to the comparison of circuit paths that start at the
purposes. Some preliminary results obtained by a naive imple- Same point, was proposed.

mentation of the approach show that systems with more thén With a very naive implementation of a preliminary prototype,
untimed states can be verified. circuits with more tharL0® untimed states have been verified in
few minutes of CPU time.

1. Introduction .
2. Overview
. The correctness ospeed-mdepend_erund delay-lnsen5|t|ye This work presents a formal approach to verify that a circuit

circuits can be proved by only considering the sequencing of . L . e .

S - with certain timing constraints satisfies a given safety property
events and abstracting time as nondeterministic delays. However, L . o

) o . The circuit is modeled by means oftianed transition sys-
the correctness of timed circuits depends on the actual values Off;m(TTS) A, composed by an underlyirigansition systengTs)
event delays. Typically, timing behavior is specified by a set of . P y yirne y '

— . l u . . P
delays that determine the time duration between the initiation andA ,_and two functlonsﬁ_ andg*, which associate minimal an(_j
. . A maximal delays, respectively, to each event of the system. A given
the completion of an event. This is the valid model for the gates . . 7
. LT . . sequence of events of BTS (atrace) is said to betiming con-
in a circuit, in which gate delays denote the time between the en-

sistentif it is possible to assign increasing time values to all the
abledness of the gate and the actual change at the output, events such that their firing times are within the allowed bounds.

The calculation of the language generated by a timed system is e . . A |
proven to be PSPACE-complete [1], and demonstrated to be highly The verification problem is posed in terms of the following lan

. . uage inclusion question:L(A) C L(P) [14]. The approach
complex in several contexts such as real-time systems [1, 15] and’-29¢ IN¢ ildi . Lo " :
asynchronous circuits [13, 9, 16, 18, 24, 27]. Difference bounds consists in building successive approximationsCg¢fd) starting

matrices [5] and decision diagrams [8] have been used to efﬁ-from £(A™), by adding relative timing conitraln_ts [26]in an it-
ciently represent timed polyhedra. Even though these techniqueseratlve manner. We start from (S A, = A~ and try to
. . . c ) i
have been combined with partially ordered sets [7], the size of the prove the inclusion £(4o) C L(P) by applying well-known

. o . . _-symbolic model checkingchniques [10, 12]. If this is true, then
u_ntlmed state space is still the major bottleneck for the analysis OfE(A) C £(Ao) C £(P) and A satisfies P without any timing
highly concurrent systems.

Thi | hth ds th i assumption. The verification succeeds.
IS paper proposes a novel approach that extends the applica- ¢ p ¢ ot satisfied in some state, a trédbat leads to a failure

bility Of_ the ‘?O”VG”F'O”?" methods based on symbolic reachabll_lty is generated. If the trace is timing consistent, then the system is
analysis to timed circuits. The approach is based on the following .

. . ncorrect, i.e. violates the required property. However, if the trace
observation: the set of traces of a transition system can be covereé

b t of red hs. Rather th lculating th i dS not timing consistent, it can be used to refine the untimed state
y aset ot marked graphs. Rather than caicuiating the exact time space and remove other inconsistent traces leading to failure states.
state space, our approach perform@##dine timing analysis on a

f h h leadi Uit fail To do this, a suffix’ of the trace) is taken and an event structure
seto eT\;lgnt _str_uctureslt ?t covekr)st fe[_'. tfa"els eaflng tcijctl)rcun_al “(acyclic marked graph) that covef§is built. Timing analysis of
ures. This timing analysis can be efficiently performed by USING e event structure is performed by using the algorithm in [20].

*This work has been partially funded by a grant from Intel Corporation, The state space of the event structure is composed with the un-

ACID-WG (ESPRIT 21949), and the Ministry of Education of Spain under timed abstraction of the systery, in such a way that at least the
contracts CICYTs TIC 98-0410 and TIC 98-0949. wrong trace is removed and no timing consistent trace is removed.
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Figure 1. Example 1. (a) Timed transition system with delay intervals specified in (d). (b,c) Event structures covering the
traces starting from sp. (e) Timed state space (shaded states are unreachable).
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Figure 2. Example 1: first iteration. (a) A wrong trace and its corresponding event structure (b) annotated with timing arcs.
(c) State space of the event structure (shaded states are unreachable). (d) TS obtained after composition.

A series of successive approximations of A are constructed  the event structure (c). Grey states are covered by both.

iteratively, with containmentZ(A) C £(A;) and monotonic con- Assume that the property to be verified indicates that egent
vergence,L(A;+1) C L(A;). Atevery stepL(A;) C L(P) is must always precede evedtin any possible trace after having
checked. Verification stops successfully if the inclusion holds, or visited statesp. It can be seen that the property holds in the timed
fails if a counterexample trace is found. state space. However, it does not hold in the untimed state space.

Iterative approaches for the verification of real-time systems By exploring the state space of Figure 1(a) we see that the prop-
have also been presented in [2, 6]. The major novelty of the ap- erty does not hold in statg, if d fires beforeg. A failure trace
proach in this paper is the use of event structures to perform ef-from s, to s;o followed by the firing ofd beforeg can be gen-
ficient timing analysis, and to incorporate the resulting timing in- erated (Figure 2(a)). From this trace, an event structure with the

formation in the form of relative timing constraints. same causality relations can be derived (Figure 2(b)). Note that, in
the event structure, is only triggered bya but not triggered by.
2.1. An example This corresponds to the causal relations derived from the trace, i.e.
This section illustrates the verification approach by means of c is not enabled is; and is enabled after having firadroms; .
a simple example. Figure 1 depicts th€S modeling a system. By timing analysis, we find thalt and g always precede.

Figure 1(a) shows its underlyingS, while Figure 1(d) shows the  These timing relations are shown by dotted arcs. Such timing anal-
delay intervals of events, b, c andg. The delay interval for the  ysis is only valid for the causal relations expressed in the event
rest of events i$0, co). Figure 1(e) depicts the state space of the structure, but it is not valid, for example, in the case wherig-
system when the delays are taken into account. A crucial observa-gersc. Figure 2(c) depicts the state space of the event structure.
tion is that all traces that start and end@tan be covered by the  Event c is prevented to fire in some states, where its firing would
two event structures depicted in Figures 1(b) and (c). Black statesbe inconsistent with the timing analysis.

are covered by the event structure (b). White states are covered by Finally, we incorporate all this information into the system
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Figure 3. Example 1: second iteration. (a) A wrong trace and its corresponding event structure (b) annotated with timing arcs.
(c) State space of the event structure (shaded states are unreachable). (d) TS obtained after composition.
(Figure 2(d)) by composing the original system and the event tela Timed TS
structure. An event structure being derived from a particular trace bounds Timed domain
gives only partial behaviors of the original system. When the be- Run
haviors of the system and the event structure mismatch, the spe-Transition / \ ) i ) Lazy TC
cial symbol L is used. Some states in the composed system are SVTStSem Enabling . Timecondstent o "“rin
split into two instances depending on whether they are reached by (TS \ Firing /
traces matchingepabling compatiblethe event structure or not region
(see statess, sg, s11 andsisz). Figure 2(d) shows the resulting
system. One can easily check that the set of traces is smaller than Enabling % Fiing Lazy TS

that of the original system, but larger than that of the actual state
space in Figure 1(c), and that only timing inconsistent traces have  Figure 4. Major notions of Section 3 and their relations.
been removed. -

This first step has removed some wrong traces but not all of ¢ S and ¥ are finite.
them. Figure 3 depicts one more refinement. In the resulting sys-
tem all the wrong traces have been removed, which proves that the
system satisfies the property. Although it is not generally true, in
this case the final state space contains exactly the same traces than e s—s' €T => egé& (s") (events arself-disabling.
the actual state space shown in Figure 1(c).

The following sections describe the theoretical aspects of the
presented approach.

o535 €T A s—s €T = e =¢ (nomultiple arcs
between any pair of states).

Definition 3.3 (Run)
Arunof aTS A = (S5,%,T,s») IS a sequenceo =

.. s1—Lssy—25 ... suchthats; = si, and Vi > 1 : si—ys;4; €
3. Transition systems T. Evente; is said tofire at stepi.

This section presents the main models used in the paper. Fig-

ure 4 shows the relationship among them. With an abuse of notation, the expressions; € o,

ei ei ei .
si—S;+1 € 0, Si— € 0, —s;41 € o, etc, will be often

Definition 3.1 (Transition System) [4] used to denote the fact that different fragments of a sequence be-
A transition system(TS) is a quadrupleA = (S, 2, T,s;»), long to a run.
whereS is a non-empty set statesX is a non-empty alphabet of
eventsT C S x X x S is atransition relationands;., is theinitial Definition 3.4 (Enabling interval) ..
state Transitions are denoted sy-—ss'. An event is enabledat LetA = (S,%,T,s;,)beaTSand letc = s, —»sy—>--- be a
states if 3s—s' € T. We will denote by (s) the set of events ~ runof A. Given an evend and a state; € o such thas; € Fr(e),
enabled at state. FirstEnabled(s;, e) is defined as the statg, j < 4, such that

o - ) e j <k<i = s, € Fr(e) (e iscontinuously enabled
Definition 3.2 (Firing region) betweers; ands; )
Given aTS A = (S,%,T,s:,) , thefiring regionof evente is ) .
defined asFr(e) = {s € S | e € £(s)} . e j>0 = s;_1 ¢€Fr(e) (e isnotenabled befors; )

e; i 3 . .
In the sequel, we will only consider transition systems with the The sequence; — - - - el—1>si is called theenabling intervabf e
following properties: with respect tG;.



Time is incorporated to transition systems by assuming that delay Separation Lazy CES

times

transitions happen instantaneously, while minimal and maximal bounds ‘ i
delay bounds restrict the times at which they may occur. Ordering

Trace » Causal event Language
Definition 3.5 (Timed Transition System) [15] suffix structure (CES) ¢
A timed transition system(TTS) is a triple A = (47,4',8%),
where A~ = (S,%,T,si») is aTS called theunderlying tran- TS
sition system ¢’ : © — R* and §* : ¥ — R U {co} re- \ Projection " Enable, ‘
spectively associate a minimal and a maximalay boundo each Trace — ™ compatible —*| Refinement

event, such that' e € £ : 6'(e) < 6%(e) . *\
Definition 3.6 (Timing-consistent run)
LetA = (A~,6',6*)beaTTS and lete = s1—2ysy—25 .- bea
run of A~ . ¢ istiming consistenwith A if a sequencet ts - - - of
real-valued time stamps can be found such that: Definition 4.1 (Trace)
LetX be an alphabet of events. A traée= E; L2 is
o a sequence such thsi > 1 : E; C ¥ ande; € E;, whereE;
e Vs;—>s;+1 € o such thatFirstEnabled(si,e;) = denotes the set of events enabled whefites.
s; : 6’(ei) <tiy1—t; < 6“(ei)
e Vs; € o such thats; € Fr(e) and FirstEnabled(s;,e) =
sj bty —t; <6%(e)

Language
Figure 5. From traces to language refinement.

e i1 <t <

Remark: Henceforth, and for the sake of simplicity, all events in
a trace will be assumed to be distinct. This assumption can always
be enforced by renaming different occurrences of the same event.
The previous definition characterizes those runs which are pos-This renaming does not affect the validity of the theory presented
sible according to the delay bounds of the system. The time stampin this paper.
t;+1 IS assigned to statg;; and corresponds to tHing time of o )
evente; alongo. Similarly, ¢; corresponds to thenabling time Definition 4.2 (Traces |anTSs)
Thus, the firing time of an event only depends on its enabling time Eachruno =s; —Lys;—2 -+ of aLzTS defines a tracd,, =
plus certain delay amount within the bounds. E1—%E,-2; ... whereE; is the set of events enabledsati.e.
Next, lazy transition systen{& 1] are introduced. The notionof  E; = £(s;).
laziness explicitly distinguishes among the enabling and the firing

of an event, assuming certain implicit delay between them. Definition 4.3 (Languages)

Thelanguage £(A) of aLzTS A is the set of traces defined by
Definition 3.7 (Lazy Transition System) all runs of A. Thelanguage£(A) of aTTS A = (A~,8,6%) is
A lazy transition system (LzTS) is a five-tuple A = the set of traces defined by all timing-consistent rund of
(S,%,T,sin, En) , where (S, %, T,s;,) isaTS, and the func-
tion En: X — 2° defines thenabling regiorof each event, in ~ Lemma 4.4
such a way thatFr(e) C En(e) for anye € . Thus, evente is LetA = (A~,4',6") beaTTS. Then, £(4) C L(A7).
said to beenabledat states € S if s € En(e) . An evente is The proof directly follows from Definition 4.3.

said to beazyif Fr(e) # En(e). The following definition is the cornerstone of the verification
Notice that a'S is just a particular case &ZTS in which both strategy presented in this paper.
enabling and firing regions coincide for all the events. Figure 1(e)
shows an example of lazy transition system where eveit lazy
since it is enabled in statas, ss, s4, s5 andsg, but is allowed to
fire only inse. p f ,
The notions ofFirstEnabled(s;, e) and enabling interval of ELE 2 e_>Em+1 be a trace over the alphab& C .
with respect ta; are naturally extended to lazy transition systems Let 6, = By—=LE,2.. .M E,.1 be a fragment of. An
from Definition 3.4, by consideringn(e) instead ofFr(e) for the enabling-compatiblenapping off; onto ¢’ is a function map

Definition 4.5 (Enabling-compatible trace mapping)
Let 6 = --- —>E02>E11>E22> s E—”)En.t,.l—) s
be a trace over the alphabet of evenis and let ¢ =

enabledness of eveat (B, wi1} > {E}, ..., B} suchthat:
4. Traces and languages a) map(E,) = Ej (initialization)
A common semantics that unifies all the models above canbe b) V1 <i < n, map(E;) = E;NY' (projection)

defined in terms of traces. Based on traces, we will derive several
notions that formalize our refinement approach for verification.
This flow, depicted in Figure 5, covers the contents of Sections 4
and 5. The mapping o onto#’ is a function that preserves the en-
We extend the usual notion of trace [19] by associating the setabledness of the events . Initially, the events enabled iR}

of enabled events to the firing of each event in a run. Thus, eachmust also be enabled i (initialization condition). Next, the
element of the trace keeps track of which events are enabled ancevents ofYS’ enabled along andg’ must be the same (projection
which event fires at each step. condition). Moreoverg may fire events that are not relevantfo

) V1<i<n, (map(E;) =map(Ei+1) A & ¢X') V

(map(E;) = E} A map(Eit1) = Ej 1 A e; = ¢€)) (firing)
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Figure 6. Example of enabling-compatible and non-
enabling-compatible mapping.

(when map(E;) = map(E;+1) in the firing condition). Since the
firing time of an event only depends on its enabling time and its
delay (see Section 3), this notion will allow us to apply the timing
analysis of’ to 6 in the fragmenb,.

Figure 6 shows an example of trace mapping of the shadowed
fragment. The mapping at the right, wif' = {b,c,d}, is
not enabling-compatible since it violates the projection condition
when takingt; = {b, c,g} andmap(E;) = {b}. Clearly,a en-
ablesc in #, whereag is enabled by in 6.

The notions oEnabling intervalndtiming-consistent rumith
respect to a pair of function® ands* that assign min/max delays

Definition 5.1 (Causal event structure) [22]

A causal event structur@CES), CS = (X, <), is a finite set
¥ of eventsand aprecedence relation<kC X x X (irreflexive,
antisymmetric and transitiyeoverX called thecausality relation

A causal event structure is usually depicted as a Hasse diagram
(Figure 8(a)).

Definition 5.2 (Words and prefixes)

A topological order(or simply aword) of the events ofC'S =
(3,<) is a sequencee;---e, € X" (n =| X |), such
that V1 < 4,57 < n ei < e = i < j. Givena
wordo = e; ---ejgi+1 - - ey, thei-th prefix ofo is denoted by
o; = e1---e;. The empty prefix is denoted by.

Definition 5.3 (Events enabled by a prefix)

Let CS = (X, <) be aCES and leto be a word ofC'S. The set
of events enabled hy; is defined as€(c;) = {ex & i | Ve; €
¥ o ej-<ek:>ej€ai}.

That is, an eveng;, is enabled by a prefix; if all the prede-
cessor events (according 9 are ing; butey, is not.

Definition 5.4 (Traces generated by words)
Let CS = (3,<) be aCES and leto = ejez---e, be a
word of CS. The trace generated by is defined as: 6, =

E(00)5E(01)=2s - T E(0n1) B0 .

Definition 5.5 (CES generated by a trace)

Letd = B\ —5E,2 ... "B, *B,., be a finite trace.
The causal event structui@ Sy (3, <) generated frond is
defined as followst = {e1,...,en}, & <ej S i<jA

to the events (see Definitions 3.4 and 3.6 respectively), can be af; ¢ ¢ : {ei,ej} CEy .
naturally extended to traces. From this extension it can be easily

proved that a trace defined by a timing-consistent run is also a
timing-consistent trace with' andd®.
The following is the main theoretical result of this work.

Theorem 4.6 (see proof in [23])

Let 6, ' and #; be traces with the same conditions as in Def-
inition 4.5. Letmap be an enabling-compatible mapping from
9, onto#’. Letd' and 6* be two functions that assign arbitrary
min/max delays to the events ¥f and 0 andoo delays to the
events it \ &', respectively.

Then, 9 is timing consistent<=> @' is timing consistent.

The previous theorem states that the timing analysis of a traceg,

Definition 5.5 is illustrated by Figure 7. Trace (b) is taken from
TS (a). The resultingCES, (c), captures the causality relations
of the events in the trace. Notice for example, how eveanly
depends ora according to the trace, althoughenablesc along
other traces.

5.1. Timing analysis on event structures

CESs with timing assumptions can be derived from traces
with events annotated with minimum and maximum delay bounds
(see Definition 5.5). These assumptions are captured by the
notion of maximal separation timebetween the events of a
CES. The maximum separation timef two events e; and
is computed as the maximum difference between their fir-

can be reduced to the timing analysis of those events that aréing times, provided any possible assignment of delays to the

causally related (events &'). Therefore, the events that are con-

events in the graph: Sepmaz(e1,e2) = maz{ft(e:) —

current with all the events &' can be abstracted out. Hence, the ft(es) | for any delay assignmeht where ¢ denotes the firing
timing analysis for one trace can be applied to all those traces thatijme of the event.

have the same causality relations among the everis.in

5. Event structures

A simple and efficient algorithm for the calculation of the max-
imal separation between events &€BS can be found in [20]. We
can use this information to analyze whether two events are ordered

This section presents the basic theory on causal event structuref the time domaini.e. e; precedese; if Sepmaz(e1,e2) < 0.
and their traces. Event structures are the only object for which  Itis important to point out that the minimum delay bound for all
we perform timing analysis, which is rather simple because eventthe source events of@ES is conservatively set to O, given that the
structures are acyclic. Taking an event structure which partially prehistory on the enabledness of the events is unknown. With this
specifies the behavior of the original system, we map the timing strategy, timing analysis is still exact in case @&S has only one
constraints back to the system behavior by means of composingsource event, since the relative firing order of all other events does
the system and the event structure. not depend on the enabling time of their common predecessor.
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Definition 5.6 (Lazy CES genenerated by a trace) For the general case ofl@CES, LCS = (%, <), the graph

Let 9 = E11>---Ene—">En+1 be a timing-consistent trace of reachable configurations can be modeled byzaS G =
ofaTTS A = (4,4',6"), and let CSy = (X, <). The pair (C,%,T, T,En) whereC,—-Cs € T iff Cy is reached by fir-

LCS = (%, <) is called alazy causal event structu(ezCES), inge from Cy, andEn(e) = {C € C | e € £(C)}. An example of
where <’ = <UT,and T C X x X is a set oflazy causal a graph of reachable configurations is shown in Figure 8(c). In this
relationssuch thatl’ = {(ei,e;) e Ex X |e; £ej Aej £ei A graph every ar¢Ci, C») is attributed by an event which expands
Sepmaz(ei, ) < 0} configurationC; into C» (the firing event).

The following statement shows that @ES a configuration is

A LzCES coming from certain delay bounds is shown in Fig- uniquely defined by the set of enabled events

ure 7(d) (the lazy arc is depicted by a dashed line).

6. Incorporation of relative timing constraints Theorem 6.3 (Configurations and enablingsj23]
Any pair of configurationg; andC» (C: # C2) ofaCES CS =

This section describes how to refine the set of traces produced<gy <) has different set§(C1) and £(Cz) of enabled events, i.e.
by a lazyTS by considering the timing constraints coming from ¢, £ ¢, = £(C,) # £(C»)
event delay bounds. The timing constraints are derived by the
analysis of a causal event structure corresponding to an eligible In the sequel we will indistinctly use configurations or their
trace of a lazyTS in the untimed domain. The refinement is per- enablings to characterize the states GES. Based on this one-to-
formed through the parallel composition ofEaTS and aL.zCES. one correspondence instead of a graph of reachable configurations
Defining the parallel composition requires both descriptions to be one could consider an isomorphigaph of reachable enablings
represented in a uniform way. To satisfy this requirement we first (Figure 8(c)).
introduce a state-based representatiorCfigss.

) 6.2. Refining the reachability space by timing
6.1. State-based representation of @es constraints
Form a causal event structure one can obtain an underlying
transition system. This process relies on the notioraffigu-
ration, which plays the role of global state.

At this moment we have two objects at hands: a [B3yA, and
another lazyTS G obtained from an event structu€éS, . C'Sy
is derived by a particular trageof A (actually by an appropriate

Definition 6.1 (Configuration) suffix, see Figure 5), thus giving only a partial specification of the
Let CS = (2, <) be aCES.C C X is aconfigurationiff C is behavior ofA. C'Sy is refined through the exact timing analysis
left-closedj.e. Va € C all predecessors of by < are inC. yielding the lazyTS G.

Refining the behavior oft by the timing constraints incorpo-
rated inG can be done by calculating trenabling-compatible
productof G and A, which is a particular case of transition system
product under the restrictions of making synchronization by the
same transitiongind thesame enabling conditions

For sake of simplicity, before introducing the product rules we
will add the special configuration. to G. L denotes the fact that
the product is not synchronizing with the state space oGBS

Clearly, every prefixr; of word ac in CES is left-closed and
hence defines a configuration which is reached by firing the events
from o;. Consideration of all possible words and their prefixes
gives theset of reachable configuration§', where the initial con-
figuration due to the empty prefix, is denoted byT. The set of
reachable configurations together with a partial ordatefines a
graph of reachable configurations

Definition 6.2 (Graph of reachable configurations) and, therefore, no timing analysis is applied for the involved traces.
The graph of reachable configurations BES C'S = (X, <) is The  enabling-compatible  product of A =
a Hasse diagram over the set of reachable configurationS $f (8,24, Ta,sin,Ena), and G = (CUL,X¢,Tq, T,Eng)

and the partial orderC interpreted in set-theoretical sense. with £ C T4 isanewLzTS (S', 24,7, s;,, En’) where:
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Figure 8. (a) Causal event structure. Graph of reachable configurations (b) and enablings (c).

e S'CSx(CUL), It can be shown that, in the enabling-compatible product, only

the traces of the origindl S which are enabling compatible with

the event structure are refined. This refinement excludes the traces

which are timing inconsistent with respect to timing constraints

e Vec X4, En'(e) ={(5,C) € ' |s € Ena(e)}. coming from the event structure. All other traces are not changed,
thus guaranteeing the conservativeness of the approach.

e sl = (sin, 1) if E(T)C E(sin), ands;,, = (sin, L) oth-
erwise, and

The transition relatiod” is defined by the rules below. These ] . . )
are implied by the conditions of Definition 4.5 on enabling com- 7. Algorithm for timed verification
patibility of traces. The fact thak,C) € S’ denotes thag and

C have been reached by prefixes that are enabling compatible, anc?'l' Timing refinement

thatmap(E(s)) = £(C). Given a statés, C) with C # L, we will The verification problem can be solved by checking the lan-
say that the state is in the timed domain, indicating that the timing guage inclusionZ(A4) C £(P) of atimed system described by a
analysis performed of'Sy can be applied ts. TTS A and a property described b# .

Figure 9 shows the timed verification procedure. The function
Transitions entering the timed domain untimedverificationchecks whether a trace violating is present

in A’ . If such a trace exists, a finite prefi, demonstrating
the wrong behavior is returned. This prefix is checked for timing
inconsistency by building and analyzing the corresponding event
structure (procedurbuild_eventstructure If no event structure

Transition Conditions
(s, L)—=5(s',T) | enter = s—s' € Tu A
E(T)CEE)NZg

These transitions are fired when the events enabled are can disprove the feasibility of the traae the verification returns
also enabled in’. Thus, timing analysis can start being applied 6 as an example of violation d?. Otherwise the system is refined
from (s', T). through the composition with an event structure.

Thetimed.verificationprocedure does not depend on any par-
Staying inside the timed domain ticular implementation of thentimedverification function. We
Transition Conditions ha\{e implemented,_ however,_an approach bas_ed on efficient sym-
= — - bolic model checking techniques [10]. Basically, we explore
(5,C)—(s',C) | insidel = s—s" € Ta A A’ looking for failure states where® is violated. Then, a back-
£(s)NBa =E(s)NZq ward traversal is performed to generate a trace, leading from the
(s,0)—(s',C") | inside2 = s—s' € T A initial state to the failure, reproducing the discrepancy with
CC €T A EEYNZe =E&(C)

) I ) 7.2. Timing analysis of failures
Insidel corresponds to the condition in whiehdoes not syn- 9 y

chronize withG. Here the enablings of stafemust be preserved, Given the trace 6 generated by the functiorun-

i.e. the firing ofe cannot disable or enable eventsig. timed verification we search for the shortest suffit”’ (6 =
Forinside2, both A andG make a synchronized move which ¢’ -6" ) such thatf” is timing inconsistent with the delay bounds

might affect the events froriis in exactly the same way: # € 8" and §* . Let us illustrate the process by means of an example.

Y« becomes enabled i due to this move, it should also become Consider the trace{x}g{ay b}i>{b, c, g}—°>{b, g}_b>

enabled i, and vice versa. {d,g}—S{g}-5+{y} forthe TS of Figure 1(a) and assume the

delay bounds specified in Figure 1(d). Recall that in this example,

Exiting or staying outside the timed domain the property being verified says thamust always fire beford.

Transition Conditions The shortest possible suffix is given by the trace
(5,0)—(s', L) | exit = s—35' € T A {b,g}—{d, g}-T>{g}—5+{y} , from which the event structure
—(enter V insidel V inside2) of Figure 10(a) is derived, according to Definition 5.5.




function timedverification( A = (Sa, 34, Ta,Sin 4,0',6%), P) () () {x}

A = (Sa, 54, T, Sina) ; I I |
repeat {a.b} {ab} {ab}
6 := untimedverificatior(4’, P); ia ia Jf‘
if (empty®) return (SUCCESS); {b.c.g} {b.c.0} {b,c.g}
LC'S = build_eventstructurgA’, 8, &', 5*); ic JJC ¢C
if (emptyLC'S) return (FAIL, 6); {b.g} {b.g} {b.g}
A" = composed’, LCS); J{b ib b4 l/b b 04
A/ = A”; {d, g} {d, g} l {d. g} \‘\ 253]
end repeat d id d Camm g
end function @ d g 9 4 g 0s0d
function build_eventstructure( A’ = (S, S, T, sin), 0, ', 6" ) ig oo B ig 0= 003 J/G 40
0" := shortestsuffix8); v (a) M () M (0
repeat

Figure 10. Example 1: generation of the shortest suffix
of the trace depicted in Figure 1(a), and corresponding
event structures. Three steps are needed.

§" := add predecessdp’, 6);
CS = build_eventstructurgA’, "),
if (timing_consistertC'S, &', §*))
L := computelazy.arc{CS, 8', §*);

LCS = addlazyarc(CS, L): e The state space may be split in two parts: one following
return (LCS); the enabling orders of the events ibC'S , and the other
end if one where the enablings are not followed. The former cor-
while (6" +# 6): responds to the state subspace where the constraints im-

posed by LCS apply (the timed subspace). In the latter,

t tyC'S), .
return (empty'S) LCS does not apply (the untimed subspace).

end function
e In the timed subspace, some events are prevented to fire
Figure 9. Algorithms described in Section 7. when they are enabled. More precisely, the composition with

LCS allows only those firing orderings which are consistent
The timing analysis can conclude nothing about the occurrence with the timing analysis.

order of eventsd and g, since both can fire concurrently. There-
fore the algorithm continues by moving one stgp ba_ckwards alon_g7_4. Correctness
the trace and repeats the same process again. Figure 10 depicts
the three attempts needed to find the shortest sufficient suffix of ~ The correctness of thiimedverificationalgorithm is guaran-
the original trace. According to it, timing analysis concludes that teed by the following facts:
b and g occur beforec (and consequently before ). This
is shown by the dashed arcs in the lazy event structure of Fig-
ure 10(c).
The functionbuild_eventstructure builds the shortest suffix
9" of the trace returned by the untimed verification procedure (if)
such that the timing analysis shows a timing inconsistency with
the delays imposed byl . An event structure”'S is constructed
by using the causal relations of the eventsjih.
Functiontiming_consistentperforms timing analysis over the (i) Convergence: for a particular class of systems the verification

(i) The language of th& TS being verified is a subset of the lan-
guage of the initial untimed abstraction (its underlyiig).
This condition is proved by Lemma 4.4.

Conservativeness: tteamposdunction does not remove any
trace which is timing consistent with the delag/sand §* of

the verifiedTTS. This is guaranteed by the composition rules
of the enabling-compatible product (see Section 6.2).

CS. Itimplements the algorithm described in [20] for timing anal- requires only few refinements to converge (more details in
ysis of an acyclic graph of events with min/max delay constraints. next section). For the general class of systems a pre-defined
If the trace is not timing consistent, functioomputelazy.arcs upper bound on the number of refinements can be imposed.
also extracts a set gélative timingconstraints fromCS, i.e. a This could produce false negatives during verification. How-
set of additional orderings between the event®6f imposed by ever it is in full correspondence to the conservative nature of

the delay bounds. These new constraints are added to the initial  the suggested approach.
C'S aslazy arcsby function add.lazy.arcs The resultinglazy
event structureLC'S models only those orderings of the events 7.5. Convergence

of 8" which are timing consistent with the delays imposeddy Each composition step of the originatTS A’ with the lazy

7.3. Incorporation of constraints event structureLC'S implicitly performs an unfolding ofd’ sep-
o arating traces that are enabling compatible witfi,S and those
Finally, we develop the composition algorithm that implements which are not.

the enabling-compatible product betwedh and a lazyCES, The convergence of the refinement procedure for the class of
LCS, which derivesA” by removing fromA’ all traces contra- Marked Graphs is guaranteed by the known results on termina-
dicting the timing orderings of events ihC'S. ThusL(A") C tion of separation times analysis in a finite humber of unfolding

L(A"). The resultingA” is a new lazyTS where: iterations [16]. Nevertheless the upper bound on the number of



iterations could be quite high (depends on the ratio of critical and

sub-critical cycles). This is an inherent limitation of exact sepa- [ name ) S G S.. S; T1C C_cpu
ration analysis and, for practical applications, it is better to work Sbf-rd-tctl gg ii 12 ;g ;2 ;1 E i
. . . rcv-setup
with pre-established separation bounds and dq not ur_1f_o|d_beyond alloc-outond | 9(5) 21 11 82 0 4 v 3
those bounds. Though it gives only conservative verification, an| ebergen 53) 18 9 83 22 1 N 1
acceptance of pre-defined upper bounds seems to be a reasonal:Ié&}f‘“’"‘"pkt ggg 2 2 ;gg 122 2 N 53
c_>ptiqn because the largest class of systems for which the separar paif 42) 14 7 227 133 1 N 1
tion times analysis could be performed exactly are free and unique, chul33 74 24 9 288 204 2 N 1
: ; : converta 5(3) 18 12 408 244 10 N 12
c_h0|ce_ s_ystems [16] (beyon_d them the calculation of separation nowick 63) 20 10 510 292 4y 3
times is inherently conservative). chu150 6(3) 26 8 520 339 3 N 1
However there is an important practical class of systems for | sbuf-snd-ctl gg Z ig iggé iggé ;i $ gé
. . . . . . vme
which the refinement procedure is especially simple and is exact 51 22 8 2612 841 2 N 9
for few unfolding iterations. The characterization of this class is | tsend-bm 9(4) 40 12 3880 2999 3 N 44
done in terms of the so-callewdal states sbfsnd-pktz | 9(5) 28 13 4544 4044 19 YV 104
sbfram-wrt | 12(7) 64 15 14016 12362 34 N 415
Definition 7.1 (Nodal state) ram-rd-sbuf llEG) 39 16 19328 17488 36 Y 55
; PO N mrl 9(5) 190 16 21076 11574 29 Y 31f
A states of aTS is called nodal ifvs', s’ —s, |E(s")| = 1. mro 11(6) 302 20 727304 642291 > N 4B
Definition 7.1 points that all direct predecessors of a nodal state| timos-send | 9(6) 336 24 21e6  18e6 1 N 12
. . . mmu 8(4) 174 22 5.6 €6 5.2 e6 3 N 480
are synchronized in that staieg. to the moment when a system

arrives to a nodal state all concurrent activities have been finished. Table 1. EXpe”me.mal results for th.e V?”f'cat'on of ab-
. . e . sence of hazards in asynchronous circuits.

Nodal states are natural points from which the timing analysis
is convenient to start. Any event enabled somewhere in a path to a
nodal state must fire before reaching this state and, hence, timingt might require just few iterations in unfolding thES to reach
analysis from a nodal state does not depend on the prehistory of théhe exact separation analysis. For example, [3] shows the fast con-
process behavior. We will call &S in which every trace passes vergence of separation times analysis for pipelined specifications,
through at least one nodal state sieongly synchronized Note which are inherently not strongly synchronized.
that the requirement of breaking traces bgedof nodal states is
essential here because it is easy to construct an examd@8& of 8, Experimental results
with choices, in which different branches of a choice would have
different nodal states and none of them could serve as a “global A naive prototype of the proposed method has been imple-
synchronizer” for the whold@S. For strongly synchronize@Ss, mented by using state-of-the-art symbolic BDD-based techniques
timing analysis can always be performed on event structures withfor reachability analysis.
only one source node. Thus, timing analysis can be exact in those The following experiments have been performed on a set

cases (see section 5.1). of specifications given aSignal Transition Graphs A speed-
In the TS in Figure 1, statesy, s; ands;s are nodal, thisTS independent complex-gate implementation (i.e. one complex gate
has no conflicting events (no choice) and therefore each nodal staté€r output) of each specification has been obtained by g
is a “global synchronizer” because it breaks all Tg&cycles. rify . The complex gates have been decomposed and mapped
In a strongly synchronizedS, given a faulty traced with an into a library with only 2-input gates (NAND2, NOR2 and in-

“improper” ordering of the pair of events andc, checking the verter). Conventional decomposition for synchronous circuits has
timing consistency by andc might be reduced to the analysis of been used for technology mappinggpcommand in SIS). None

the suffix 6, starting from the nodal state closesttandc. of the examples were hazard-free under the unbounded delay
By #6; one can construct the correspondi®ES to check ~ model after decomposition.
whethera andc might occur in the order they have i. How- Next, the following interval delays were assigned to the

ever in case of cyclic behaviord might continue in such a way  events of the system{[0.9,1.1] for inverters, [1.35,1.65] for

that the firstn occurrences of eventsandc satisfy the checked ~ NAND2/NOR2 gates andd, 11] for the events produced by the
properties while thein 41 occurrences have an “improper” order-  environment. The property verified for each circuit was absence of
ing. The nice feature of strongly synchroniz€8 is that timing hazards with the given delays. Formally, the property was modeled
analysis made for tracé can be equally applied for “later” oc- ~ as semi-modularity for each event. The composition of the envi-
currences of andc because the analysis, started at a nodal state,ronment with the circuit defines the transition system that must be
does not depend on prehistory. Therefore timing inconsistency of verified.

6 implies also timing inconsistency for any cyclic unfolding &f Although most specifications were marked graphs (choice-free
from which it immediately follows the exactness and convergence Petri nets), the transition system obtained after the composition
of the suggested procedure for verification. with the circuit manifested a great variety of causality relations

The practical significance of the class of strongly synchronized among the events (OR, AND and complex combinations of both)
TS could be shown by analyzing the known set of asynchronous produced by the funcionality of the gates.
benchmarks: more than 80% of the specifications are strongly syn- Table 1 reports the obtained results. Colunihend S con-
chronized. tain the total number of signals (outputs are shown in parenthesis)
Beyond the class of strongly synchroniZE8s our verification and states of the specification. Colum@isand S, indicate the
procedure would be conservative in general. Still in many casesnumber of gates and the number of untimed states of the circuit.



Column Sy indicates the number of untimed failure states (only
failure states reachable from non-failure states are generated). The
columnT'C indicates the number of event structures (timing con-
straints) generated for timing analysis. This corresponds to the

number of iterations of the algorithm. The colurghindicates

whether the circuit is correct or not. Finally, CPU times are given

in seconds.

The results show that, even with a naive implementation, sys-

tems with more thari0® untimed states could be verified. The

computational cost of the algorithm highly depends on the num-
ber of timing constraints required to refine the untimed state space.
Some heuristics to improve the strategies to select adequate everifi0]

structures will be explored in the future.

The three largest examples were proved to be hazardous. Only
few iterations were required to find an erroneous trace. On the[11)
other hand, some circuits required a lot of timing constraints to

prove its correctness (e.gam-rd-sbf  andmrl). We believe

that many of these constraints can be redundant and simplified[lz]

when considering the complete set of constraints as a whole.

In the future we intend to implement clever strategies for state [13]
encoding, variable ordering, state traversal, etc, that should pro-
duce tangible improvements on the size of the systems that will be
handled by the tool. We also want to explore strategies to simplify (14]

the set of constraints required for correctness.

9. Conclusions

We believe that the conventional symbolic methods for reach-
ability analysis can be efficiently extended for timed systems. In
this paper we have presented the basic theory and some prelimi-

nary experiments for the verification of timed circuits.

Even though timed systems have an inherent delay for each
event, it is evident that, in practice, many of the timing constraints [18
imposed by these delays are not required for the correctness of a
system. The proposed approach is not only useful to verify cor-
rectness, but also to backannotate the set of timing constraints that
have been used to prove it. These constraints correspond to thét®
timing arcs derived from the analysis of event structures. This
information is crucial in frameworks in which synthesis and ver-
ification are iteratively invoked to design systems that must meet [20]

functional and non-functional constraints.

The fact that timing analysis is performed by event structures, 21
while verification can be performed in systems with any type of
causality relation, opens the door to symbolic analysis. This can
be achieved by using techniques similar to those proposed in [3]

and based on quantifier-free Presburger arithmetic [25].
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