
Departament de Ciències de la Computació

Thesis presented in partial fulfillment
of the requirements for the Degree of

Ph.D. in Computing

Algorithmic Techniques for Physical Design:

Macro Placement and Under-the-Cell Routing

Alex Vidal-Obiols

Advisors: Jordi Cortadella Fortuny, Jordi Petit Silvestre
Computer Science Department

Universitat Politècnica de Catalunya

Barcelona, November 2019

Abstract

With the increase of chip component density and new manufacturability
constraints imposed by modern technology nodes, the role of algorithms
for electronic design automation is key to the successful implementation
of integrated circuits. Two of the critical steps in the physical design
flows are macro placement and ensuring all design rules are honored
after timing closure. This thesis proposes contributions to help in these
stages, easing time-consuming manual steps and helping physical design
engineers to obtain better layouts in reduced turnaround time.

The first contribution is under-the-cell routing, a proposal to system-
atically connect standard cell components via lateral pins in the lower
metal layers. The aim is to reduce congestion in the upper metal layers
caused by extra metal and vias, decreasing the number of design rule vi-
olations. To allow cells to connect by abutment, a standard cell library is
enriched with instances containing lateral pins in a pre-selected sharing
track. Algorithms are proposed to maximize the numbers of connections
via lateral connection by mapping placed cell instances to layouts with
lateral pins, and proposing local placement modifications to increase the
opportunities for such connections. Experimental results show a signifi-
cant decrease in the number of pins, vias, and in number of design rule
violations, with negligible impact on wirelength and timing.

The second contribution, done in collaboration with eSilicon (a lead-
ing ASIC design company), is the creation of HiDaP, a macro placement
tool for modern industrial designs. The proposed approach follows a
multilevel scheme to floorplan hierarchical blocks, composed of macros
and standard cells. By exploiting RTL information available in the netlist,
the dataflow affinity between these blocks is modeled and minimized to
find a macro placement with good wirelength and timing properties. The
approach is further extended to allow additional engineer input, such as
preferred macro locations, and also spectral and force methods to guide
the floorplanning search.

i

Experimental results show that the layouts generated by HiDaP out-
perform those obtained by a state-of-the-art EDA physical design soft-
ware, with similar wirelength and better timing when compared to man-
ually designed tape-out ready macro placements. Layouts obtained by
HiDaP have successfully been brought to near timing closure with one to
two rounds of small modifications by physical design engineers. HiDaP
has been fully integrated in the design flows of the company and its de-
velopment remains an ongoing effort.

ii

Resum

A causa de l’increment de la densitat de components en els xip i les noves
restriccions de disseny imposades pels últims nodes de fabricació, el rol
de l’algorísmia en l’automatització del disseny electrònic ha esdevingut
clau per poder implementar circuits integrats. Dos dels passos crucials
en el procés de disseny físic és el placement de macros i assegurar la
correcció de les regles de disseny un cop les restriccions de timing del
circuit són satisfetes. Aquesta tesi proposa contribucions per ajudar en
aquests dos reptes, facilitant laboriosos passos manuals en el procés i
ajudant als enginyers de disseny físic a obtenir millors resultats en menys
temps.

La primera contribució és el routing "under-the-cell", una proposta per
connectar standard cells usant pins laterals en les capes de metall inferior
de manera sistemàtica. L’objectiu és reduir la congestió en les capes de
metall superior causades per l’ús de metall i vies, i així disminuir el nom-
bre de violacions de regles de disseny. Per permetre la connexió lateral
de standard cells, n’estenem una llibreria amb dissenys que incorporen
connexions laterals. També proposem modificacions locals al placement
per permetre explotar aquest tipus de connexions més sovint. Els resul-
tats experimentals mostren una reducció significativa en el nombre de
pins, vies i nombre de violacions de regles de disseny, amb un impacte
negligible en wirelength i timing.

La segona contribució, desenvolupada conjuntament amb eSilicon (una
empresa capdavantera en disseny ASIC), és el desenvolupament de HiDaP,
una eina de macro placement per a dissenys industrials actuals. La
proposta segueix un procés multinivell per fer el floorplan de blocks
jeràrquics, formats per macros i standard cells. Mitjançant la informa-
ció RTL disponible en la netlist, l’afinitat de dataflow entre els mòduls es
modela i minimitza per trobar macro placements amb bones propietats
de wirelength i timing. La proposta també incorpora la possibilitat de
rebre suggeriments de les posicions de les macros. Finalment, també usa
mètodes espectrals i de forçes per guiar la cerca de floorplans.

iii

Els resultats experimentals mostren que els dissenys generats amb
HiDaP són millors que els obtinguts per eines comercials capdavanteres
de EDA. Els resultats també mostren que els dissenys presentats po-
den obtenir un wirelength similar i millor timing que macro placements
obtinguts manualment, usats per fabricació. Alguns dissenys obtinguts
per HiDaP s’han dut fins a timing-closure en una o dues rondes de mod-
ificacions incrementals per part d’enginyers de disseny físic. L’eina s’ha
integrat en el procés de disseny de eSilicon i el seu desenvolupament
continua més enllà de les aportacions a aquesta tesi.

iv

“It is not down in any map;
true places never are.”

Ishmael, in Moby Dick
(Herman Melville)

Festina lente.

Hasten slowly.

v

Preface

The work presented in this thesis proposes two contributions in the field
of algorithms for the physical design of integrated circuits. This is a
challenging research area where both academia and industry strive to
provide tools that enable the design and fabrication of digital circuits in
future technology nodes. This preface aims to clarify the circumstances
under which the presented research efforts were undertaken.

In chronological order, the first contribution was under-the-cell routing,
developed from November 2015 to December 2016 at the Computer Sci-
ence department of the Universitat Politècnica de Catalunya (UPC) under
the guidance of my thesis advisors. The SAT-based standard cell router
created at the department [21] allowed the development of a proposal for
the systematic exploitation of internal cell routing layers by maximizing
the opportunities for standard cell connection via abutment. The available
resources limited the scope of the validation, for which a more ambitious
industrial testing program would be have been desirable. Experiments
were run and integrated with a state-of-the-art physical design tool, for
which a single license was available at the moment. Although the execu-
tion was carried out in an academic environment, it sufficed to show the
potential gains of the approach.

The second contribution, on macro placement, began on January 2017
and is still an ongoing effort. It is a joint work with my advisors and eS-
ilicon, a leading ASIC company. The synergies among all parties allowed
for the development of our macro placement tool HiDaP, combining the
algorithmic expertise at the Computer Science department of UPC with
the knowledge on physical design workflows of Ferran Martorell, Marc
Galceran and many others at eSilicon.

From the very beginning, the tool has been developed and integrated
into the eSilicon physical design flow ecosystem. The effort to build such
a tool from scratch has involved two and a half years of development and
tens of thousands of code lines. The first task was building prototype
models for the circuits at different abstraction levels and showing the po-

vii

tential value of the approach, by doing first floorplanning prototypes and
developing layout and graph visualization tools aimed at the engineering
teams. Having the tool being usable in an industrial context since the
beginning helped a lot obtaining feedback, but on the other hand intro-
duced usability and maintenance overheads which are barely reflected in
this thesis due to its academic research nature. In the end, as it ensures
the utility of HiDaP to tackle the real problems faced by engineers in the
most recent FinFET nodes, all this effort has been rewarded.

The collaboration with eSilicon has also allowed us to test the tool
with industrial designs under a real design flow. The access to the com-
pany’s computational resources and physical design tools has enabled us
to perform an evaluation which would have simply not been possible oth-
erwise. When working with blocks of millions of cells, placement takes
hours, up to a day, and the clock and routing stages can take between one
or two days, at least. Massive experiment parallelism, using thousands
of CPU hours, allowed us to try our algorithms with several parameters
and variations and prove the utility of our approach. Given the very pos-
itive obtained results and the utility of the tool, the project is considered
a success both from an academic and industrial point of view, and its de-
velopment is set to continue beyond the scope of this thesis.

The contributions of this thesis have been published in the following con-
ference papers:

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit. Under-the-Cell Rout-
ing to Improve Manufacturability. In Proceedings of the ACM Great
Lakes Symposium on VLSI 2017 (GLSVLSI), pages 125-130, presented
at Lake Louise (Canada), May 2017.

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit, Ferran Martorell,
Marc Galceran-Oms. RTL-Aware Dataflow-Driven Macro Placement.
In Proceedings of the Design, Automation and Test in Europe 2019 (DATE),
pages 186-191, presented at Florence (Italy), March 2019.

An article extending a previous publication has been submitted to a jour-
nal and is under the review process:

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit, Ferran Martorell,
Marc Galceran-Oms. Multilevel Dataflow-Driven Macro Placement
guided by RTL Structure and Analytical Methods.

viii

Another contributions was also presented at a workshop:

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit, Ferran Martorell,
Marc Galceran-Oms. Design Mapper: Dataflow Analysis for Better
Floorplans. In 6th Workshop on Design Automation for Understanding
Hardware Designs (DUHDE6), informal proceedings, Florence (Italy),
March 2019.

ix

Acknowledgments

The voyage to the limits of what is known can only be successfully under-
taken in good company. I would like to express my deepest gratitude to
my advisors, Prof. Jordi Cortadella and Prof. Jordi Petit, for their patient
guidance and support during all the work leading to the elaboration of
this thesis. Such an ambitious project would not have been possible with-
out their constant motivation, expertise and the passion they transmitted
to me for intellectual inquiry, problem solving and, of course, graphs. I
would like to extend my gratefulness to all professors and mentors who,
through my life, have stimulated my curiosity and thirst for knowledge.
They are partly to blame for this thesis, too.

I would also like to thank the people at eSilicon for the opportunity to
work with them. This project would have not been possible without the
guidance and insight of Ferran Martorell and Marc Galceran: working
with them has been a privilege. My gratitude also goes to Jordi Perez,
Jonàs Casanova, Nico Chauveau, Vera Liu and Mónica Casares in the
Barcelona office, for all their help, insights and discussions around the
bowl of peanuts. It also goes to eSilicon engineers around the world
(Anh Dinh Tuan, Hanh Pham Thi My and many others) who provided
enormous help during this project. I hope you will find HiDaP of use.

I want to thank all the fellow grad students I had the privilege to meet
during these years at the university. First of all, thanks to Alberto Moreno,
with whom I have shared most of my adventures in the academic path. I
would also like to thank Javier de San Pedro and Lucas Machado, for the
many discussions on EDA related topics (and not). The experience dur-
ing the PhD would not have been the same without the mutual support
and debates with the basement-dwellers at the Omega building: Tuo-
mas Hakoniemi, Josep Sanchez, Daniel Alonso, Jorge Muñoz, Josep Lluís
Berral, Eva Martinez, Carles Creus, Albert Vilamala and many others.
The repeated editions of the Doctoral Coffee Symposium with Alberto
Fubu Gutierrez and Martí Anglada have also been a source of inspiration
during all these years.

xi

Finally I would like to thank my family, specially my parents, for
always being there and constantly encouraging me to follow my path. I
am also deeply grateful to all the friends who have supported me through
all these years. You all gave me the courage, joy and imagination required
to finish this project: it would not have been possible without all of you.
Special thanks go to Alan Waller and Sergi Ruiz, who have always been
there to listen during the bad moments, and celebrate during the good.

This thesis has been partially supported by funds from the Spanish
Ministry for Economy and Competitiveness and the European Union
(FEDER funds, under grant TIN2013-46181-C2-1-R, TIN2017-86727-C2-
1-R and FPI2014-BES-2014-069118), the Generalitat de Catalunya (under
grants 2014 SGR 1034, 2017 SGR 786 and FI-DGR 2015) and a grant from
eSilicon Corporation.

xii

Contents

Abstract i

Resum iii

Preface vii

Acknowledgments xi

Contents xiii

List of Acronyms xvii

List of Figures xix

List of Tables xxiii

1 Introduction 1
1.1 The IC Design Flow . 1
1.2 Motivation . 3
1.3 Thesis Contributions . 5

1.3.1 Under-the-Cell Routing 5
1.3.2 Macro Placement . 6

1.4 Manuscript Organization . 7

2 Preliminaries 9
2.1 Semi-Custom Design . 9
2.2 Physical Synthesis . 11
2.3 Floorplanning . 14
2.4 Placement . 15
2.5 Routing . 16
2.6 Design for Manufacturability 17
2.7 Conclusions . 20

xiii

3 Under-the-Cell Routing 21
3.1 Motivation . 22
3.2 Related Work . 22
3.3 Contributions . 24
3.4 Standard Cells with Lateral Pins 28

3.4.1 Defining the I/O Interface 29
3.4.2 Generating the Cells 30
3.4.3 Selecting the Sharing Track 32

3.5 Placement and Routing . 33
3.5.1 Synthesis Flow . 33
3.5.2 Microplacement . 34
3.5.3 Cell Assignment . 36

3.6 Experimental Results . 38
3.7 Conclusions . 41

4 Modern Macro Placement: Theory and Practice 43
4.1 Floorplanning Foundations 44

4.1.1 Slicing Structures . 44
4.1.2 Shape Curves . 46
4.1.3 Simulated Annealing using Slicing Tree 48
4.1.4 Other Floorplan Representations 51

4.2 Modern Macro Placement Automation 53
4.2.1 Macro Placer Taxonomy 53
4.2.2 Other Considerations 56

4.3 Macro Placement in the Industrial Flow 59
4.3.1 Some Rules for Macro Placement 61
4.3.2 Redefining Engineer Interaction 63

4.4 Conclusions . 64

5 RTL-Aware Dataflow-Driven Macro Placement 65
5.1 Motivation . 65
5.2 Contributions . 67
5.3 Preliminaries . 70

5.3.1 Block Representation 70
5.3.2 Dataflow Affinity . 71
5.3.3 Circuit Abstractions 72

5.4 Algorithmic Overview . 74
5.5 Algorithmic Details . 76

5.5.1 Shape Curves Generation 76
5.5.2 Hierarchical Declustering 77
5.5.3 Target Area Assignment 78

xiv

5.5.4 Dataflow Inference . 78
5.5.5 Layout Generation . 82
5.5.6 Macro Orientation . 87

5.6 Experimental Results . 88
5.7 Conclusions . 90
5.A Design Mapper . 91

5.A.1 Motivation . 91
5.A.2 Dataflow Viewer . 92
5.A.3 Layout Explorer . 94

6 Adaptive Macro Placement Guided by Analytic Methods 97
6.1 Motivation . 97
6.2 Contributions . 99
6.3 Multi-Objective Cost Function 100

6.3.1 Adaptive Parameters 101
6.3.2 Keeping the Best Solution 102

6.4 Preferred Macro Locations . 103
6.4.1 Spectral Dataflow Placement 105
6.4.2 Force-directed Sequential Placement 108

6.5 Experimental Results . 116
6.5.1 Results After Placement 117
6.5.2 Parameter Exploration 120
6.5.3 Best Layouts After Placement 122
6.5.4 Effect of Latency Awareness 126
6.5.5 Effect of Macro Orientation 127
6.5.6 DATAFLOW-DISTANCE Tradeoff 127
6.5.7 Results After Routing 128
6.5.8 Post-Routing Timing Closure 133

6.6 Conclusions . 136
6.A HiDaP layouts . 136

7 Conclusion and Future Work 143
7.1 Under-the-Cell Routing . 143
7.2 Macro Placement . 144

Bibliography 147

xv

List of Acronyms

ASIC application specific integrated circuit

CAD computer-aided design

DAC design automation conference
DATE design, automation and test in europe con-

ference
DRC design rule checking

EDA electronic design automation
EUVL extreme ultra-violet light

FPGA field-programmable gate array

GUI graphical user interface

HDL hardware description language
HiDaP hierarchical dataflow placer
HLS high-level synthesis

IC integrated circuit

PD physical design

QoR quality of results

RTL register-transfer level

SADP self-aligned double patterning
SoC system-on-chip
STA static timing analysis

xvii

TNS total negative slack

VLSI very-large-scale integration

WL wirelength
WNS worst negative slack

xviii

List of Figures

1.1 VLSI design flow. 2
1.2 Connection using horizontal pins. 5
1.3 Blocks contain macros and standard cell area. 6
1.4 Floorplan of blocks, with their dataflow relations. 6
1.5 A nearly timing-closed layout generated by our tool. 7
1.6 Thesis chapter organization, main matter. 8

2.1 Standard cell connection. 10
2.2 Physical layout of several standard cells. 11
2.4 VLSI physical synthesis flow. 13
2.5 Optimal and non-optimal area floorplan. 14
2.6 Placement of a chip. 16
2.7 Lithographic process. 18
2.8 Lithography gap. 19
2.9 Double patterning example. 19

3.1 Over-the-cell and under-the-cell routing. 24
3.2 Small circuit consisting of four NAND gates. 25
3.3 Number of nets per number of net components. 26
3.4 Extended cell library eLib. 28
3.5 eLib layouts of a 2-input, 1-output AND cell. 30
3.6 Grid representation for internal cell routing. 31
3.7 Routable cells per position of sharing track. 32
3.8 Two possible grid routings for AND2_X1 33
3.9 Proposed design flow modifications. 34
3.10 Role of microplacement. 34
3.11 Microplacement incompatibilities. 36
3.12 Dynamic programming nomenclature. 38
3.13 Synthesis flows analyzed in the experiments. 39

xix

4.1 Slicing floorplan, slicing tree and polish expression examples. 45
4.2 Example of shape curves composition. 47
4.3 Polish expression perturbations. 50
4.4 B*-tree and layout example. 51
4.5 Example of “sea of cells" vs. “sea of hard macros”. 52
4.6 MP-tree and layout example. 55
4.7 Pipeline aware floorplanning example. 58
4.8 Back to back macro placement strategy. 62

5.1 Macro placements: our approach vs state-of-the-art 66
5.2 Multi-level block floorplan of a 16 macro design. 68
5.3 Macro placement algorithm main stages 69
5.4 Area model for a block. 71
5.5 Block flow and macro flow for a small system. 72
5.6 Possible layouts for the system in Fig. 5.5. 72
5.7 View of different circuit abstractions. 73
5.8 Hierarchical declustering to find HCB and HCG. 76
5.9 Example of the hierarchical declustering process. 79
5.10 Assigning HCG area to HCB blocks. 80
5.11 Sequential edge weights. 80
5.12 Dataflow inference example. 80
5.13 Finding flop pipeline stages between two blocks. 81
5.14 Illegal floorplan situations. 84
5.15 Recursive layout generation. 84
5.16 Handling of macros in blocks. 85
5.17 Macro flipping for reduced wirelength. 88
5.18 Nodes and dataflow edge example 92
5.19 Views of a dataflow affinity graph 93
5.20 Multiple design views . 95

6.1 Evolution of separate cost components. 102
6.2 Example of a Pareto-optimal set of solutions. 103
6.3 Taxonomy of preferred location sources. 104
6.4 Example results of spectral placements. 109
6.5 Example of attraction forces. 111
6.6 Overlap avoidance force. 112
6.7 Evolution of the forces-directed process. 115
6.8 Comparison of HiDaP to other approaches. 118
6.9 Best layouts placement results. 123
6.10 Detailed placement results. 125
6.11 Guiding HiDaP using known macro locations. 127

xx

6.12 Average routing results . 129
6.13 Detailed WL and DRC after routing. 131
6.14 Detailed WNS and TNS after routing. 132
6.15 c5 automatic macro placement. 134
6.16 c5 after light manual editing. 134
6.17 c7 automatic macro placement. 135
6.18 c7 after light manual editing. 135
6.19 c1 layout. 137
6.20 c2 layout. 138
6.21 c3 layout. 138
6.22 c4 layout. 139
6.23 c5 layout. 139
6.24 c6 layout. 140
6.25 c7 layout. 140
6.26 c8 layout. 141

xxi

List of Tables

3.1 Initial exploration. 27
3.2 DRC violations and congestion. 40
3.3 Summary of results (average). 41

5.1 Data structures for different circuit abstractions. 73
5.2 Average WL, WNS and effort for the three flows. 89
5.3 Metrics after placement using the three flows. 90

6.1 Benchmark cell and macro count. 116
6.2 Results comparison with HiDaP-SA, HiDaP-SM. 119
6.3 Metrics after placement for a configuration. 121
6.4 Parameter exploration. 122
6.5 Results with best layouts after placement. 122
6.6 Detailed results with best TNS layouts. 124
6.7 Effect of latency decay factor. 126
6.8 Effect of macro orientation. 126
6.9 DATAFLOW and DISTANCE optimization tradeoff 127
6.10 Geo. mean over all circuits after routing. 128
6.11 Detailed metrics after routing. 130
6.12 Timing-closure results after manual layout modification. . . 133

xxiii

Chapter 1

Introduction

The complexity of IC design and fabrication has been growing year after
year since their introduction. According to Moore’s Law [59], the density
of transistors on a chip doubles approximately every two years. This
tendency has been followed for the last 40 years but, of course, such
a fast-paced evolution of the number of transistors comes with a lot of
challenges at many levels, such as technology, design and tools. The
process that allows combining millions of transistors in a single chip such
as a microprocessor is VLSI, a field that has been constantly evolving,
trying to build faster chips and integrate more transistors generation after
generation. As the number and density per area unit of transistors has
dramatically increased over the years, the complexity of circuits has also
increased enormously; and with it, the challenges associated to the design
of such circuits.

The design of VLSI circuits is therefore a very complex process that re-
quires automation. To the rescue came EDA, a category of software tools
for designing electronic systems such as ICs. This aid has been evolving
together with the needs of VLSI design since the mid-70s. Nowadays,
given the level of complexity that VLSI design has reached, EDA tools
play a very important role in the fabrication of ICs, and current industrial
chip design workflows would not be possible without the help of CAD
tools.

1.1 The IC Design Flow

Current workflows for the design of chips are very modular: an overview
of the process can be found in Fig. 1.1. When designing a chip, the first
step is to obtain a design specification with the details of what needs to be

1

2 Chapter 1. Introduction

Figure 1.1: VLSI design flow.

built: how the system should behave, under which conditions, etc. This is
a high-level description of the system and produces a design specification
document.

The following step is functional design, in which the design described
in the specification document is modeled in the RTL design abstraction,
which focuses on the flow of digital signals between hardware registers
using a HDL such as Verilog or VHDL. This design is done mostly by
hand or with the help of HLS, a process that allows to generate RTL from
code written using a higher level of abstraction (such as SystemC). The
output of this step is HDL code describing the functionality of the circuit.

Next comes logic synthesis, which is a fully automated step done by the
EDA tools that consists in taking the RTL description of the circuit and
converting it into boolean expressions. After several logical optimization
steps, the resulting expressions are mapped into physical components of
a specific fabrication technology and the gate netlist, which describes the
connectivity of the electronic circuit components, is produced.

The process continues with physical synthesis (or physical design), the
step which takes the intended circuit design and decides the final physical
layout of the circuit, a geometric description of the location of its compo-
nents and connections that is ready for fabrication. In modern technology
nodes, this is a semi-manual process in which the PD engineers use the
algorithms provided by EDA vendors to automatically handle the mil-
lions of components involved, but still are expected to provide guidance
to the flow by partitioning the circuit, adding extra constraints, manually

1.2. Motivation 3

placing the bigger components and solving DRC violations at the end of
the flow. The contributions of this thesis focus in this particular step. The
physical synthesis flow is presented in detail in Section 2.2. Its outputs
are the masks that will be used by photolithography, as shown in Section
2.6.

The last step in the process is fabrication, which takes place in the fab-
rication plants. The fabrication technology imposes a set of design rules
that must be respected by the design so that it can be produced. This in-
cludes minimum spacing rules, forced component directions and others.
As we move into smaller technology nodes, the constraints imposed by
design rules become harder to satisfy, adding manufacturability-awareness
to the list of desirable properties of new EDA algorithms.

A lot of steps are omitted and simplified in this explanation, including
the increasingly expensive verification phases that take place between ev-
ery pair of steps in the process to ensure no malfunctions are introduced
and the behavior of the current circuit abstraction is as intended.

1.2 Motivation

It is important to remark that IC design is a complex engineering prob-
lem: given a high-level specification of intended behavior and constraints,
multiple final circuits can be considered valid. Many optimization pro-
cedures must be applied in order to generate a good circuit design ac-
cording to the desired goals: low area, low power consumption, failure
tolerance... Optimizing a single requirement already leads to several in-
stances of hard optimization problems across the whole design process.
Moreover, there is no magical recipe to combine all of these requirements
at the same time, and trade-offs between optimization objectives may be
needed to achieve the minimum requirements.

In fact, the whole design flow process is not lineal, but rather iterative
and repetitive: if it is found that it is unfeasible to implement the desired
behavior under the chosen constraints at a given stage, the design must
go back to the previous stage and be modified, up to changing the design
specification if needed. As these steps are usually performed by differ-
ent teams or even different companies, it is desirable to keep them at a
minimum in order to reduce turnaround time. For all these reasons, the
EDA field has become an exciting environment for academia, industry,
and even the open source initiatives [3] to propose new, ever evolving
methodologies to help engineers achieve the designs of the future.

4 Chapter 1. Introduction

The steps where most optimization effort is devoted are the functional
design and physical synthesis steps, which are informally known as the
front-end and back-end of the design chain. In order to achieve good
QoR, the HDL code of the most critical components is carefully tuned to
optimize target objective areas. It is not straightforward to decide how
the engineer can interact with the design at the physical design level,
as its objective is to find the location for millions of components and
connections. Modern tools provided by EDA vendors offer black boxed
algorithms that cover basic functionality of physical design and graphical
interfaces through which the engineers can see the results and manually
interact with the layout. If physical synthesis is unsuccessful, the HDL
code must be reworked until an implementable circuit is found.

Although the algorithms provided by EDA vendors may prove suf-
ficient to process basic circuits, the constant push for performance and
optimization makes human intervention necessary for the most complex
and demanding cases, not only to reduce cycle turnaround time but also
to enable designs which could not be produced otherwise. The most
time-consuming human interaction to influence the physical design pro-
cess happens at the beginning and at the end of physical design stage:

1. The first step is to decide the location of relatively big components
in the circuit, usually called macro components (in contrast of the
smaller elements, called standard cells). Current automated solutions
are fast but results are usually not good enough, demanding manual
intervention and understanding of the circuit to ensure the design
will meet timing constraints. A lot of effort is involved since bad
macro placements usually lead to designs whose timing can not be
closed.

2. The last step is to ensure the design complies with all the con-
straints imposed by the fabrication technology process. These are
a set of design rules on the layout objects for, among others, pre-
venting short-circuits or ensuring the design can be manufactured
with the target lithography process. EDA algorithms try to mini-
mize them as another of their optimization goals, but they are not
optional: the design must move into fabrication with no design rule
check violations, and they must be manually fixed if present.

The goal of this thesis is to explore new algorithmic techniques to ease
the time-consuming manual steps of physical synthesis and find better
physical realizations of the gate netlist after logic synthesis.

1.3. Thesis Contributions 5

(a) Over-the-cell routing. (b) Under-the-cell routing.

Figure 1.2: Connection using horizontal pins.

1.3 Thesis Contributions

The contributions presented in this thesis focus on the physical design
stage, the first by systematically connecting cells using horizontal pins to
reduce the number of design rule violations at the end of the physical
flow, and the second by presenting algorithms to produce good macro
floorplans at the beginning of the beginning of the flow. Both of the con-
tributions are implemented and tested in the context of current indus-
trial design flows, and the presented results prove the applicability of the
techniques. These contributions are described in detail in the following
sections.

1.3.1 Under-the-Cell Routing

The first contribution of this thesis proposes a systematic approach to al-
low the connection of standard cells via abutment, instead of connecting
them using wires going over them, as illustrated in Fig. 1.2. By using
cell generation tools for regular layouts, a cell library is enriched with cell
instances that have lateral pins and allow under-the-cell connections be-
tween adjacent cells. Dynamic programming and graph methods are ex-
ploited to maximize the number of under-the-cell connections in a given
circuit. The approach is integrated with an industrial EDA tool to prove
its effectiveness. Experimental results show a reduction in the number of
design rule check violations, pin counts and via counts with a negligible
impact on timing. This work has been published in the following paper:

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit. Under-the-Cell Rout-
ing to Improve Manufacturability. In Proceedings of the ACM Great
Lakes Symposium on VLSI 2017 (GLSVLSI), pages 125-130, presented
at Lake Louise (Canada), May 2017.

6 Chapter 1. Introduction

Figure 1.3: Blocks contain macros
and standard cell area.

Figure 1.4: Floorplan of blocks,
with their dataflow relations.

1.3.2 Macro Placement

The second contribution of this thesis has been conducted and deployed
in collaboration with eSilicon, a leading chip design company. It presents
a modern macro placer, pushing the state-of-the-art to handle the com-
plex requirements of floorplanning. One of its key ideas is to obtain a
macro placement via the floorplanning of blocks, which contain a set of
macros and area, allowing them to have a flexible shape (Fig. 1.3). RTL-
level information present on the name components in the netlist (such as
hierarchy and arrays) is extracted and used to understand the structure
of the circuit. The proposed multi-level hierarchical considers multi-cycle
macros connections and locations of standard cell groups to find macro
placements with good wirelength and timing properties (Fig. 1.4). The
dataflow graph abstraction used to model the problem is also useful for
engineers to easily understand circuit components and relations. After
showing the effectiveness of the approach, it is extended with an adap-
tive multiobjective cost function. It allows the engineers to suggest macro
locations to the tool, or to use algorithmic placement methods to find
optimal locations for macro and guide the floorplan search.

Extensive experimentation proves that the obtained layouts after place-
ment can reach better timing results than those of tape-out ready macro
placements obtained by expert physical design engineers. Some of the
layouts were brought to routing and passed to engineers who, after one
or two iterations of manual modifications, managed to virtually close
timing with few remaining DRC violations (Fig. 1.5). This work has been
published in the following papers:

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit, Ferran Martorell,
Marc Galceran-Oms. RTL-Aware Dataflow-Driven Macro Placement.
In Proceedings of the Design, Automation and Test in Europe 2019 (DATE),
pages 186-191, presented at Florence (Italy), March 2019. (Corre-
sponding to Chapter 5)

1.4. Manuscript Organization 7

Figure 1.5: A nearly timing-closed layout generated by our tool.

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit, Ferran Martorell,
Marc Galceran-Oms. Design Mapper: Dataflow Analysis for Better
Floorplans. In 6th Workshop on Design Automation for Understanding
Hardware Designs (DUHDE6), informal proceedings, Florence (Italy),
March 2019. (Corresponding to Chapter 5)

An article extending a previous publication has been submitted to a jour-
nal and is under the review process:

• Alex Vidal-Obiols, Jordi Cortadella, Jordi Petit, Ferran Martorell,
Marc Galceran-Oms. Multilevel Dataflow-Driven Macro Placement
guided by RTL Structure and Analytical Methods. (Corresponding to
Chapters 5 and 6)

1.4 Manuscript Organization

A summary of the organization of the main matter of the thesis is shown
in Fig. 1.6. Chapter 2 introduces the reader to the context of the physical
design flow, with its main steps and characteristics, and basic notions on
semi-custom design and design for manufacturability. Chapter 3 contains

8 Chapter 1. Introduction

Figure 1.6: Thesis chapter organization, main matter.

the contribution on under-the-cell routing, with its motivation and related
work, proposed approach, developed algorithms and results.

The rest of the thesis is devoted to the contribution on macro place-
ment. It begins with Chapter 4, which contains an introduction to floor-
planning concepts used in later chapters such as slicing trees, shape
curves and simulated annealing. The second part of the chapter is de-
voted to a study of the state of the art of macro placers and industrial
perspective on the problem, highlighting its needs and connections to
academic work. The presented material motivates the development of
HiDaP, a new macro placement tool which is presented in the next two
chapters. Chapter 5 focuses on the overall flow of its algorithm (use of
RTL information, dataflow inference and layout generation) and reports
a first set of positive results. Chapter 6 adds to it by proposing an adap-
tive multiobjective cost function and using spectral and force placement
methods to guide the floorplanner. It also features more exhaustive ex-
perimental results and layouts obtained for all circuits in the benchmark.
Finally, Chapter 7 presents the global conclusions and some future lines
of work.

Chapter 2

Preliminaries

This chapter provides the context to understand the scope and basis of
the contributions of this thesis. First, an introduction to the semi-custom
design methodology and its role as an enabler in current IC design is pre-
sented. It is followed by an overview of the physical design flow in mod-
ern technology nodes, with a brief description of the stages more closely
related to the work presented in this thesis: floorplanning, placement and
routing. More information on floorplanning techniques and state-of-the-
art is exposed in Chapter 4. Finally, the chapter closes with an overview
of the photolithographic process and how its increasing complexity has
brought the need to take manufacturability into consideration.

2.1 Semi-Custom Design

The previous chapter showed that the design process for integrated cir-
cuits presents many challenges that are nowadays tackled with the help
of design automation. As the number of transistors involved in the design
grows, so does the complexity of chip design. The initial design method-
ology was full-custom design, in which the layout and interconnections
of each individual transistor are considered. This process can potentially
optimize the desired metrics of the circuit, such as area or performance,
to the limit. However, as it is extremely expensive and labor-intensive, it
is now used only for the most critical parts of circuits.

The most widely used design style, which draws on hierarchical prop-
erties to tackle the complexity induced by having millions of transistors, is
semi-custom design. The methodology consists of using pre-designed lay-
outs for small logic functions called standard cells, which normally have
from 2 to 5 inputs, as basic bricks for the design of the circuit.

9

10 Chapter 2. Preliminaries

(a) 2D view. (b) 3D view.

Figure 2.1: Standard cell connection.

Standard cells are small circuits in themselves, over which the rest of
the circuit is constructed. A standard cell library is a set of standard cells
that can be used for circuit design, which includes a full specification
of each cell, with schematics, layout, physical characterization and oth-
ers. All cells from a given standard cell library have a fixed height, thus
converting the general layout of a chip in a set of rows of standard cells.

As in other design technologies, due to the increase in the amount of
connections, the wiring takes place over the components. This is illus-
trated in Fig. 2.1, with the left showing a typical two dimensional lay-
out view of three standard cells with their connections. The right fig-
ure shows the same connections in three dimensions, revealing that the
connection uses two levels over the components: one for the horizontal
connections (purple) and another for the vertical (orange). Each of these
levels is called a routing layer or metal layer, and modern technology flows
may require over 13 metal layers to route all connections. Normally, the
first two metal layers are reserved for the routing inside the standard cells
themselves.

For example, Figure 2.2 presents the physical layout of several stan-
dard cells. Their height is fixed at 13 rows, which are called tracks. Every
cell has a superior wire connected to power, and an inferior connected to
ground. They have been routed with two metal layers, the first for hor-
izontal connections and the second for vertical connections, leading to a
set of wires that can be seen to be very regular.

Designing with standard cells is divided in two steps, normally done
by different teams and even different companies: cell generation and cir-
cuit synthesis. Cell generation is the process of creating the standard cell
library itself. A factory or provider creates these standard cell libraries
that are used by circuit designers to implement their integrated circuits.

2.2. Physical Synthesis 11

(a) INV_X1 cell. (b) AND2_X1 cell. (c) FA_X1 cell.

Figure 2.2: Physical layout of several standard cells.

Each cell is full-custom and has extremely optimized placement and rout-
ings, given that they are determined once in their lifetime and will appear
repeated all through many different circuits.

The physical synthesis process in the semi-custom design flow con-
sists of creating a chip from the standard cell library by using the cells as
basic constructions bricks, and is presented in more detail in the follow-
ing section. Cells are first placed in the chip area, and given their height
is fixed, standard cells are normally placed in rows. In a later stage (rout-
ing), standard cells need to be connected among them. Both processes,
the generation of a standard cell library and the physical synthesis, are of
interest to this thesis.

Figure 2.3a shows a small circuit that has been placed. The circuit
comprises 29 standard cells, represented by the pink boxes with names,
that have been arranged in five standard cell rows. Another similar ex-
ample is shown after routing (Fig 2.3b), when later in the physical design
flow, showing the wires connecting the components over the cells. The
color reflects the metal layer the wire belongs to: blue for metal 1, yellow
for metal 2, red for metal 3, green for metal 4 and pink for metal 5.

2.2 Physical Synthesis

Physical synthesis is the process that takes a circuit description as a gate
netlist and defines the physical layout of the design, that is, the final
coordinates of each transistor and connection metal segment. Figure 2.4
shows the most important steps during physical design in modern indus-
trial VLSI flows. The closer to sign off the design is, the more accurate
become its reported metrics (in terms of wirelength, timing or power con-
sumption).

12 Chapter 2. Preliminaries

(a) Small placed circuit.

(b) Small routed circuit.

2.2. Physical Synthesis 13

Figure 2.4: VLSI physical synthesis flow.

Floorplanning
The first step of the physical design process consists in prototyp-
ing the placement of blocks and fixing the location of macro com-
ponents, black box circuits which are orders of magnitude bigger
than standard cells. This is a critical, time-consuming process done
manually by expert engineers by analyzing circuit connectivity and
exploiting knowledge of the circuit structure given by the RTL de-
signers if available.

Placement
During placement, the location of each standard cell is fixed. This is
a fully automated process targeting at wirelength and timing mini-
mization. The engineer may indicate placement regions or relative
placement constraints before it, or may manually alter positions af-
ter it is completed.

Clock Tree Synthesis
The clock tree synthesis consists in the routing of the clock signal
across the circuit. This step is taken before general routing due to
its criticality. The process can be partially guided. Timing results
become much more accurate after this stage.

14 Chapter 2. Preliminaries

Figure 2.5: Optimal and non-optimal area floorplan. [9]

Routing
The routing process determines the precise paths for nets on the
chip layout. The main aim is to complete all required connections
on the layout without inducing design rule violations and meeting
timing requirements. This step is also fully automated.

Sign Off
The final sign off stage consists of a series of tests and simulations
to ensure that the design is ready for tape out, that is, to be sent to
fabrication. It also includes static timing analysis, used to ensure all
timing requirements are met. If problems are found they are solved
manually but, if there are too many, the process begins again by
starting from a different floorplan.

The work on this thesis focuses on easing the manual effort on floor-
plan, by providing tools with better macro placement capabilities, and
at sign off, by proposing placement techniques to reduce the number of
DRC violations at that stage. The following sections provide more back-
ground on the floorplanning, placement and routing stages as they are
the ones involved in the contributions.

2.3 Floorplanning

Floorplanning is the first step in the physical design flow. It consists in
identifying structures that should be placed close together, capturing rel-
ative positions but not necessarily always fixed coordinates. It can be
considered a generalization of placement, a first draft on how the com-
ponents will be allocated in the chip, allowing transformations of the
components such as rotations and modifying their shapes. Simulated an-
nealing and slicing structures [63] are widely used in this area. A floor-
plan can be optimized for metrics such as area, wirelength, routability

2.4. Placement 15

and others. Figure 2.5, taken from [9], shows two different floorplans for
a given set of components. The floorplan on the left is optimal in area,
but the one in the right introduces white spaces.

2.4 Placement

Placement consists in assigning cells to positions in the chip according
to some cost functions while preserving legality (for example, with no
overlapping). The inputs is the netlist and the goal is to find the best
position for each cell considering wirelength, routability density, power
and other metrics. Many placement styles exist depending on the design
methodology it is integrated with (such as building blocks, standard cells
or gate arrays). This step is tightly related to the next phase, routing.
Some placement paradigms are:

• Constructive algorithms, such that when the position of a cell is
fixed, it is not modified anymore. Some examples are cluster growth,
min-cut [23], or quadratic-placement algorithms (such as Hall place-
ment [29], the first analytical placer).

• Iterative algorithms, where intermediate placements are modified
in order to improve some cost function. This would include ana-
lytical methods such as force-directed placement. Figure 2.6, taken
from [9], shows several phases of the placement in a force-driven
algorithm. The elements approach their final position iteration after
iteration.

• Nondeterministic approaches, including metaheuristics like simu-
lated annealing [71] and genetic algorithms [19].

All these methods can be combined to obtain a more accurate result.
Additionally, other methods can be considered, for example a flow con-
sisting of a global placement and legalization phase followed by detailed
placement step. There are many interesting research directions in place-
ment such as manufacturability-aware placement, but probably the most
interesting for our project would be mixed-size placement, which consid-
ers the placement of both macros and standard cells.

16 Chapter 2. Preliminaries

Figure 2.6: Placement of a chip. [9]

2.5 Routing

Routing is one of the multiple steps that take place in the physical de-
sign process. For the latest years many algorithmic techniques have been
explored to address the complex problem of determining how the compo-
nents of circuits should be interconnected. As the number of transistors
per chip grows, the increasing complexity of the design becomes a chal-
lenge for the routing stage.

The main aim of the routing problem is to find a valid interconnection
of terminals that honors a set of design rules. When routing, two kinds of
constraints appear: performance constraints and design-rule constraints.
The objective of the performance constraints is to make connections meet
the performance specifications provided by the chip designers. Design
rules impose restrictions on, for example, the minimum width of the
wires or the wire-to-wire spacing. Another example of design rules is
related to the layer models, which can be either reserved or unreserved. In
the first case each layer is allowed only one routing direction, whereas
the placement of wires with any direction is permitted in the other one.
Most of the routers, however, use the reserved model because it has lower
complexity and is much easier for implementation; as we will see, man-
ufacturability has a great impact on many of the decisions taken during
the physical design flow:

An important classification of routing algorithms is whether they aim
at doing global or detailed placement. In the first case can be considered
the coarse case of routing, in which we define big routing regions and
propose paths for the signals, but without detailing the exact location
of the wires. The task is left to detailed routing, which can work at a
wire-segment level and decides the final position of the wires. Another
interesting division exists between sequential and concurrent routers.

2.6. Design for Manufacturability 17

Sequential routing
In this schema we select a specific net order and then route nets
sequentially according to that order. The quality of the solution
greatly depends on the ordering given that an already routed net
might block the routing of subsequent nets. Often, a rip-up and re-
route heuristic is used to refine the solution. It basically consists
in ripping-up some already connected nets and then re-route the
ripped-up connections. It usually performs iteratively until all nets
are routed, a time limit is exceeded or no gain is obtained.

Concurrent routing
Concurrent global routing tries to establish all connections at the
same time. Therefore, whether or not a solution is found does not
depend on any net ordering. One of the most popular approaches
is to model the layout as a graph and then use 0-1 integer linear
programming. However, given its prohibitive running time, another
approach would be to solve the continuous linear programming re-
laxation and the transform the fractional solution to integer solu-
tions through a rounding scheme such as randomized rounding. In
practice, such techniques are embedded into larger global routing
frameworks that use a hierarchical, divide-and-conquer strategy.

The contributions presented in Chapter 3 includes the use of a detailed
router for standard cells with traits from both concurrent and sequential
routing. This means that it finds concrete routes for the wires at a physi-
cal level, and that the algorithm uses concurrent routing to find an initial
solution, but later takes on a sequential routing strategy in order to im-
prove the result of the initial solution with rip-up and re-route.

2.6 Design for Manufacturability

As we have seen in Section 2.2, the final result of the design and synthe-
sis processes are masks to be used during the photolithographic process,
illustrated in Figure 2.7. A source of light emits monochrome light that
traverses the mask in which the circuit patterns have been engraved. The
die, covered with a photosensitive layer, reacts to the exposition to light.
The parts that have been illuminated remain whereas all the others are
eliminated after an etching phase. Layers grow one above the other un-
til all masks have been applied. The patterns on the masks (each corre-
sponding to one of the metal layers) are the final product that the physical
design produces for a given circuit abstraction.

18 Chapter 2. Preliminaries

Figure 2.7: Lithographic process.

Over the past few years, additional problems have been adding up to
the challenges of circuit design itself. As the size of transistors decreases,
the manufacturing process has become increasingly complex. Previously,
the standard way of scaling down the size of technologies was to reduce
the wavelength of the source of light. However, for recent technology
nodes in which the size feature is smaller than the minimum wavelength
(193nm), this has become a source of variability and error during the pho-
tolithographic process [64]. This gap, called the lithography gap, is illus-
trated in Figure 2.8. Technological solutions such as extreme ultra-violet
light (EUVL), electron beam lithography and others have been constantly
delayed, prompting the design and manufacturing engineers to find extra
solutions for the problems caused meanwhile.

Litho-friendly layout techniques must be considered to deal with all
this increasing complexity. As we get into newer technology nodes, the
amount of design rules increases enormously, resulting in more chal-
lenges during the design stage. Manufacturability awareness during the
design phases of the circuit has become a must in order to produce good
yields at the end of the fabrication process. For example, one of the tech-
niques used during the lithography process is double patterning (DP),
which consists on dividing what normally would be a single mask in two
masks as shown in Figure 2.9. The masks would be exposed one after the
other during the manufacturing process.

By using this method, the effective pitch can double, improving lithog-
raphy resolution. However, masks must be assigned to the components,
which is something that must be done during the design process. The ba-
sic rule is that two components that are too close cannot share the same
mask, and the problem does only get more complex when moving to
triple or multiple mask patterning, the more general case, as feature size

2.6. Design for Manufacturability 19

Figure 2.8: Lithography gap. Source: [64]

Figure 2.9: Double patterning example. Source: [64]

decreases. Even if in the past the design and manufacturing stages might
have been relatively isolated, this makes for a perfect example of how
manufacturability issues are becoming more and more important during
design, and considering the delays in technology development this trend
will only continue to grow in the future to come.

One of the strategies that has been increasing in popularity in the
recent years is the regularity of the designs. In regular designs, we want to

20 Chapter 2. Preliminaries

use repetitive layout patterns and blocks, which require simplified masks
and allow for a better process control [56]. This can be achieved by using
simplified design models and restrictions, such as gridded models, which
a priori would restrict the possible designs, but on the other hand allow
for new families of algorithms to be used during the physical design
phases. Additionally, double patterning and optical correction techniques
are not as effective on complex layouts with arbitrary shapes, but are most
useful when using regular layouts.

2.7 Conclusions

This chapter presents some preliminaries on the VLSI design flow, fo-
cusing on semi-custom design, the physical design flow and design for
manufacturability. It is complemented by Chapter 4, which takes a deeper
look into floorplanning and macro placement. The concepts introduced in
these pages provide the foundational framework to motivate and develop
the contributions that are presented in the following chapters.

Chapter 3

Under-the-Cell Routing

The impact of routing congestion on metrics such as performance, area
and yield poses a major obstacle that must be addressed. This chapter
proposes proposes under-the-cell routing, a method to aid the routing
stage to improve manufacturability while preserving quality of results.

The presented approach proposes to systematically exploit the con-
nection of adjacent circuit components using lateral connections in the
internal routing metal layers. Standard cells are designed in a way that
they can be treated as black boxes during physical design. However, this
abstraction often prevents an efficient use of its internal free resources.
White space in those layers can be used for routing in current design
flows, but to a fraction of the potential use that could be achieved by
exploiting it systematically. Relying on the regularity imposed by tech-
nology constraints, standard cell libraries can incorporate several similar
cell layouts for each logical cell. These layouts are enriched with lateral
pins that can be abutted against neighboring cells for direct connection
avoiding the high level metal layers. Cell modularity allows the design
tools to pick the most suitable cell layout after the placement stage.

In this chapter, an approach to generate cells with regular layouts and
lateral pins is proposed, together with algorithms to maximize the impact
of under-the-cell routing. The techniques are integrated with industrial
design automation tools. This method decreases both pin count and con-
gestion on the upper metal layers, resulting in a reduction of the number
of design rule check violations with negligible impact on timing. The
approach is technology independent and can be used in any fixed-height
standard-cell technology node.

21

22 Chapter 3. Under-the-Cell Routing

3.1 Motivation

The progressive miniaturization of technology and the unequal scalabil-
ity of component and interconnect sizes aggravate the routing congestion
problem and have a negative impact on manufacturability. Routing is
becoming an increasingly challenging task as on-chip component density
grows [66]. Given that component sizes are decreasing faster in compar-
ison to metal connection sizes, pin accessibility in new technology nodes
is becoming a critical problem. Over the last years, there has been a
growing interest in preventing hard-to-route designs, focusing in the in-
teraction between the placement and routing stages [81] [82]. Routing
congestion, as well as pin density, are some of the metrics considered
during placement in modern chip placers.

Moreover, the chip design community is presented with the challeng-
ing task of finding new ways to improve manufacturability in the lat-
est technology nodes. Some lithography processes have added coloring
requirements for wires [64], and printed layout quality is becoming in-
creasingly dependent on details such as line-end distribution [101]. The
profusion of new and complex design rules has posed additional con-
straints to pin placement and accessibility, creating even more congested
zones in the most pin-dense areas.

The increasing congestion and extra constraints imposed by the man-
ufacturability process translate to harder-to-satisfy design rule checks.
Having no design rule violations is mandatory at the end of the phys-
ical design process, and sometimes DRC violation hotspots can not be
solved with small routing incremental changes, and may demand going
back to modifying macro placement. In this context, the aim of the work
presented in this chapter is to reduce the amount of DRC violations by
systematically connecting cells with lateral pins using the lower metal
layers, reducing the number of vias and connections in the high metal
layers, thus reducing congestion and induced DRC violations.

3.2 Related Work

The increase in routing congestion is generally being addressed in a per-
technology basis. One example is self-aligned double patterning (SADP),
one of the technologies used for multi-patterning at 10nm nodes [64]. The
concern for pin accessibility, ultimately resulting in routing congestion,
can be seen in several proposals that consider constraints imposed by
this fabrication process to the synthesis flow. The work presented in [89]

3.2. Related Work 23

considers the impact of SADP, as well as other technology constraints, to
decide how to access I/O pins and offer maximized flexibility to the rout-
ing stage. Another interesting example is presented in [90], with a router
that explicitly considers pin accessibility constraints induced by the SADP
process. However, these methods are only valid for specific processes,
and additional technology-independent solutions would be desirable.

From a circuit design point of view, a specific kind of placement
and routing interaction consists on performing incremental routing-aware
placement after a traditionally good placement has been obtained. Ref-
erence [68] analyzes a placement and performs inflation and spreading
in the zones with higher congestion and pin density. Reference [102]
also applies iterative spreading and congestion-aware detailed placement.
Whereas these two approaches use a global router to determine the con-
gestion of a placement, the authors of [76] proposes to use pin accessibil-
ity to identify hard-to-route cells and determine local congestion across
the design. Later, cell movement among placement regions, inflation /
legalization and position within the standard cell row are determined us-
ing congestion metrics. Recent work incorporates machine learning tech-
niques to predict routability [6] [75], and even as a guide for a placement
optimization process to reduce DRC violations [7].

From a standard cell design point of view, automation tools are key
to the generation of manufacturability-friendly cells [22]. In particular,
the routing of standard cells poses a particularly difficult challenge, as
many optimization objectives must be satisfied at the same time. The
optimization of detailed routing has also been addressed in a technol-
ogy dependent basis [72], whereas other approaches such as [21] present
technology-independent algorithms that can be parametrized to satisfy
particulars requirements, including lithography-induced design rules. Re-
cent approaches explicitly targeted pin accessibility [69].

The idea of abutting cells so that they connect horizontally has already
been suggested in a patent by Cadence, a leading EDA company [52].
Their proposal triggers the abutment of standard cells which are over-
lapping or at a predetermined proximity, and focuses on the physical
implications of the abutment: some pins would need shortening, swap-
ping or merging. Our method builds on this approach to systematically
exploit horizontal connections by extending a standard cell library to sup-
port lateral pins and proposing algorithms to maximize the occurrence of
abutment connections in placed layouts.

24 Chapter 3. Under-the-Cell Routing

Figure 3.1: Symbolic cell interconnection: over-the-cell and under-the-cell
routing.

3.3 Contributions

Whereas standard cells in traditional synthesis flows only offer I/O pins
on their top, the aim of our method is to take advantage of cells whose
I/O pins can also be on their sides, reducing pin count and enabling
better manufacturability.

Lateral Pins.
Fig. 3.1 conveys this idea by representing two pairs of adjacent stan-

dard cells that must be connected assuming that metals 1 and 2 are used
for internal cell connections. The cells in Fig. 3.1(a) show the traditional
connection scheme: High metal layers (at least metal 3 and 4, depending
on metal direction) must be used to connect the two pins of the cells.
The cells in Fig. 3.1(b) illustrate the new connection scheme: They can be
connected directly using the lower level metal layers by abutting one cell
to the other without reaching higher metal layers via I/O pins. We refer
to a net that can be connected via lateral pins without accessing the high
metal layers as a buried net.

More specifically, Fig. 3.2 shows two views of a small circuit consisting
of four NAND gates. The dotted wires in the schematic view represent
connections that are routed using under-the-cell routing. The lower part
shows the layout implementation of the circuit using gates with lateral
pins. Each NAND cell layout presents a different lateral pin interface:
C1 has no pin, C2 has an output lateral pin to the right, C3 has an input
lateral pin to the left and an output lateral pin to the right, and C4 has an
input lateral pin to the left. To simplify the design flow, the lateral pins
are enforced to be in the same track (marked in red in the example), and
each cell is allowed to have at most one input and one output lateral pin.
The rationale for these decisions is discussed in Section 3.4.

3.3. Contributions 25

Figure 3.2: Small circuit consisting of four NAND gates.

26 Chapter 3. Under-the-Cell Routing

Figure 3.3: Number of nets per number of net components.

In the example, the output of C2 is routed to one of the inputs of C3
by a straight metal-1 wire extension, and the same happens with the out-
put of C3 being connected with one of the inputs in C4. The remaining
connection between C2 and C1 is done via high-metal layers. This circuit
would normally require five I/O pins for its internal connections, but
given that we have routed two of the three nets using under-the-cell rout-
ing, only two I/O pins are needed. Notice that the connection between
C2 and C3 does not allow us to also connect C2 and C1, given that each
cell can have at most one output lateral pin. The process of mapping cells
to layouts becomes an interesting optimization problem.

Potential Gains.
If we want to remove the I/O pins of a net we need to connect all its

components using lateral connections. Statistical analysis shows that the
majority of the nets of our circuits are composed of 2 and 3 components,
as shown in Fig. 3.3. If those frequent nets could be completely routed
using subways we would be able to have less congestion on the upper
levels of metal layer and either reduce area by augmenting core utilization
or even route the same circuit using one less metal layer.

In order to assess the potential impact of our method, in Table 3.1 we
consider several metrics obtained from the synthesis of two circuits by IC
Compiler [35] using the Nangate (45nm) library [61]. The optimizations

3.3. Contributions 27

Table 3.1: Initial exploration.

Benchmark # Cells
Cells for

90% covering
Buried
nets

Buried
connections

b17 17344 18.4% 18.4% 17.9%
b18 36589 16.0% 19.8% 18.6%

90% cell cover indicates the percentage of cells of the library needed to cover the
90% of the cell instances in the circuit. Buried nets indicates the percentage of
2-pin nets that could be buried under the optimistic assumption that all pairs
of adjacent cells can be connected through lateral pins. Buried connections rep-
resents the percentage of connections between general n-pins nets that could be
potentially buried under the same assumption.

to maximize the number of lateral connections presented in later sections
are not applied in these initial experiments. These preliminary results
suggest that, 1) only a few cells must be adapted to allow lateral connec-
tions in a substantial part of the circuit and that, 2) a significant number
of connections could be buried to low-metal layers.

To fully take advantage of this novel technique, two major challenges
appear:

• The library of standard cells must be extended with new layouts for
each cell that has lateral pins. In particular, re-routing the cells is
necessary to use their versions with lateral pins.

• Traditional EDA flows must be enhanced with a lateral pin-aware
placement flow in order to take maximum advantage of the possi-
bilities offered by under-the-cell routing. In particular, one wishes
to maximize the number of laterally connected adjacent cells.

Key Contributions.
The collaboration of both cell library providers and EDA vendors is

required for the proposed flow to be applied at industrial level. This
chapter proposes an approach to address the two previous challenges,
along with experimental results to show the validity of the approach.
The main contributions of this chapter are:

1. The use of lateral connections to reduce the complexity of higher
metal layer routing, improving circuit manufacturability.

28 Chapter 3. Under-the-Cell Routing

Figure 3.4: Extended cell library eLib.

2. A systematic approach that exploits regularity to generate standard
cell layouts enriched with lateral pins.

3. A dynamic programming and a graph-based algorithm to maximize
the number of under-the-cell connections in a given circuit while
preserving timing.

4. Experimental results showing a reduction in the number of design
rule check violations, pins and vias with negligible timing degrada-
tion.

3.4 Standard Cells with Lateral Pins

Cell library providers must enrich their libraries incorporating cell layouts
with lateral pins. Given an original standard cell library Lib, an extended
version eLib is created as shown in Fig. 3.4. In Lib, each logical cell is
associated with a layout without lateral pins, whereas in eLib, each logical
cell is mapped to the corresponding layout on Lib and to several other
layouts with a set of lateral pins. The interface of these lateral pins is
different in each one of the additional layouts, but all of them have the
same area footprint.

As the number of cells in eLib is significantly larger than Lib, the first
steps of the chip synthesis flow (e.g. technology mapping) will use only

3.4. Standard Cells with Lateral Pins 29

Lib to avoid an increase in algorithm complexity. The use of eLib is post-
poned until placement has been completed, at which point the final cell
layout for each cell instance is determined.

Creating the extended library eLib requires some important decisions
to be taken:

• Which pins must be provided as lateral connections?

• Are traditional pins needed in cells with lateral pins?

• At which cell tracks must the lateral pins be accessible?

• How to generate the cells with such features?

3.4.1 Defining the I/O Interface

Potentially, any pin could be made accessible at any track if the routability
of the cell would allow it. However, generating cell instances with all pos-
sibles subsets of pins accessible at any track would make the exploration
of solutions unaffordable and the size of the library unmanageable. Based
on empirical experimentation, a pragmatical approach has been taken by
imposing the following two constraints:

One-Input/One-output sharing. Cells are only allowed to share (at most)
one input and one output lateral pin, each one at a different side of
the cell. The rationale behind this decision lies on the fact that most
buried nets have 2 pins, thus requiring a balanced number of input
and output pins. Moreover, most cells only have one output pin. In
the case of sequential elements, the lateral pins are reserved for the
D and Q (or Q̄) pins.

Unique sharing track. One of the tracks is chosen to be the sharing track
for all cells, thus unifying the position for lateral pins. This greatly
simplifies routing as lateral pins are always connected via abutment,
or with a straight metal segment if there is white space between the
cells.

The fact that the final cell layout is decided for every cell after place-
ment allows to synthesize cells without the full set of traditional I/O pins.
In general, cell layouts with an input lateral pin can skip its correspond-
ing traditional pin, given that they have a unique driver. However, cells
with an output lateral pin might need to keep the corresponding tradi-
tional pin depending on whether they are driving only their neighbor cell

30 Chapter 3. Under-the-Cell Routing

Figure 3.5: eLib layouts of a 2-input, 1-output AND cell.

or also other cells of the circuit. The top I/O pins removed from layouts
with lateral pins are called buried pins.

Given the constraints mentioned above, three kinds of cells with lat-
eral pins exist: cells with an input lateral pin, an output lateral pin, or
both. For every cell in the last two groups we can have two versions, one
keeping the I/O pin for the output and one without it. An example of
the generated cells is shown for a 2-input, 1-output AND cell in Fig. 3.5.
Since a large majority of cells have only one output, it is easy to see that
the number of layouts in eLib will be about three times the number of
input pins in Lib.

3.4.2 Generating the Cells

When synthesizing different instances of the same standard cell, tran-
sistor placement can be kept identical in all the layouts. However, the
internal routing of each cell instance must be recomputed to adjust it to
its interface, as shown in Fig. 3.2.

In order to automatically generate the routing for each extended cell,
we advocate for the use of a Boolean rule-based approach such as the one
described in [21]. This approach is efficient, technology-independent and
parameterizable for different fabrics and design rules, including support
for multiple-patterning lithography. Given the gridded transistor place-
ment of a cell, such router generates a Boolean formula that encodes the

3.4. Standard Cells with Lateral Pins 31

Figure 3.6: Grid representation for internal cell routing.

routing problem and feeds it to a SAT solver. The returned model is
translated into a valid routing.

The underlaying representation for a cell is a discrete 3D grid, whose
edges correspond to potential metal segments; see Fig. 3.6. For each edge
in the grid, a set of Boolean variables describe whether certain nets of the
cell use or not that edge and, therefore, ultimately define whether or not
a segment of wire must be laid out on that edge. Using these variables,
the routing problem is represented by a Boolean formula

F ≡ C ∧ DR ∧ R

where C defines some consistency constraints between the variables, DR
imposes the design-rule constraints (including multiple patterning lithog-
raphy), and R represents the routability constraints. In particular, the
routability constraints encode that each net gets fully connected with-
out short circuiting with other nets. Because of Euler’s graph theory,
these routing constraints can be specified requiring that each wire seg-
ment must have exactly two neighbors, except the end-points of the nets,
which must have exactly one neighbor.

In particular, routability constraints guarantee that all pins of each net
are connected. Such formulation can handle end-points whose position
is either fixed at some grid point or selected from a specified set of grid
points. In our context, lateral pins must be aligned with the sharing track
at one side of the cell, whereas conventional pins can be located at any
grid point of the top layer of the cell.

32 Chapter 3. Under-the-Cell Routing

Figure 3.7: Routable cells per position of sharing track.

3.4.3 Selecting the Sharing Track

In order to find the sharing track that yielded more routable cells, we
have undertaken the task of routing all cells in the Nangate 45nm cell
library [61] using the routing approach discussed in Section 3.4.2 and
honoring a commercial set of design rules (including rules for double pat-
terning) on placements with minimal area. The template uses 13 tracks
as shown in Fig. 3.2: track 1 is reserved for VDD, track 13 for VSS, and
tracks 2 to 12 for signal routing. Using the criteria for external pins de-
scribed in the previous subsection, the extended library demands a total
of 1576 layouts for the 125 cells.

The exploration began by obtaining routings with lateral pins on a
reduced set of hard cells. The results of this exploration are shown in
Fig. 3.7. The vertical axis represents the percentage of cells that have been
routed using the track indicated in the horizontal axis as sharing track.
On the basis of this experiment, we have chosen track 5 (with a success
ratio of 98.7%) to be the sharing track of the extended cell library. Then,
using this sharing track, a valid routing was found for all cell instances
except nine of them, leading to a routing ratio of 99.4% our eLib. In later
experiments it was observed that virtually the 100% of the demanded lay-
outs with lateral pins were among those successfully routed. Example of
layouts obtained by the regular routing using these techniques are shown
in Fig 3.2.

Fig. 3.8 shows two versions of the AND2_X1 cell. The one of the left
has been routed with a special constraint imposing that the position of
the 5th track at the left boundary should be occupied by the input A1, the
pink signal. The one on the right requires the input A2, blue signal, to

3.5. Placement and Routing 33

be in the position of the 5th track in the left boundary. Depending on the
final placement of the circuit either cell, or another of the copies, will take
the final place of any given AND2_X1 cell, depending on the adjacent
cells and their potential connections in every different case.

Figure 3.8: Two possible grid routings for AND2_X1 (using [21]).

3.5 Placement and Routing

The physical synthesis tools must be enhanced to take advantage of under-
the-cell routing, in particular by mapping cells from Lib to eLib and mod-
ifying the placement to increase the opportunities for lateral connections.

3.5.1 Synthesis Flow

Under-the-cell routing requires new steps to be added between the place-
ment and routing stages of the physical design flow, as shown in Fig. 3.9.
The light boxes represent the usual steps in physical synthesis, whereas
the dark boxes represent the newly introduced steps. The proposed pro-
cess is transparent to the physical design flow before the cell assignment
step, after which eLib is used.

The first new step is a microplacement stage which is performed af-
ter the tool has completed the placement. One of the conditions of lat-
eral connections is that both cells to be connected must be placed side

34 Chapter 3. Under-the-Cell Routing

Figure 3.9: Proposed design flow modifications.

(a) Before microplacement. (b) After microplacement.

Figure 3.10: Role of microplacement.

by side. Current placement tools optimize very complex functions that
do not pay particular attention to abut cells that need to be connected
(Fig. 3.10a). The microplacement stage presents the challenging problem
of introducing small modifications to the original placement where op-
portunities to exploit adjacent connections are detected while preserving
timing (Fig. 3.10b).

The second step is cell assignment. Each placed cell from Lib can be
potentially substituted by one of the cell layouts in eLib. The enriched
library provides several viable candidates, and the assignment of one cell
to a layout with lateral pins affects the assignment of its neighboring cells.
Cell assignment also impacts the amount of I/O pins that can be saved by
using lateral pins. Finally, the under-the-cell routing stage adds horizontal
wires for buried nets of cells which are not immediately adjacent.

3.5.2 Microplacement

The microplacement algorithm takes a valid placement and detects cells
that could be connected using lateral pins. The entire flow is shown in
Algorithm 1. The input is a placement P of cells from Lib generated by
an generic placer, that is first partitioned into several regions r. Then, a
greedy method is used to maximize the number of lateral connections. It

3.5. Placement and Routing 35

generates relative placement constraints, which impose that some group
of cells must be adjacent, for every region of the circuit. Finally, the
generic tool performs an incremental placement on P with the newly
added relative placement constraints, trying to improve the number of
buried nets and pins.

Algorithm 1 Microplacement stage.

1: Input: Placement P and slack tolerance ε
2: Output: Placement P’
3: RPC← ∅
4: R← partition_in_regions(P)
5: for each region r ∈ R do
6: G← build_graph(r)
7: V’← maximum_independent_set(G, ε)
8: RPC← RPC ∪ relative_place_constraints(V’)
9: P’← incremental_placement(P, RPC)

Two mechanisms are applied to preserve the quality of the original
placement.

Region partition: Lateral connections maximization is applied to exclu-
sive regions of a fixed size, to preserve global placement.

Slack control: Relative placement constraints are forbidden on cells with
slack lesser than a factor ε to avoid significant timing alterations.

Maximizing Lateral Connections

Consider a set of placed cells C = {c1, ..., cn}. Each cell ci has a set of input
and output signals, I(ci) and O(ci), respectively. Each pair of cells, ci and
cj defines a set of potential connections Si,j = {si,j,k | k ∈ O(ci) ∩ I(cj)},
where si,j,k means that signal k is an output of ci and an input of cj. The
union of all potential connections is

S =
⋃

1≤i,j≤n
i 6=j

Si,j

Because of the restrictions explained in Section 3.4, not all potential
lateral connections can coexist in the final placement. The method con-
siders such restrictions only for every pair of potential lateral connec-
tions. Fig. 3.11 shows the form of these incompatibilities for a given pair
si,j,k, si′,j′,k′ :

36 Chapter 3. Under-the-Cell Routing

(a) (b) (c)

Figure 3.11: Microplacement incompatibilities.

• The case i = i′ implies a cell with two output lateral pins (Fig. 3.11a).

• The case j = j′ implies a cell with two input lateral pins (Fig. 3.11b).

• The case i = j′ ∧ j = i′ implies lateral connections in both directions
between two cells (Fig. 3.11c).

We can now define a graph G = (S, E) as the graph where each vertex
represents a potential connection and each edge an incompatibility:

E = {(si,j,k, si′,j′,k′) | i = i′ ∨ j = j′ ∨ (i = j′ ∧ j = i′)}.

By construction, the problem of maximizing the number of lateral con-
nections of the cells C corresponds to finding a maximum independent
set (MIS) of G, that is, the largest set of vertices such that no pair of them
is adjacent. Each vertex can then be translated to a relative placement
constraint that imposes both of the related cells to be placed one besides
the other.

As the maximum independent set is a well-known NP-hard problem, a
greedy approach is used as an approximation. A score is assigned to each
potential lateral connection (represented by a node in our graph) and the
algorithm iteratively picks the one with the highest score, incrementally
propagating the incompatibilities on the graph. This score is obtained by
performing a normal routing of the circuit and comparing the estimated
wirelength and the final route of the nets, prioritizing nets that have taken
a long detour in order to be routed.

3.5.3 Cell Assignment

Cell assignment substitutes each cell in Lib by its version in eLib maximiz-
ing the amount of lateral connections and buried pins.

The entire cell assignment flow is shown in Algorithm 2. The input
is a placement for all the cells and the output is an equivalent placement
in which some of the cells from Lib have been substituted by one of their
layouts with lateral pins in eLib. For each row, lateral_connections applies

3.5. Placement and Routing 37

the dynamic programming technique explained below to obtain the set
of lateral connections that maximizes the number of buried pins. For
each lateral connection, the original cells in P and the proposed layouts
with lateral pins are obtained via original_cells and enhanced_cells. The
substitution finally changes them in the placement. As the mapping to
lateral pins has already been decided, the routing stages that take place
after cell assignment use eLib.

Algorithm 2 Cell assignment stage.

1: Input: Placement P
2: Output: Placement P’
3: P’← P
4: R← partition_in_rows(P)
5: for each standard cell row r ∈ R do
6: LC← maximize_lateral_connections(R)
7: for each lateral connection lc ∈ LC do
8: Lib_cells← original_cells(lc)
9: eLib_cells← enhanced_cells(lc)

10: substitution(P’, Lib_cells, eLib_cells)

A Dynamic Programming Solution

The goal of the function maximize_lateral_connections is to determine the
lateral connection to be used between each pair of cells of a row, {c1, ..., cn},
while maximizing the number of buried pins. The problem can be solved
for each row independently, given that there are no incompatibilities
among lateral connections between different rows. Interestingly, the prob-
lem for cells {c1, ..., ci−1} is nested in the problem for {c1, ..., ci}, and thus
solving the problem until ci−1 is helpful to solve it for ci. We propose a
dynamic programming approach exploiting the optimal substructure of
the problem.

The following nomenclature is illustrated in Fig. 3.12. Assume a set
of the best solutions has been computed for the darker cells {c1, ..., ci−1},
and now these solutions must be extended up to ci. Let ki be the number
of possible lateral connections between ci and ci+1. At each step between
two cells, either one among ki possible lateral connections is fixed, or none
is. Given i ∈ {1..n} and j ∈ {0..ki}, let buried_pins(i, j) be the number of
pins the local connection will bury. It takes value 0 for j = 0, representing
that no lateral connection is taken, and either 1 or 2 for any other valid
connection 1≤ j≤ ki. Let compatibles(i, j) be all the indices of connections

38 Chapter 3. Under-the-Cell Routing

Figure 3.12: Dynamic programming nomenclature.

from ci−i to ci such that they are compatible with connection j from ci to
ci+1. The function f that counts the optimal number of buried pins from
c1 to ci for a given connection from ci to ci+1 (indexed for 1 ≤ i ≤ n and
0≤ j ≤ ki) is recursively defined by

f (i, j) =

buried(i, j) if i = 1,
max{ f (i− 1, j′) + buried(i, j) |

j′ ∈ compatibles(i, j) } otherwise.

The case i = 1 represents the first cell, which has no lateral connection
to its left side. In the general case, the optimal number of pins buried up
to cell i using connection j depends on the pins j can bury at cell ci and
the best solutions of compatible lateral connections in the previous step.
The value f (n,0) provides the optimal lateral connection assignment that
maximizes the number of lateral pins for the whole row of standard cells.

Using a bottom-up approach, the algorithm sweeps the standard cell
row from left to right and at each cell ci the best solution for any lateral
connection that can be taken to the right is kept. When the best solution
for the final cell cn is fixed, it suffices to trace back the cell row to fix
the solution for each of the lateral connections. The complexity is O(kn),
where n is the number of cells and k = max{ki | i = 1..n}. As k is low,
the algorithm is essentially linear in time and space with respect to the
number of cells in the row.

3.6 Experimental Results

We carried out the experiments using the 6 largest circuits of the itc99
benchmark [36], with a period of about 2ns. They were placed and routed
with Synopsys IC Compiler [35] using the Nangate 45nm standard cell
library [61]. The three synthesis flows that were used are depicted in
Fig. 3.13:

3.6. Experimental Results 39

Figure 3.13: Synthesis flows analyzed in the experiments.

(a) Original: Placement and routing with DRC reduction. Gives the base
number of DRC violations.

(b) Assignment: Placement, cell mapping into eLib and routing of the
unburied nets with DRC reduction. This flow exploits lateral pins
and shows the basic benefits of the approach.

(c) µPlacement: µPlacement is added before assignment to maximize the
number of lateral connections.

The original Nangate library was used for physical synthesis (place-
ment and routing) under the assumption that the eLib instances with
lateral pins were available with identical timing characteristics. This as-
sumption was made to avoid the complete timing characterization of eLib,
which is an arduous task out of scope of this thesis and without which
the validity of our results is interesting in its own right. We believe this
is a conservative approach, since timing with lateral pins could slightly
improve. The reason is that routing of the I/O pins to the upper metal
levels could be avoided in many cases, freeing up connection resources
leading to potentially reduced timing.

Table 3.2 shows the reported number of DRC violations and variations
on worst negative slack (in percentage of circuit period, positive means
better WNS), vias and pins across the selected circuits obtained after us-
ing the three routing flows. The different area utilization and metal layers
(indicated using M under the circuit name) are chosen to show the point
at which a circuit begins to present DRC violations. Approximate cell
count is also shown under the benchmark’s name.

Applying the assignment synthesis flow obtains fewer DRC violations
than the original flow in almost all circuits. The results show that the
timing of the circuit can be preserved when using these techniques. Re-
duction for vias and pins is obtained in all cases. When comparing the
two flows using lateral pins, µPlacement tends to perform better on close
to all of the circuits in terms of DRC violations. Timing is improved ex-
cept in one case (−1.0% in b19). Additionally, µPlacement achieves a

40 Chapter 3. Under-the-Cell Routing

Table 3.2: DRC violations and congestion.

DRC violations ∆WNS ∆Vias ∆Pins
Util. 65% 70% 75% 70%

b17 Orig. 53 21 140
M4 Assign. 26 10 37 –0.6% –4.5% –7.0%
18k µPla. 4 0 50 +4.9% –2.5% –7.7%
b18 Orig. 105 53 184
M5 Assign. 129 49 179 –1.1% –4.9% –7.2%
36k µPla. 34 31 132 +2.1% –4.9% –10.3%
b19 Orig. 43 79 263
M5 Assign. 19 53 180 –1.5% –5.5% –7.6%
79k µPla. 12 59 245 –1.0% –8.0% –15.7%
b20 Orig. 0 42 147
M4 Assign. 0 34 105 –0.7% –6.4% –8.7%
18k µPla. 5 0 80 +1.2% –8.1% –11.9%
b21 Orig. 44 109 137
M4 Assign. 5 15 47 –0.4% –6.3% –8.7%
20k µPla. 2 0 23 +0.5% –9.9% –13.0%
b22 Orig. 58 107 82
M4 Assign. 16 49 46 –3.5% –5.3% –8.1%
12k µPla. 0 10 46 +0.1% –5.6% –10.4%

3.7. Conclusions 41

Table 3.3: Summary of results (average).

Flow
lat.
wires

Buried
2-pin nets

∆Pins ∆Vias ∆WL

Assignment 1× 18.1% –7.7% –5.4% –1.1%
µPlacement 2.1× 33.1% –11.5% –6.7% +0.3%

better reduction on vias in almost all cases and performs specially well
with I/O pins, achieving a reduction of up to a 15.7%.

Table 3.3 shows more statistics comparing lateral pin metrics between
the assignment and µPlacement flows. # lat. wires reports the number of
adjacent cells that can be connected using lateral pins. Buried 2-pin nets
reports the percentage of 2-pin nets that are connected using lateral pins.
∆Pins reports the percentage of cell I/O pins that are removed when using
their lateral pin counterpart. ∆Vias reports the reduction of vias when
the circuit is routed with lateral pins. ∆WL represents the wirelength
variation.

One immediate result of the µPlacement stage is the increase on the
number of lateral connections, which roughly doubles in all of the cases.
However, the wirelength increases slightly after using the µPlacement
flow, canceling part of its benefits and leading to examples in which
the final DRC violation reduction is lower than when only assignment
is used.

It is important to note that the experiments were obtained on a 45nm
technology. The impact in buried pins would probably be more notice-
able in modern technology nodes, where the different scaling between
transistors and wires has increased the criticality of cell pins. At these
nodes, the direct reduction on the number of pins would have a heavier
impact on routing congestion and could overcome the placement degra-
dation induced by the µPlacement stage.

3.7 Conclusions

This chapter presents under-the-cell routing, a novel and effective way of
exploiting internal routing resources and routing adjacent standard cells
using lateral pins. The systematic extension of a standard cell library to
support lateral pins has been discussed in detail. Algorithms that ap-
ply and maximize the lateral connections are proposed and integrated in
an industrial circuit design flow. The experiments show the viability of
the approach and its potential to improve manufacturability by obtain-

42 Chapter 3. Under-the-Cell Routing

ing fewer design rule violations with negligible timing degradation. The
presented techniques require the collaboration of cell library providers
to enhance libraries with lateral pins and EDA companies to implement
assignment and µPlacement in the circuit synthesis tools. Future lines of
work include the refinement of µPlacement algorithms to maximize the
number of lateral connections while preserving all quality metrics of the
circuit.

Chapter 4

Modern Macro Placement:
Theory and Practice

The macro placement problem lies at the juncture between the floorplan
and placement problems. Floorplanning is classically considered as the
problem of determining layout topology in terms of relative positions of
modules on chip, considering area and wirelength estimations, whereas
placement consists of deciding the coordinates of a set of components
with fixed sizes and shapes. In turn, they are usually sequential steps:
first floorplanning, later placement.

In modern physical design flows, the partitioning of a chip in blocks
is generally decided manually, and the internal physical design of each
block is done separately. Macro placement is then the first step to be
solved, and is critical to close timing with no DRC violations. The fi-
nal coordinates of all elements is needed, but the location of macros in
particular has a very powerful impact on the timing closure of modern
designs. Given their importance, an array of techniques from the floor-
planning and placement algorithm tool box have been used over the years
to find the best ways to automate their placement.

This chapter aims to provide an overview on floorplanning founda-
tions, latest macro placement academic advances (including packing-tree
based placers), and its practice in the industrial flow to contextualize the
work presented in Chapters 5 and 6. These chapters propose methods
for macro placement that build on the presented material and rely on the
floorplanning of hierarchical blocks. For more information on introduc-
tory floorplaning and placement, please refer to [9] [4]. For a detailed
view on recent development on physical design automation, see [10].

43

44 Chapter 4. Modern Macro Placement: Theory and Practice

4.1 Floorplanning Foundations

This section introduces the basic notation and ideas behind slicing-tree
simulated annealing (introduced by Wong-Liu [85]), as well as how they
relate with our proposed macro placement approach. In the classic floor-
planning problem we are given a set of modules with a set of possible
shapes for each, and are asked to find a distribution of the modules that
minimizes the area of their bounding box, distances between certain mod-
ules or other properties.

4.1.1 Slicing Structures

An important family of floorplans are slicing floorplans, which can be ob-
tained by recursively cutting a rectangle using vertical and horizontal
lines. Such floorplans can be represented using a slicing tree, which is a
rooted binary tree in which leaves represent modules and internal nodes
represent the relative location of the modules in the slicing floorplan.
Given a slicing tree, the corresponding Polish expression is obtained by
traversing the tree in post-order.

Fig. 4.1a illustrates a slicing tree, along with its generated layout and
polish expression. Modules 1 to 4 have sizes 1x2, 2x1, 2x2 and 2x1 re-
spectively. At each operand node of the slicing tree, the corresponding
layout is the composition of the layouts of its children according to the
corresponding operator (V for vertical line, H for horizontal line). The
horizontal composition H of modules A and B, with sizes Ax, Ay and
Bx, By, is a module with sizes Ax + Bx, max(Ay, By), and a similar rea-
soning applies for the vertical composition. The final layout corresponds
to the root of the tree. Fig. 4.1b shows another possible slicing tree for
our set of modules which, when converted to a layout, results in a less
compact result.

Slicing structures allow for efficient exploration via the simulated an-
nealing methods working on the polish notation (as presented later) at
the cost of the loss of some solution flexibility, as not all floorplans can
be represented as a slicing structure. However, it has been shown they
can produce tight module packings when modules are allowed shape
flexibility [93], and represent non-slicing placements by adding a simple
compaction procedure [47]. Slicing structures can consider:

Boundary constraints [95] Having particular modules being close to some
boundary of the block.

4.1. Floorplanning Foundations 45

(a) (b)

Figure 4.1: Slicing floorplan, slicing tree and polish expression examples.

46 Chapter 4. Modern Macro Placement: Theory and Practice

Range and preplaced module constraints [96] [94] Having modules be-
ing placed in particular placement regions.

Abutment and clustering constraints [97] [98] Having pairs, or groups
of blocks, to be abutted or grouped in the layout.

The work presented in later chapters is based on slicing trees as a
means of floorplan representation. It is a natural choice given our ap-
proach to recursively divide the available rectangle into blocks depending
on their area requirements and penalize those layouts which do not re-
spect minimum rectangle sizes to allocate macro components adequately.

4.1.2 Shape Curves

A shape curve describes the possible shapes of a module, and can also
be generalized to a subfloorplan corresponding to the internal node of
a slicing tree. In general, it suffices to represent them with a piece-wise
linear function containing the corner points of the shape curve: a set of
Pareto points where each represents a possible shape for the module, that
is, a minimal rectangle such that all module components fit in its area.

The shape curve of a node in the slicing tree can be computed with a
generalization of the previously described composition for nodes in the
slicing tree. Thus, given a slicing tree and the shape curve of each of the
modules at the leaves, the shape curve of its root can be computed in a
bottom-up fashion. The algorithm basically procees by, at each internal
node, having every pair of points at each shape curve of its children be
composed, and keeping only the Pareto optimal points. This naive al-
gorithm can be speed-up, by keeping these Pareto points ordered in a
dimension in a procedure akin to the merging of two sorted lists [73] or
using other methods [63], resulting in linear complexity.

An example is shown in Fig. 4.2. It presents a slicing tree of three
modules, 1 to 3. Their possible shapes are 1x2 or 2x1 for modules 1 and
2, and 2x2 or 1x3 for module 3. Their slicing tree and shape curves or
the modules and internal nodes are shown in Fig. 4.2a, and the possible
shapes of each leaf and intermediate nodes are also shown in Fig. 4.2b.
Each point in the shape curve corresponds to a possible position for the
nodes. Green points in the shape curve represent floorplans which are
not Pareto optimal: there exists some point which is equal or better in all
dimensions and still allows all components to be in its area (for example,
point (2,2) dominates (2,3) in the shape curve of 12H).

4.1. Floorplanning Foundations 47

(a)

(b)

Figure 4.2: Example of shape curves composition.

48 Chapter 4. Modern Macro Placement: Theory and Practice

In conclusion, a shape curve defined by some Pareto points represents
the minimum dimensions such that all modules beneath can fit under a
slicing tree. Picking a particular shape point in the root, the tree can be
traced to obtain the final shape of each module, allowing modules to take
different shapes from a closed set depending on the desired shape for
the entire circuit. In the work presented in later sections, shape curves
are used to store the minimum dimensions of floorplans of given sets of
components in modern designs with macros. Because their slicing tree
is not be known a priori, an optimization process generates slicing trees,
and minimum valid shapes are obtained from there. Our use shows the
versatility of the structure and how new strategies can be devised using
classical floorplan data structures.

4.1.3 Simulated Annealing using Slicing Tree

Simulated annealing [70] is a meta-heuristic that aims to replicate the be-
haviour of the annealing process. It consists in melting a metal and letting
it cool down until solidification. If the process is done slowly, the atomic
structure becomes a regular lattice, otherwise it becomes disordered. The
basic idea of combining a slicing tree and simulated annealing is to per-
turb the Polish expression, compute its derived layout and measure its
quality. If it is better than before, the perturbation is kept for sure; other-
wise it is only kept based on a probability depending on a temperature
variable that slowly descends through the execution. The higher the tem-
perature, the more likely a worsening perturbation is kept. The idea of
the mechanism is to allow the search to escape local minima while the
temperature is high. The final solution would be the global minimum if
the cooling process had an infinite amount of time.

Algorithm 3 presents the method applied to a slicing tree represented
in by Polish expression, with the aim of obtaining the layout with the least
possible energy. The inputs are execution control parameters governing
how fast temperature decays and how many perturbations are tested at
each temperature step. First, the Polish expression P receives some ini-
tial solution and its energy is computed. From it, an initial temperature
is decided and, while the number of rejections among all movements at
the current temperature is low and the temperature has not dropped too
much, the algorithm executes a round of optimization, with a tempera-
ture decrease at the end. Values 100 at line 7 and 0.95 at line 9 represent
other configuration parameters that determine the termination conditions
of the algorithm and which can be tuned if needed.

4.1. Floorplanning Foundations 49

Algorithm 3 Simulated annealing using slicing trees
1: Input: Movs. per round (k), Temperature decay (∆T)
2: Output: Layout L
3: P← initial_solution() {Trivial solution or other.}
4: L← polish_to_layout(P)
5: E← energy(L) {Evaluation. Lower energy = better layout.}
6: T← init_temp(E)
7: Tmin← temp/100
8: reject← 0
9: while reject/k < 0.95 and T ≤ Tmin do

10: for i = 1 to k do
11: P′← perturb(P) {See 3 possible perturbations.}
12: L′← polish_to_layout(P′)
13: E′← energy(L)
14: ∆E = E′ − E
15: if ∆E < 0 or random(0,1) < e−∆E/T then
16: P = P′

17: else
18: reject← reject + 1
19: T← ∆T × T
20: return polish_to_layout(P)

During each round of optimization (where temperature T is fixed,
lines 9 to 19), in a loop which is executed k times, the Polish expres-
sion P is perturbed to P′, its layout is derived and its energy (or cost)
is computed. The functions to go from a Polish expression to a layout
and to compute its energy are key to obtain good layouts at the end of
the process and account for most of the runtime. In particular, the energy
function typically measures the packing of the modules in the layout,
the wirelength between its components and other optimization metrics.
When the new proposed energy is known, if it is lesser than the previous
energy or the execution is at high temperature, the current solution P is
updated, otherwise the reject counter is increased.

The method usually considers picking at random one of three opera-
tions to perturb the polish expression. When performing these operations
the new layout is evaluated and kept if certain conditions are met. Simu-
lated annealing allows solutions that lead to worse layouts to be accepted
because they may bring, after further perturbation, to even better solu-
tions. The perturbations are illustrated in Fig. 4.3, in which the slicing
tree in Fig. 4.1a is sequentially perturbed using the following three oper-
ations:

50 Chapter 4. Modern Macro Placement: Theory and Practice

(a) Leaf swap (b) Operator inversion (c) Leaf-operator swap

Figure 4.3: Polish expression perturbations.

M1 : Swap consecutive leafs in the Polish expression (with possible
operands in between).

M2 : Invert a chain of adjacent operators (HVH to VHV, for example).

M3 : Swap an adjacent pair of leaf and operator.

At the end of the process, the layout corresponding to the current Pol-
ish expression is returned. Additional mechanisms to keep the best solu-
tion can also be added, given that it is not guaranteed that the best visited
solution is the one kept by the end. Notice ∆T is a number smaller than 1,
typically around 0.9. The higher it is, the longer the search becomes, but
better quality is usually obtained as the solution space can be explored
with a slower temperature cooldown.

The approach presented in Chapter 5 relies on a simulated annealing
optimization process as the one presented in this section. It is innovative
in how the blocks and connections between them are modeled, and on
how the polish_to_layout method allows for blocks with both standard cell
and macros to be used to obtain spread macro placements. The function
energy computes the product of block distances and their dataflow affinity,
and also the overlap between various macros, aiming to find floorplans
in which related components are close and with no overlaps.

4.1. Floorplanning Foundations 51

(a) Example layout (b) B*-tree

Figure 4.4: B*-tree and layout example.

4.1.4 Other Floorplan Representations

Besides slicing structures, a myriad of other floorplan representations
have been proposed in the literature. One popular class are packing struc-
tures, a general form of floorplan representation that can model empty
spaces. This category includes structures such as the sequence-pair (SP)
[60], consisting of two permutations of the blocks representing their hor-
izontal and vertical relations. Simple algorithms go from the SP to a
layout in quadratic time, while algorithms have also been proposed in
O(n log logn) [86] [87]. It is the chosen structure in one of the initial pa-
pers addressing modern macro placement by combining floorplan and
placements techniques (also used on simulated annealing techniques) [2].
Some floorplan representations have been proved to be equivalent to oth-
ers, for example sequence-pairs with respect to transitive closure graphs
TCG [37]. Still they are distinguished by their neighborhood structures
and operations, critical to finding good floorplans.

Another interesting subfamily of packing structures are compacted struc-
tures, where modules are compacted to a particular corner of the layout.
Their solution spaces are reduced when compared to general packing
structures, but their operations can be performed more efficiently. One
of its most known representatives, and base for MP-tree floorplanners to
be discussed in the next section, is the B*-tree [100]. It is an ordered bi-
nary tree whose root corresponds to the node at the bottom-left corner.
Given a node, its left subree are nodes over it, and right subtree nodes
to its right. Given such tree and module sizes, a packing layout can be
constructed efficiently. An example is shown in Fig. 4.4. These structures
are specially effective for packing, but in macro placement may produce
solutions which lack spreading and can induce congestion.

52 Chapter 4. Modern Macro Placement: Theory and Practice

Figure 4.5: Example of “sea of cells” vs. “sea of hard macros”. [24]

Most of these representations rely on a simulated annealing process to
explore the neighborhood of a solution and find a good floorplan in terms
of a given cost function. A huge body of work exists proposing addi-
tional constraints to make these structures usable in real instances such as
the ones presented in the previous section: boundary, range, abutment...
Some structures may offer different options than others, for example rec-
tilinear module constraints for B*-trees, or different sets of perturbation
operations, varying in efficiency and result of transformation.

The best structure for an implementation depends on the particular
characteristics of the floorplan instance. As hinted before, the macro
placement problem uses floorplan structures and techniques, but these
can also be applied to other flavors of the floorplanning problem. For
example, structures have been proposed for 3D floorplanning in the con-
text of FPGA scheduling, extending sequence-pairs [91], B*-trees [65] and
TCGs [99]. Proving the re-usability of such structures, these efforts are
being revisited again thanks to recent interest in 3D IC for future technol-
ogy nodes, further research is ongoing as proved by recent work on corner
links and partial order [41]. Other variants of the floorplanning problem
consider the use of symmetry constraints for analog designs [95], and the
floorplanning of wafers at a manufacturing level [39] [40] [27].

4.2. Modern Macro Placement Automation 53

4.2 Modern Macro Placement Automation

Up to the end of the XXth century, the main aim of general floorplanning
had been to pack a set of rectangles minimizing area and wirelength be-
tween them. The problem would usually be applied to blocks, but not
strictly macros: the need to automate their placement had not been there
for very long. According to customer data of Monterey Design Systems,
and confirmed by a user survey over 175 design groups in DAC 2004, the
average number of macros per system on chip was under 20 in 2001, and
was to reach almost 200 by 2004 [24]. They presented Fig. 4.5 to illustrate
how IC would move from being a “sea of cells” with a few macros on the
walls to a “sea of macros” with a few areas of standard cells connecting
them. The authors already alerted that not enough attention was given
to macro placement and about the criticality of the problem. Nowadays,
as the number of macros per block follows an increasing trend as they
did for the entire chip years ago, the problem becomes increasingly cru-
cial. This section focuses on the advances spurred by this need in the
particular field of macro placement and its relations to floorplanning and
placement techniques.

When preparing the physical design of a circuit, the current practice
is to divide its total area and components into several blocks, which are
given to independent designers who work in parallel to close timing (and
optimize other metrics such as power). The first step in the physical
design of a block is macro placement, deciding the location of macros in
the circuit. The step is critical and is usually an iterative manual process
in which the designer tries to understand circuit structure and fixes macro
locations and orientations. The block is then pushed down the flow and
returned to the beginning if its results suggests a macro reorganization is
needed.

4.2.1 Macro Placer Taxonomy

Modern macro placement needs were highlighted in a paper by Khang
[38], which proposed several limitations of classical floorplanning ap-
proaches and noted that floorplanning should be a fixed-die (or fixed-
outline) problem, with a packing which simultaneously achieved zero whites-
pace and zero overlap given the fixed die. Much effort has been devoted
from that moment to propose floorplan techniques which go in this direc-
tion and note the similarity with the placement problem, mostly coalesc-
ing around the idea of mixed-size placement: the placement of both macro
and standard cells. A survey on VLSI placement [57] classifies such algo-

54 Chapter 4. Modern Macro Placement: Theory and Practice

rithms in three groups depending on their order of action: simultaneous
cell and macro placement, sequential placement (first macros, then cells),
and postprocessing methods which remove overlap between macros and
standard cells by floorplan repair.

Simultaneous Macro and Standard Cell Placement.
Under this kind of flows, the placement of macros and standard cells

is not separated in different stages, but is done simultaneously. The em-
ployed methods are very close to placement techniques, if not placers
extended with macro handling capabilities. A key challenge is that com-
ponents in simultaneous mixed-sized have very different sizes, and they
must be fully legalized (no overlaps). To unify component sizes, normally
either cells are clustered to bigger components or macros shredded into
smaller ones. The latter is the approach followed by [2], [67] and [43],
where macros are divided into smaller components with pseudo-nets,
and POLAR, a force-directed placer [53] where no extra pseudo-nets are
used.

Most of the modern placers are based on analytic techniques. These
began with quadratic and force-directed approaches and have become
very sophisticated in the later years. Their usual approach is to run ana-
lytic placements, which tries to converge to some component coordinates
according to analytic models and legalize the layout to remove overlaps.
Some placers that consider macros and move them using variants of cell
shifting as in FastPlace [83] are NTUPlace [32] and MAPLE [44]. There
is also a group of electostatics-based placers [55] [14], where after do-
ing general global placement, particular macro standard cell legalization
stages are employed. Other approaches not based on analytic but con-
structive methods is FLOP, by first doing floorplan and then incremental
movements on its results [92].

As highlighted in [92], the optimized functions are usually approxi-
mations and the legalization steps which are usually needed in analytical
frameworks (and most of the simultaneous flows) to remove overlaps
tend to degrade solution quality significantly. Finding new ways to han-
dle both macros and standard cells and solve the problem of finding not
only the best locations for components, but also to spread for a good
use of routability resources, is still an open challenge. There are some
sequential macro placers in which lightweight versions of simultaneous
placers are used to propose coordinates that guide the macro placement
search. In Chapter 6, a placer based on analytic methods (spectral and
forces) with some macro legalization capabilities generates a global view
capable of guiding the floorplanner to better macro placements.

4.2. Modern Macro Placement Automation 55

(a) Example layout (b) MP-tree

Figure 4.6: MP-tree and layout example.

Sequential Macro and Standard Cell Placement.
In order to allow for a greater flexibility and its modular incorporation

in an industrial physical design flow, our method advocates for perform-
ing macro placement prior to cell placement. One of the main challenges
is that by choosing to place macros first, even though placement proto-
typing may be used, standard cell locations are not known.

A very prolific family of macro placers considers cell area implicitly
by having macros close to circuit corners, which is the de facto chosen
approach for some industrial floorplanning tools. The method was ini-
tially proposed by [12] and relied on packing macros at the corners of
the circuit using MP-trees. The structure can be thought of as a tree of
packing trees, with each packing tree seating at one corner of the layout.
An example is shown in Fig. 4.6, with an example layout to the left and
its corresponding MP-tree to the right. Each chidren of the ni nodes rep-
resents a packing tree to one of the corners, and their internal structure
is the same as presented in B*-trees. The proposed neighborhood explo-
ration considers moving nodes and swapping nodes or subtrees, among
others, and aims to minimize macro placement area, wirelength, displace-
ment to macro coordinates suggested by a placer and overlaps between
different packing subtrees in the MP-tree (as they are not avoided by the
data structure directly). The resulting layouts look similar to the "sea of
cells" of Fig. 4.5.

It was extended by [13] for routability and blockage-awareness. In
[16], three major drawbacks to the use of these previous approaches in
modern flows (related to overlap avoidance, pre-placed macros, and area
utilization) were presented and CP-trees were proposed, aiming also to
optimize the shape and area of the region for standard cells. However,

56 Chapter 4. Modern Macro Placement: Theory and Practice

the approach lacked scalability, and pre-placed macros must be abuted to
chip boundaries.

The most recent advances in this direction propose a multilevel frame-
work for scalability [8], extensions to consider macro and standard cell
interaction [11] and domain planning with macro placement [54]. In this
last paper, the authors note that although MP-trees and CP-trees can pack
macros efficiently, they may result in long wirelength for big designs and
present the MDP-tree, a divide-and-conquer tree structure in which first
the design is divided in "domains" using a slicing structure, and each
holds an MP-tree inside (which effectively can be thought as a slicing tree
of MP-trees). The approach is scalable and helps reducing wirelength
when compared to the previous, but still restricts macro positions to the
corners of their given regions, suggesting there would be more room for
improvement if such constraint was not enforced by construction.

In contrast to all these packing methods, our approach advocates
for directly modeling cells during macro placement to avoid forcing the
macros to the walls, where they might be far away from their correspond-
ing standard cells. This allows our layouts to be closer to the "sea of
macros" (Fig. 4.5). Another reason to do so is that it is not clear how to
model the wirelength between macros without considering possible loca-
tions for standard cells. By considering standard cell blocks it is possible
to directly model wirelength through abstractions of the netlist, instead
of simply relying on hierarchy-based pseudo-nets as do the approaches
based on [12]. On the other hand, the blocks with standard cells also take
space needed for their placement, instead of forcing them to be in the
middle of the design, allowing a less biased and more complete design
space exploration.

Although detailed placement of standard cells is out of the scope
of this work, floorplanning standard cell groups is key to find satisfy-
ing macro placements. Whereas other works consider floorplanning two
kinds of blocks, hard for macros with a fixed shape, and soft for stan-
dard cell groups with a flexible shape, e.g., using sequence-pairs [2] or
slicing trees with shapes curves [92], our approach proposes to model
blocks with characteristics of both: having some area requirements, but
also knowing some minimal shapes to place macros inside them.

4.2.2 Other Considerations

Besides the general classification of macro placers according to the re-
lation of their macro and standard cell placement phases (if they offer

4.2. Modern Macro Placement Automation 57

capabilities for both), other criteria can be used to classify the works de-
pending on the kind of techniques they are using or their intended opti-
mization objectives.

Multilevel, hierarchical approaches.
RTL-level information present in the netlist is often used to help ob-

tain better results during physical design. One of the ICCAD 2012 CAD
contest problems was on Design hierarchy aware routability-driven place-
ment [82]. It has been mentioned that [12] and the deriving approaches
use hierarchy information to create pseudo-nets to model the wirelength
between macros. It is also used in [18] to obtain better routability, and to
guide placement in [31] [30]. More recently, the approach has been used
in particular for better component clustering [49] [50].

The natural way in industrial flows to tackle the complexity of work-
ing with macros and cells is to use a hierarchical (in a divide-and-conquer
sense) and multilevel approach. Some proposals [17] [1] [20] divide the
layout in subregions and solve their placements independently, but not
explicitly exploiting the hierarchy information of the circuit. The use of
multilevel techniques, which follow either a cluster-decluster or partition-
merge scheme, have been employed in other contributions [15] [79], and
has lately been used to overcome the scalability issues of CP-trees in [8].
Their use is critical for modern design use, where circuits can have mil-
lions of cells and hundreds of macros.

Our proposed method combines RTL hierarchy information with multi-
level optimization to reduce problem size in macro placement: hierarchy
information is considered a clustering of all netlist components. Our pro-
cess consists on declustering considering area to identify blocks to work
with, compute the affinity between such blocks and find a layout for them,
and then recursively floorplan each block until macros have been placed.

Optimization objectives.
One of the key questions all macro placers try to answer is: What

makes a good macro placement? From an industrial point of view, the goal
of the physical design process is to close timing without design rule vio-
lations. The usual focus is rectangle packing with no overlaps and wire-
length minimization. A recent example [26] proposes an algorithm to
obtain optimal wirelength. Although it suffers from lack of scalability
and produces too tightly packed macro designs, it presents a refresh-
ing direction of work in contrast with the usual heuristic approaches.
Under the fixed-die floorplanning paradigm, most macro placers try to
primarily minimize some abstraction of wirelength and additional met-
rics. Many floorplanners aim to optimize several objectives like reducing

58 Chapter 4. Modern Macro Placement: Theory and Practice

(a) Model (b) Wirelength floorplan (c) Pipeline floorplan

Figure 4.7: Pipeline aware floorplanning example.

overlap and displacement from desired positions [12] [54], have continu-
ous cell area [8], improve routability [13] [51] or increase regularity [49].
Some of these approaches minimize complex objective functions in which
the weight of components is tuned via user-defined parameters. In order
to make the tool useful in general flows and to avoid manual tuning in
our optimization function, our work implements an adaptive scheme in
the vein of the one proposed in [44] to automatically decide parameter
values depending on the current instance execution.

Interconnect estimation.
The usual physical design flow when pipelined connections are present

in the block is an iterative process in which the designer tries to work on a
floorplan to close timing and, when not possible, the pipelining is modi-
fied at the RTL level until a valid floorplan is found. The need to consider
pipeline lengths is illustrated in Fig. 4.7. Fig. 4.7a presents a graph where
each node is a port (1, 6) or a macro (2 to 5), and edges represent the
number of registers in the pipelined connection between such compo-
nents (red edges are critical). Floorplanners that ignore this information
and only use wirelength proxies to guide the search may result in bad
solutions from a timing perspective (Fig. 4.7b), as paths that are at short
register distance are placed too far away in the layout. Considering reg-
ister pipelining in the solution cost or as a constraint can lead to better
floorplans in this regard (Fig. 4.7c).

Some works in the literature dealt with a similar kind of constraints
under the name of microarchitecture-aware floorplanning [62] and illus-
trate the situation with a simple sentence: "the addition of latencies on
some wires can have a large impact on the overall performance while

4.3. Macro Placement in the Industrial Flow 59

other wires are relatively insensitive to additional latencies". However, it
was applied to processor stage pipelining, and not internal connections
between ports and macros in blocks. In these approaches, the location
of modules in the layout fix the latencies between them, thus impacting
the IPC of the design. In other cases, the location of buses in the chip is
particularly modeled [78] [42]. The particular challenge of the pipelined
connections problem in macro placements is that these connections must
be identified from the netlist.

Another recent work also identifies the need to understand indirect
connectivity between macros [50], but not the timing problems induced
by register pipelines. Instead, they consider elements that connect to
several macros to add to a clustering function, having those macros be
clustered and placed closer. The work presented in this thesis is the
first macro placement method that considers in-block multi-cycle connec-
tions and exploits array information to understand circuit connections
and model dataflow with the aim of reducing both circuit wirelength and
timing in modern macro placement.

4.3 Macro Placement in the Industrial Flow

This section reviews macro placement from an industrial point of view,
why it is critical and what is being done to address it. The presence
of such discussion in an academic work such as a PhD thesis is justi-
fied given the apparent disconnection between academic approaches and
industry practices with regard to the macro placement problem. The top-
ics presented here motivate our research and some of the design choices
taken in the design of the macro placement tool HiDaP, with an explicit
orientation of being usable in the context of industrial practice.

A crucial step.
Previous sections have shown that macro placement is the first step

in the physical design process and has enormous impact on project turn-
around time. The placement of these relatively big components deter-
mines if any possible placement and routing after it can close timing. The
whole physical design flow can take at least a week, and given the itera-
tive nature of the chip design process, reducing the floorplan-to-sign-off
iterations, and even avoiding having to go back to review the RTL (which
is usually done by another team or company) because pipelines must be
adjusted or blocks re-partitioned, could save enormous amounts of time
and effort.

60 Chapter 4. Modern Macro Placement: Theory and Practice

At each stage of the physical design flow, a model of the design is built
and algorithms try to obtain close to optimal solutions for said model.
However, the only result that counts in the end is whether the layouts
makes it to sign-off or not. EDA tools tend to be conservative: a floorplan
layout that looks good after placement can happen to be very bad later
on, but if it is already dubious at floorplan time, it will hardly make it
to routing. This motivates us to find good macro placements early, using
timing (i.e., register pipeline connections) and area models which are not
perfectly accurate but that can make a difference later in the flow.

The role of EDA.
Academic EDA tools are generally focused on generating an auto-

mated tool that reduces area and wirelength. However, in the industrial
setting, the main goals are timing and DRC/congestion to ensure that the
circuit can move to sign-off, besides many other concerns that are usu-
ally not directly addressed such as power planning, buffering, clock tree
design... All these steps are eased when using commercial EDA tools,
which also offer better support for the indispensable manual engineer
interaction.

It would be natural to think that the critical process of macro place-
ment has been well tended to by industrial EDA software. And yet, even
if usually fast, the support of macro placement algorithms for modern
chip designs does not provide good enough solutions. Some of the tools
take the approach of placing macros besides walls, but this is unsustain-
able for designs with tens or hundreds of macros. Experimental results
presented in Chapter 5 and Chapter 6 confirm the gap in quality between
a particular tool and the quality of results achieved by both our approach
and designs obtained manually by expert back-end engineers.

As the number of macros per block increases, enhanced macro place-
ment and circuit analysis capabilities become a necessity, not a luxury.
Pioneering companies such as MAXEDA [58] are returning the focus to
the floorplanning and placement of macro instances, but it is still not gen-
eral practice across the industry. To bring a circuit from RTL to working
silicon within a given time budget, it is essential to understand the floor-
planning implications of the RTL code early by using a new generation of
tools that can floorplan modern designs with many macros and provide
insight on the connectivity and data flow of circuit components before it
is too late. If fast and reliable macro placers were available, they could
be use extensively in combination with macro selection techniques for
architectural prototyping.

4.3. Macro Placement in the Industrial Flow 61

4.3.1 Some Rules for Macro Placement

In general, doing manual designs is the only way to obtain enough solu-
tion quality to close timing with no design rule violations. The process
becomes an artisanal endavour in which engineers read RTL code (if avail-
able) and explore the netlist and hierarchy through the EDA tool GUIs to
try to make sense of the connectivity of the components. In order to un-
derstand how this is done, the following is a set of basic rules of thumb
which were spontaneously provided by an expert physical designer.

1. Go by flyline connections, which translate to wirelength, which
needs to be kept at minimum.

2. Check congestion to remove hotspots. Some people use incremental
placement iterations to fix those issues, but it’s bad as more cells are
added and timing constraints may become harder to meet.

3. Place macros from the same hierarchy together.

4. Put memories against block sides and place std cell logic in the
middle (but this is only a “soft” rule). Avoid macros blocking dense
IO-pins at the boundaries.

5. Abut very small macros together and leave channels for big macros.
There is no magic channel width number for all the technologies.

6. If there are many macros, or even not so many, the ideal standard
cell region shape is a circle.

7. Place macros back-to-back, with pins facing each other (may or may
not be helpful).

They represent a basic set of recommendations, and of course much
deeper analysis and understanding of the block is needed in each partic-
ular instance. Several rules (4, 7) explicitly mention they will not always
help, and is in discerning the different use cases where the true expertise
makes a difference. Let us take a slow look and compare them to the
current algorithmic state of the art and the work presented in this thesis.

Rules 1 and 2 refer to the optimization objectives at the stage, which
mostly consists on reducing wirelength and congestion hotspots. Tim-
ing estimates at the floorplan stage are not very reliable, given the low
quality of the cell placement at the stage. However, some basic idea of
where high cell density is can be quickly obtained. Wirelength remains

62 Chapter 4. Modern Macro Placement: Theory and Practice

(a) Without back to back (b) With back to back

Figure 4.8: Back to back macro placement strategy.

the basic optimization metric, as has been in most modern macro place-
ment approaches, but congestion was not considered an objective until
recent years [13] [11]. Some effort has been devoted to doing routabil-
ity prediction using machine learning [88] to guide an automated macro
placer [33], showing growing interest in addressing the issue.

Rule 3 and 4 refer to the global placement of macros. The first insight
relates to the use of hierarchical information to guide the placement. As
discussed before, this was not much used before the 2012 ICCAD contest
on hierarchy-aware placement [82], but is one of the basic guiding prin-
ciples for human designers. The second advises to use a "sea of gates"
model, although not in every situation. Sequential macro placers based
on MP-tree [12] follow these two rules by estimating hierarchy-based
pseudo-nets to represent wirelength between macros and forcing them
to pack to module corners. The proposal presented in Chapter 5 uses
hierarchy to guide the multilevel process (macros in the same hierarchy
are placed in fixed regions), but allows the search to not be restricted to
boundary-packing solutions to be able to find the most adequate solution
to each particular instance, as simultaneous mixed-size placers can do.

Finally, rules 5 to 7 refer to a more detailed macro placement. They
are concerned not so much about macro placement, but about "channel
placement": the inverse problem to our own! These deal with local effects
of congestion and routability which have been seldom modeled by macro
placers. Some experimental quantification of the impact of inter-macro
channel variation has been published [46]. The idea of creating big con-
tinuous areas for cell placement was addressed in [16], but more in the
spirit of rule 3. Rule 7 refers to a macro array placement strategy illus-
trated in Fig. 4.8: instead of having all macros with the pins facing at the
same side (Fig. 4.8a), they are grouped so that sides without pins abut,
creating wider channels for zones with ports (Fig. 4.8b). This approach

4.3. Macro Placement in the Industrial Flow 63

has received no algorithmic attention, but might in the future consid-
ering some approaches are already working with the concept of macro
arrays [49].

Although these rules are far from being a comprehensive set, they can
be consider as directions for future work. It has been shown that later con-
tributions to academic research have been going into directions pointed
by these indications, and probably more effort would be needed to clearly
identify new directions and opportunities for novel macro placement al-
gorithms.

4.3.2 Redefining Engineer Interaction

But the role of EDA nowadays does not finish with pure design automa-
tion, but also has to enable engineers to keep imagining and realizing
layouts which our tools are not (yet?) capable of producing. As the final
drive of high-performance chips is optimizing them much as possible,
new support tools and approaches will always be needed at the last tech-
nology nodes.

From the industrial practice point of view, one of the main roles of
the floorplanning stage is diagnostics: not only to find a good macro
placement, but ensure the RTL is good and has no issue that will prevent
it from being timing-closeable. This involves physically understanding
the implications of RTL-level code. As front-end engineers may not be
familiar with physical layouts, and back-end engineers do not always
have RTL expertise, floorplanning tools are a meeting point that should
make this process as simple as possible through easy to understand tools
and abstractions.

These needs call for novel abstractions to capture the main physical
objects and their relations without the need of having a floorplan, so that
front-end engineers understand the implications of their code before it
moves down to physical design, and back-end engineers understand the
structure and intent of the code without fighting against sometimes ob-
scure, undocumented netlists. Interestingly, some effort in this direction
has been devoted in the hardware reverse engineering field, although
they have different assumptions [48] [74] [5]. However, placement-centric
variations of their techniques may be of use to the problem in the future.

It is with this idea of obtaining high-level representations of a given
netlist that the dataflow graph (presented in Chapter 5) is conceived. The
motivation to generate the dataflow graph is to automatically obtain an
easy-to-grasp representation of a circuit that can either be used to guide

64 Chapter 4. Modern Macro Placement: Theory and Practice

our automated placement tool or to help engineers in understand their
designs, enabling a new abstraction at the RTL-floorplan boundary for
fast future bottleneck diagnosis.

Moreover, there is a need to have better user-interfaces that can work
at higher levels of abstraction, switching from netlist, to graph, to layout,
so that the implications of each to each other can be easily seen and ex-
plored. Although out of the scope of academic study, some contributions
were made in this direction during the elaboration of the project. They
are described briefly in Sect. 5.A.

4.4 Conclusions

This chapter provides an introduction to floorplanning through slicing
structures, shape curves and other basic notions, which form the basis
of the work developed in Chapter 5 and Chapter 6. It is followed by
a retrospective on modern macro placement automation. It includes a
description of the two main mixed-placement flows and its main repre-
sentatives, and other techniques and ways of modeling the problem, with
comments on the motivation of various design choices that have been
taken for out approach. Finally, a last section has contextualized macro
placement in the industrial flow, highlighting its criticality and needs,
current approaches and relation with some of the last academic develop-
ments. The next chapters present HiDaP, a macro placement automation
approach which has been integrated into an industrial physical design
flow and managed to obtain better results similar to those of manual lay-
outs after routing, with the aim of becoming a valuable addition to the
tool set available to physical design engineers when facing complex de-
signs in modern technology nodes.

Chapter 5

RTL-Aware Dataflow-Driven
Macro Placement

This chapter presents HiDaP, a modern macro placer to help finding
better macro placements in an industrial physical design flow. Circuit
partitions and their relations in terms of dataflow are derived by us-
ing the available RTL-stage information present in the netlist. Images
of macro placements obtained using current state of the art techniques
(industrial EDA tools and manually handcrafted) and obtained using our
approach are shown in Fig. 5.1. Our floorplans are obtained by using a
novel multi-level algorithm that starts by placing the most relevant blocks
and then proceeds recursively. The top level placement of Fig. 5.1c is
shown in Fig. 5.1d. The proposed approach outperforms the commercial
tool and produces solutions with similar quality to the best handcrafted
floorplans. Therefore, the generated floorplans provide an excellent start-
ing point for the physical design iterations and can contribute to reduce
turn-around time significantly. Additionally, Sect. 5.A presents a system
to help engineers visualize and understand complex hardware designs.

5.1 Motivation

Industrial EDA floorplanning solutions are fast but often do not produce
good enough macro placements. Further iterations by physical designers,
which take significant effort, are needed. For circuits with more than 200
macros, it usually takes two to four weeks for the floorplan to reach the
desired quality of results. As decisions taken at the floorplan stage have
a critical impact on timing and power, considering structural properties
during macro placement helps reduce design turn-around time.

65

66 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

(a) Industrial EDA Floorplan (b) Handcrafted Floorplan

(c) Our Approach (d) Block Floorplan of Fig. 5.1c

Figure 5.1: Macro placements obtained using the state of the art methods
and our approach.

5.2. Contributions 67

A key challenge in advanced technology nodes is that connection be-
tween components inside a same block can take more than one cycle.
This is considered during RTL design, when wires are pipelined (based
on RTL designer expertise or previous versions of the design) to meet
timing constraints. Awareness of this structure when deciding the loca-
tion of macros is key to obtain floorplans which can close timing without
excessive congestion. The dataflow metric proposed in this chapter aims to
capture the relation between cell groups, ports and macros by considering
the bitwidth and number of stages in their pipeline connections.

The dataflow analysis of a given design is achieved by exploiting RTL-
stage information, such as hierarchy and arrays. Many algorithms devote
high computational effort to infer structural properties that were known
in previous stages of the design and have been destroyed or ignored.
The hierarchical abstraction used by humans provides a logic vision of
the relations between circuit components. Identifying array components
(registers, ports...) is key to understanding the relations between macro
components (and the standard cells) and providing floorplans that are
more attuned to the structure of the system.

5.2 Contributions

This chapter proposes HiDaP, a multilevel floorplanner to find macro
placement and orientation by exploiting RTL-stage structure informa-
tion. This is done based on the floorplanning of circuit blocks (groups
of macros and standard cells), by modeling them and their dataflow anal-
ysis relations and using simulated annealing as an optimization process.
The aim of our method is to reduce wirelength and timing without macro
overlap so that the circuit can reach timing closure without DRC viola-
tions with minimal manual intervention.

Multilevel Approach.
HiDaP is based in a multilevel process, as illustrated in Fig. 5.2. It

shows a small example deciding the location of the 16 macros of the
design from the hierarchy tree shown in Fig. 5.2a (only for macro compo-
nents). The first level (Fig. 5.2b) identifies and floorplans three key blocks,
two containing 8 macros each (dark gray, /A and /B), and a third with cells
connecting them. The process is repeated for the blocks with macros and
each is again partitioned into blocks with macros and cells and blocks
with only cells, first /A (Figs. 5.2c to 5.2e) and then /B (Figs. 5.2f to 5.2i).
At the end of the process, coordinates for each one of the 16 macros are
fixed and space has been left for their related standard cells.

68 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.2: Multi-level block floorplan of a 16 macro design.

5.2. Contributions 69

(a) Block floorplan flow (b) Block Characterization

(c) Dataflow Analysis (d) Layout Generation

Figure 5.3: Macro placement algorithm main stages

Dataflow-Driven Floorplanning Flow.
The main algorthmic steps executed at each floorplanning instance are

shown in Fig. 5.3a. The goal is to place the elements below a hierarchical
node n with some given width and height constraints. After examining
the circuit hierarchy, our tool creates a partition into blocks containing
both macros and standard cells groups (Fig. 5.3b) and analyses circuit ar-
ray information to estimate their dataflow affinity, based on component
bit counts and pipeline connection stages (Fig. 5.3c). Finally as seen in
Fig. 5.3d, the layout generation step decides the coordinates of each block
minimizing dataflow affinity distances. The layout of blocks is decided
using slicing structures and simulated annealing, with a novel top-down
layout generation algorithm designed to handle hybrid blocks with both
hard and soft properties, not just hard properties as in most approaches
derived from [85]. The approach considers the fixed die area to be a bud-
get and distributes it among the blocks, implicitly dividing whitespace
and avoiding overlap when possible.

70 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

5.3 Preliminaries

The input of macro placement is a netlist N with hierarchy and array in-
formation derived from the RTL stage and fixed area width and height.
The outputs are the coordinates and orientation of each macro. The tech-
niques presented in this work explicitly aim to obtain floorplans that
show:

1. No overlaps between macro components.

2. Least possible wirelength, worst negative slack and total negative
slack.

The first item guarantees that the produced layout can be advanced
in the physical design, and is considered a priority in our approach. The
second includes the primary metrics that define the global quality of the
solution. The introduction of dataflow affinity between blocks aims to
capture connection bitwidth and flop pipeline latency to minimize wire-
lenght and obtain good timing. Other metrics such as congestion are also
reported in the experiments section but are not directly considered for
optimization.

5.3.1 Block Representation

Each block represents the standard cells and macros under a node of the
hierarchy tree, and has properties of both kinds of components. Given
that our hierarchical top-down approach first decides block locations and
later the position of the elements inside each block, cell area requirements
and the possible slicing floorplans of the macros in a block are key to
ensure that sufficient space is allocated in both dimensions when fixing
the block area.

Formally, a block is characterized characterized by the triple 〈Γ, am, at〉.
Γ is a shape curve [63] that contains a set of pairs (width, height) repre-
senting the smallest bounding boxes that can hold slicing placements of
the macros in the block (standard cells are ignored for Γ). am (minimum
area) is the sum of the area of all macros and standard cells under the
hierarchy level. at is the target area for the block, i.e., am plus some extra
area associated to the block (see Sect. 5.5.3).

Fig. 5.4 provides a visual reference of the block representation. Fig. 5.4a
shows an abstraction of a block. The darker boxes represent macros. The
blue rectangle (am) represents the minimum area of the block, whereas

5.3. Preliminaries 71

(a) Minimum and target areas. (b) Shape curve (Γ).

Figure 5.4: Area model for a block.

the red rectangle (at) represents the target area. Fig. 5.4b shows its shape
curve, defined by a set of Pareto points (in red). Given a rectangle for
the block of dimensions xr and yr, there is a possible placement of our
macros in it if the point (xr, yr) falls in the blue area. This area represents
the space of rectangles that could hold a placement of the eight macros
of the block.

Notice that two slicing curves of blocks A, B can be composed verti-
cally to represent minimal slicing floorplans of a block composed of A
being vertically adjacent to B (the same applies for the horizontal direc-
tion). As explained in Chapter 4, this operation arises naturally in slicing
trees where, given the shape curves of its leaves, the shape curves repre-
senting floorplans of the macros of its intermediate nodes up to the root
can be computed.

5.3.2 Dataflow Affinity

For every pair of blocks A and B, the dataflow affinity metric captures the
“information flow proximity” between them. This concept is combined
with physical distances to provide a layout quality metric. Dataflow affin-
ity increases with the number of bits and flop pipeline stages between
them, following the relation

Dataflow_Affinity(A, B) ∝
Information_Flow(A, B)

Latency(A, B)
.

The motivation is that blocks with a high information flow have high
dataflow affinity if their latency is small. Array width information at
RTL-stage is used to model information flow (bit count), and the num-
ber of sequential elements in paths between the blocks to model latency
(number of flops from one block to the other). Blocks with high dataflow
affinity need to be close in the layout.

72 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

(a) (b)

Figure 5.5: Block flow and macro flow for a small system.

(a) (b) (c)

Figure 5.6: Possible layouts for the system in Fig. 5.5.

Two kinds of dataflow between blocks are proposed to better model
designs with macros. Block flow considers the dataflow affinity between
blocks and macro flow considers the dataflow affinity between macros in-
side blocks. Whereas the first models more accurately the physical con-
nections present in the netlist, the second provides a more global insight
of the data flow between blocks.

Consider a system with 4 blocks with macros (A to D) communicating
through a standard cell block X. A block flow analysis of the netlist would
reveal a connection pattern such as Fig. 5.5a, whereas inferring macro
flow as in Fig. 5.5b would generate an alternative view on the circuit.

Three layouts for this system, with their communications marked in
red, are shown in Fig. 5.6. With only block flow analysis, blocks A to
D are close to X (as seen in Fig. 5.6a) without considering their relative
positions. Fig. 5.6b shows a layout where only macro flow analysis is
used. Its blocks are placed following the macro dataflow, but since X has
no macros, it can end up anywhere in the circuit (Fig. 5.6b). Using a
combination of both flows generates Fig. 5.6c.

5.3.3 Circuit Abstractions

Three graphs and a tree are used to model circuit connectivity (see Ta-
ble 5.1 and Fig. 5.7). The netlist graph Gnet contains the lowest level of
abstraction of the circuit (standard cell level). Gseq and Gdf are subse-
quently derived from Gnet in order to model other view of circuit consid-

5.3. Preliminaries 73

Table 5.1: Data structures for different circuit abstractions.

Graph Size Type of vertices Description

HT – Hierarchical blocks. Circuit hierarchy
representation.

Gnet ∼ 107 Macros, ports, sequential Bit-level complete
and combinational cells. netlist connectivity.

Gseq ∼ 105 Macros, multi-bit ports Multi-bit sequential
and registers. connectivity.

Gdf ∼ 102 Blocks and multi-bit ports. Dataflow affinity among
blocks and ports.

(a) Netlist graph Gnet (b) Sequential graph Gseq

(c) Dataflow graph Gdf (d) Hierarchical Tree HT

Figure 5.7: View of different circuit abstractions.

74 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

ering multi-bit sequential elements (medium abstraction, Fig. 5.7b) and
hierarchical block information (highest abstraction, Fig. 5.7c). The detail
of the obtention of Gseq and Gdf from Gnet is presented in Sect. 5.5.4. The
hierarchical tree HT (Fig. 5.7d, with some sample block and component
names) is derived from the component names in the input hierarchical
netlist N.

More formally, the graph Gnet = (Vnet, Enet) represents the original netlist,
with Vnet = M ∪ P ∪ F ∪ C, respectively being macros, ports, sequential
cells (flops) and combinational cells.

The sequential graph Gseq = (Vseq, Eseq) is a directed graph with weighted
nodes. Its edges capture communication latency and array width between
sequential components and ports. Vseq represents macros, multi-bit regis-
ters and ports.

The dataflow graph Gdf = (Vdf, Edf) is a directed graph with weighted
nodes and edges which used to derive dataflow affinity. The node set
is Vdf = B ∪ Pmb. Every node in B represents a block and is formed by a
subset of nodes in Vseq. The edges in Edf hold information on the width
and latency of the paths between these subsets of nodes in Vseq.

In HT = (Vht, Eht), every node represents a level in the hierarchy, and
edges represent subhierarchy relations. A hierarchy cut HC with regard
to a node n ∈ Vht is defined as a set of nodes in its subtree such that each
path between n and the leaves of its subtree crosses exactly one node in
HC.

5.4 Algorithmic Overview

As illustrated in Fig. 5.2, HiDaP considers the hierarchy as a clustering of
the design and uses a decluster-and-floorplan scheme: successively undo-
ing part of the clustering and floorplanning until macro objects have been
placed. Building on the flow presented in Fig. 5.3a, Algorithm 4 provides
a high-level view of the top flow of the tool. The input is the hierarchical
netlist N and the dimensions of the circuit. The first step is the generation
of the hierarchical tree from the netlist. shape_curve_generation constructs
the set of shape curves SΓ, used to ensure that a block layout fixed at a
given hierarchical level can accommodate its macros under slicing con-
straints. It contains, for each nh ∈ Vht, a shape curve with the minimal
sizes such that its macros can be placed. The next steps are finding macro
location by calling recursive_block_floorplan and the orientation with mem-
ory_flipping, with a flipping post-process for wirelength reduction based
on computing the dataflow affinity between macro corners.

5.4. Algorithmic Overview 75

Algorithm 4 Top tool flow
1: Input: hierarchical netlist (N), width (w), height (h)
2: Output: location and orientation of the macro cells
3: HT ← obtain_hierarchy_tree(N)
4: SΓ← shape_curves_generation(HT) {Sect. 5.5.1}
5: macro_loc← recursive_block_floorplan(N, w, h, root(HT), SΓ)
6: macro_orient← macro_flipping(N, macro_loc)

Algorithm 5 Recursive block floorplan
1: Input: hier. netlist (N), width (w), height (h), nh ∈ Vht, SΓ
2: Output: location of the macros below nh
3: BΓ,am ← hierarchical_declustering(nh, SΓ) {Sect. 5.5.2}
4: BΓ,am,at ← target_area_assignment(BΓ,am , N) {Sect. 5.5.3}
5: Maff← dataflow_inference(BΓ,am,at , N) {Sect. 5.5.4}
6: coords← fp_gen(w, h, BΓ,am,at , Maff, coords0) {Sect. 5.5.5}
7: for all b ∈ BΓ,am,at do
8: if macro_count(b) > 1 then
9: wb, hb ← block_size(coords, b)

10: recursive_block_floorplan(N, wb, hb, b, SΓ) {Recursion}
11: else fix_position(b, wb, hb)

The recursive floorplanning function (Algorithm 5) takes as an input
the netlist N, a hierarchical node nh ∈ Vht, whose subtree must be placed
in a given space (w, h), and the shape curves for all hierarchical levels
in SΓ. The aim is to place the macros under nh considering dataflow
between themselves and standard cell logic under nh, but also crucially
with macros outside nh and ports, to ensure a global view of the problem
is kept at each floorplanning instance.

The first step is hierarchical_declustering, which identifies the blocks to
be considered for floorplanning and partially characterizes them in the
set BΓ,am , with the minimum area am and shape curve Γ of each block. In
target_area_assignment, the target area at of the blocks is stored in BΓ,am,at ,
a set containing the full characterization 〈Γ, am, at〉 of each block.

In dataflow_inference, the dataflow affinity between each pair of blocks
is derived and stored in the affinity matrix Maff. During fp_gen (floor-
plan generation), slicing structures are used to model the floorplan and,
given suggested coordinates (from spectral placement or user suggested)
and Maff, an optimization process (simulated annealing) is used to min-
imize three components: the product of the distance between blocks in
the layout times their dataflow affinity, macro overlaps and distance to

76 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

Figure 5.8: Hierarchical declustering to find HCB and HCG.

the suggested locations. After the coordinates of each block are fixed in
coords, the process is recursively called if the block has more than a single
macro. Otherwise, its macro position is fixed in the corner of the available
area that minimizes wirelength.

5.5 Algorithmic Details

5.5.1 Shape Curves Generation

Our hierarchical flow first decides the area alloted for a given hierarchi-
cal sub-block, and then proceeds to find the locations of its macros re-
cursively. It is necessary to ensure at each hierarchical level that enough
space is reserved to fit a slicing floorplan of all its macros, or overlaps
would be introduced (more detail is presented in Sect. 5.5.5). This initial
step computes such feasible slicing floorplans for each hierarhy level and
stores them in shape curves to be reused through the rest of the execution.

The input of this step is the hierarchical tree HT, and the output is
a set of shapes curves SΓ where each Γ is associated to a node in Vht
describing possible sizes for the floorplan of the macros under its subtree.
The subtree shape curves are calculated in a bottom-up fashion up to the
root of the hierarchical tree. At the leaf nodes of HT, the associated Γ
contains the possible shapes of its macro. At each intermediate node of
the hierarchy, it is not possible to compose the shapes of their children
(the tree is not slicing). Since there is no general mode to compose the
shape curves of a non-binary tree, area-optimization floorplanning using
simulated annealing generates a set of shape combinations with small
area which are valid for the node.

5.5. Algorithmic Details 77

5.5.2 Hierarchical Declustering

The purpose of hierarchical declustering is to find the set of blocks to
be considered during the floorplan of a given hierarchy level nh, and to
characterize their shape curve Γ and minimum area am. The idea is repre-
sented in Fig. 5.8, which shows the hierarchy tree under a node n. A pos-
sible hierarchical cut HC with respect to that node (defined in Sec. 5.3.3),
marked by a red line, generates block candidates for floorplanning. The
nodes are divided in two sets, depending on the number of macros and
area in their subtrees, and those with big area or with macros are selected
(grey).

Formally, consider functions area(n) and macro_count(n), returning the
sum of the area and macro count of the subtree rooted at n ∈ Vht. Given a
parameter defining a minimum area, the nodes in any hierarchy tree cut
HC can be divided in two sets, HCB and HCG:

HCB = {n ∈ HC|area(n) > min_area∨macro_count(n) > 0}
HCG = HC \ HCB (small nodes with glue logic)

Nodes in HCB represent hierarchy levels with relatively big area or con-
taining macros, whereas all others (HCG) are small nodes with glue logic.
Each node in HCB is modeled as a block during layout generation. Area
of nodes in HCG is integrated with nodes in HCB during later steps, as it
represents small unstructured components.

Algorithm 6 Hierarchical declustering.
1: Input: nh ∈ Vht, open_area, min_area ∈ IR
2: Output: HCB, HCG
3: HCB ← ∅; HCG ← ∅
4: queue.insert(nh)
5: while not queue.empty() do
6: m← queue.pop_front()
7: if area(m) > open_area then
8: for each child c ∈ m.children() do
9: queue.insert(c)

10: else if area(m) > min_area or macro_count(m) > 0 then
11: HCB ← HCB ∪ {m}
12: else
13: HCG ← HCG ∪ {m}

The strategy used to find sets HCB and HCG for a given node n is
shown in Algorithm 6. The parameter open_area is an area amount that

78 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

controls how deep the tree will be explored. Both min_area and open_area
are a fraction of area(nh), 40% and 1% in the experiments.

The process is illustrated in Fig. 5.9. The left shows the hierarchical
tree, and the right the relative area of the nodes to the left. After pro-
cessing the root, two nodes have very big area, while the other three are
relatively small (Fig. 5.9a). Since the area of the colored nodes is over the
defined threshold, they are opened (Fig. 5.9b) until all nodes are smaller
than the threshold as seen in Fig. 5.9c (the red line represents the HC of
the root). In the end (Fig. 5.9d), the colored nodes are considered during
floorplan and are added in HCB, and all other are incorporated to HCG.

5.5.3 Target Area Assignment

Since small and unstructured blocks in HCG are not directly considered
for floorplanning, the goal of target area assignment is to incorporate their
area to the target area at of blocks in HCB. In Gnet, a multi-source breadth-
first search [77] finds the shortest paths from all nodes in HCB to any cell
in HCG. Fig. 5.10 shows three blocks in HCB with fully painted nodes,
connected by glue logic components (elements in HCG blocks) which are
incorporated to their closest blocks as they are reached during the search.
After this process, the sum of the area of HCB blocks represents the whole
area of the floorplanning instance and the triplet 〈Γ, am, at〉 for each block
is characterized.

5.5.4 Dataflow Inference

Dataflow inference generates an affinity matrix Maff estimating the dataflow
affinity between each pair of blocks, ports and other macros in the circuit.
Maff is derived from the dataflow graph Gdf, which is obtained from Gseq
and Gnet. First Gnet is transformed into Gseq in the following steps:

1. C nodes representing combinational cells are removed by connect-
ing their predecessors to their successors

2. Nodes in P and F are clustered using component names to find
array structures (name[n], name_n).

3. Edges between sequential components are inferred by analyzing
their transitive fanin/fanout in Gnet and discovering their paths.

4. To reduce graph size but keep relatively big components, elements
with fewer bits than a threshold are discarded.

5.5. Algorithmic Details 79

(a)

(b)

(c)

(d)

Figure 5.9: Example of the hierarchical declustering process.

80 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

Figure 5.10: Assigning HCG area to HCB blocks.

(a) we = 1 (b) we = 3 (c) we = 4

Figure 5.11: Sequential edge weights.

The edge weight between sequential elements in Gseq (for example,
two registers r1, r2) is computed by doing graph traversals in Gnet and
counting the number of input bits in r2 reachable from output bits in
r1, and output bits in r1 reachable from input bits in r2. The minimum
value is kept as the weight. Some examples are shown in Fig. 5.11, with
the resulting edge weight we between the registers. This conservative
approach allows us to focus on the main datapath buses and reducing
graph size for better tractability when removing edges with low weight.

The next step is constructing the dataflow graph Gdf from Gseq. Each
node in Vdf represents a hierarchical block, which is associated to a set of
nodes from Vseq. Each edge summarizes two auxiliar edges, one which
represents block flow Eb

df and one which represents macro flow Em
df . A

(a) Gseq graph. (b) Gdf graph.

Figure 5.12: Dataflow inference example.

5.5. Algorithmic Details 81

Figure 5.13: Finding flop pipeline stages between two blocks.

graph Gseq is shown in Fig 5.12a, where round nodes represent multi-bit
registers with their bitwidth. Painted edges represent some paths that
generate edges in Gdf, shown in Fig 5.12b: blue represents block flow Eb

df
edges, and red represents macro flow Em

df edges.

Connectivity information of edge ei,j in Eb
df or Em

df takes the form of
a histogram, where bins represent latency and their height represents
number of bits. In the case of block flow edges Eb

df, a breadth-first search
at Gseq starts simultaneously from all components of block i traversing
only outgoing edges through glue logic. When a component of block j
is reached, the bitwidth of its predecessor in the path is added to the
bin corresponding to the path length (blue paths in Fig 5.12a). To obtain
macro flow edges in Em

df , a similar process finds paths between macros
in blocks, allowing the search to cross all nodes in Vseq (except macros)
instead of only glue logic (red paths in Fig 5.12a). Fig. 5.13 illustrates the
computation of the edge weights in Gdf from a Gseq. It depicts two blocks,
A and B, with multibit registers and macros, connecting through some
glue logic. The red lines represent the register latency limits. The green
registers contribute to the dataflow between the blocks A and B with 128
bits at latency 1, 256 at latency 2 and 512 bits at latency 3.

In order to condense the dataflow information of the histogram be-
tween two blocks, the weight of their edge is computed using score(h, k)
for an integer k according to the following formula, where i indexes bins
in the histogram:

∑
i

#bitsi / flop_stagesk
i

The formula is based in the relation presented in Sec. 5.3.2. Parameter
k controls the exponential decay impact of latency. For k = 2, the block
dataflow between A and B in Fig. 5.13 is 384.

Given the edge sets Eb
df and Em

df and scoring their histograms, the score
of dataflow affinity edges in Edf is obtained using a parametric formula

82 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

defined as λ× score(eb
i,j) + (1− λ)× score(em

i,j). The value of λ balances
block and macro flow and allows the generation of layouts with different
emphasis on block or macro connectivity.

5.5.5 Layout Generation

The last step in the recursive floorplanning algorithm takes as input the
rectangle in which the blocks at a given hierarchical level must be placed.
After their characterization in terms of area/macros and their dataflow
affinity relation has been computed (Sect. 5.5.2 to Sect. 5.5.4), the goal of
layout generation is to find the coordinates for each block in the given area
minimizing wirelength and timing, without overlaps and minimizing the
distance between macros and their desired locations.

The layout is represented as a slicing tree with a node per block. This
structure allows to work with shape curve compositions and naturally
use a top-down algorithm for layout generation. The solution space is ex-
plored using simulated annealing. The structure is perturbed with equal
probability with one of three operations: operand swap, operator inver-
sion or operand-operator swap (similar to [85]).

Objective Function

The objective function to be minimized to optimize wirelength and timing
is: ∑

bi,bj

distance(bi,bj)× dataflow_affinity(bi,bj)

×OVERLAP

Minimizing the sum of the products of dataflow affinity and distance
ensures that blocks that have large array connections and relatively small
latency are close in the layout, thus reducing wirelength. The position
of ports and macros outside the subtree are considered a fixed point.
The computation of this product consumes most run-time of each simu-
lated annealing iteration, since the number of products is quadratic with
respect to Gdf nodes. The OVERLAP factor represents the sum of over-
lapping areas in the layout multiplied by a constant that increases with
the severity of each illegality. This mechanism is used to ensure macro
overlaps penalize more than standard cell area overlaps.

5.5. Algorithmic Details 83

Layout Representation and Search

This section describes the algorithm to decide the coordinates and sizes
of each block from a given slicing tree. There is a well-known method to
obtain a layout from a slicing tree which consists of composing, at each
node, the shape curves of its two children according to its operator. It
has been widely studied in the context of non-fixed outline floorplans
(when area minimization is one of the objectives for the formulation). For
fixed-outline floorplanning, the approach presents two limitations:

• If the sum of the whole floorplan is divided among all placeable
components, it is hard to find a valid floorplan that fits exactly in the
alloted size. Extra legalization steps are necessary to push elements
back into the floorplanning region. If not all available area is used,
an extra spreading step might be needed to redistribute white space.

• Module shapes must be discretized and decided a priori. Blocks
with standard cells must choose from a set of aspect ratios to be
composed up to the root of the slicing tree. Too few result in bad
solution space exploration, too many increase computation time
greatly.

To overcome the first, our approach considers the allowed floorplan
dimensions to be a budget: the layout always takes exactly the area it has
been assigned. To overcome the second, and in combination with this
notion, a top-down approach is proposed to determine the coordinates
of each block. Instead of building the floorplan from the leaves to the
root, the algorithm begins at the root and distributes the available area
between its two children, depending on the node operator and area of its
subtrees, and then proceeds recursively. Sometimes the approach requires
to make space for macros by moving area from one child to the other and
increase the cost function OVERLAP depending on the kind of area that
was yielded (at, am or macro area, from least to most severe).

As exposed in Sect. 5.5.1, the floorplanning problem is being solved
in a hierarchical flow: each block to be floorplanned represents a hierar-
chy level in the circuit. When fixing the size of a hierarchical block in a
layout, it must be checked that the macros under that hierarchy fit using
a slicing structure in the alloted area. The motivation is illustrated with
a basic example in Fig. 5.14. Assume a block with 8 1x1 sized macros
is alloted a 4x2 area in the layout. The would fit in the alloted area, so
the rectangle size is strictly legal. However, when floorplanning the two
sub-hierarchies of our 8-macro block at a latter step, suppose 5 of the

84 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

(a) Non-slicing. (b) Overlapping.

Figure 5.14: Not ensuring enough space for a hierarchical slicing place-
ment of sub-blocks generates illegal situations.

(a) Slicing Tree representation.
(b) Corresponding lay-
out.

Figure 5.15: Recursive layout generation.

macros belong to a sub-hierarchy and 3 to another. The kind of solution
presented in Fig. 5.14a is not reachable, as it is not slicing. The one in
Fig. 5.14b is slicing but oversized, resulting in OVERLAP penalization.

The following example illustrated the algorithm in the case of stan-
dard cell blocks only. Let Γn, an

m and an
t for a given slicing tree node n

characterize its subtree as a block. They are computed at the beginning of
the layout generation from the blocks at the leaves by composing shape
curves and adding areas up to the root, similarly to the classical slicing
tree to layout algorithm. The top-down process begins at the root, when
the entire area is available. At each node, the available area is partitioned
vertically or horizontally (depending on the node operator), according to
the target area at sum of its subtrees. The process continues until the
leaves are reached, when the block is assigned a rectangle in the layout.

Fig. 5.15 shows a slicing tree where each leaf has target area at, and its
layout considering a budget of 3x3 area units. Beginning from the leaves,
the at of all nodes are computed up to the root. The first partition, the
vertical blue line from the V cut in the root, divides the horizontal budget

5.5. Algorithmic Details 85

(a) Macro in a. (b) Macros in a, d. (c) Legal layout.

(d) Slicing Tree for (c). (e) Block shape curve.

Figure 5.16: Handling of macros in blocks.

among its children, with at 4 and 5. The process continues recursively
with the H cuts until the leaves are reached and the rectangle on the
layout for each block has been decided.

Slicing Tree to Layout, Detailed View

This technique guarantees the target area at demands of all blocks are
met, but some layouts are illegal when considering macros. It would be
the case if node a contained a macro with w = 2 and h = 1, since such
macro would not fit in the alloted space in the example. The situation
is shown in Fig. 5.16a. It presents the same case shown in Fig. 5.15, but
now the Γ of block a indicates it contains a macro with size 2x1. Given
the minimum width is 2 for the block, the idea to solve the situation is
to push the cut that before was done at 1.33 (according to the at of the
subtrees) to 2, thus satisfying the macro sizing constraints of the design,
but at the cost of stealing area of blocks c and d, slightly increasing the

86 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

OVERLAP factor of the cost function. If block d also has a macro with the
same size, the sum of both macro widths in this cut is 4, and both macro
sizing requirements can not be satisfied at the same time. In this case,
the cut is done according to one of them, and the OVERLAP increases
severely. A possible solution without OVERLAP penalization is shown in
Fig. 5.16c, deriving from the alternative slicing shown in Fig. 5.16d.

Algorithm 7 Slicing tree to layout: vertical cut.
1: Input: width (w), height (h), slicing_node (p)
2: Output: cuts set SC, OVERLAP ∈ IR
3: n, m← left_child(p), right_child(p)
4: target_area← an

t + am
t

5: w_cut← w · (an
t /target_area)

6: macro_wn, macro_wm ← min_w_for_h(Γn, h), min_w_for_h(Γm, h)
7: if macro_wn + macro_wm > w then
8: OVERLAP←OVERLAP + C1 × overlapping_area
9: else if macro_wn > w_cut then

10: w_cut← macro_wn
11: stolen_w← w_cut− w
12: extra_wm← (am

t − am
m)/h

13: if stolen_w ≤ extra_wm then
14: OVERLAP←OVERLAP + C3 × stolen_w
15: else
16: OVERLAP←OVERLAP + C2 × h× (stolen_w− extra_wm)
17: OVERLAP←OVERLAP + C3 × h× extra_wm
18: else if macro_wm > w− w_cut then
19: ... {Same code for other child.}
20: SC ← w_cut
21: recursive_call(w_cut, h, n); recursive_call(w − w_cut, h, m)

A fragment of the process to generate a layout from a slicing tree and
handle its illegality through the OVERLAP factor is shown in Algorithm
7. The input is a w and h budget where to place the components under
the slicing node p. Let Γn, an

m and an
t for a given slicing tree node n

characterize its subtree as a block as described previously. A division of
the area in the form of a vertical cut (x_cut) is proposed according to the
target area of the subtrees (an

t , am
t) and the budget in the given dimension

(in this case, w). Same applies for horizontal cuts. Line 6 computes the
minimum width of the macros in the subtrees n and m. This is done by
examining their shape curve Γ. Given that the maximum h for the macros
is known, the tool finds the minimum w such that there exists a point
(x,y) in the shape curve with x ≤ w and y ≤ h, guaranteeing all macros

5.5. Algorithmic Details 87

for the block fit in said space. Consider the example Γ shown in Fig. 5.16e.
This block has two possible macro shapes, (2.5, 5) and (5.5, 5), but given
for example a fixed at 2, the min width of its macros is to be considered
5.5.

If the sum of the minimum w of both sides is greater than w, the
macros overlap and the OVERLAP component increases by a constant
C1 times the overlapping area. Otherwise, if the left block needs more
space, the increase in OVERLAP depends on the amount of stolen area
and whether it belongs to the am (medium) or the at (small) of the right
block. Note C1 > C2 > C3 to penalize macro illegalities over area transfers
between blocks. Experimental results show that setting C2 or C3 to 0
generates layouts which are not well spread, later resulting in increased
routing congestion. After line 15, the process is repeated for the case of
the right block needing more space for its macros, and then the function
is recursively called until the leaves are reached.

5.5.6 Macro Orientation

The macro orientation step takes place outside the hierarchical flow, af-
ter the location of all macros has been decided. Its aim is to find the
best possible orientation of macros to ease the communication between
their ports. A macro flipping heuristic aimed at minimizing wirelength
and timing is proposed. During macro floorplanning, communication
between macros has been assumed to pass through their center. At this
stage, communication is assumed to take take place from macro corners
to macro corners, and the optimization process flips macros to reduce the
dataflow affinity between them.

An example is shown in Fig. 5.17. In Fig. 5.17a, the dataflow affin-
ity between the corners of 3 macros is shown. The width of the arrows
between the colored nodes representing corners indicates the amount of
dataflow affinity. In the previous stages of the algorithm, it would be
known that the middle macro has more affinity with the macro to the
right, but there would be no incentive to have the ports looking in that
direction (resulting in the default macro orientation shown in Fig. 5.17c).
However, by only flipping the macros, the distance between the critically
connected corners can be reduced (Fig. 5.17b) to provide a better orienta-
tion from a dataflow affinity point of view (Fig. 5.17d).

The macro flipping process consists of two steps. First, modified ver-
sions of Gseq and Gdf for the whole circuit are computed, where each
macro is divided in four nodes (representing its corners). The dataflow

88 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

(a) Macro corner dataflow. (b) Optimized dataflow.

(c) Default orientation. (d) Optimized orientation.

Figure 5.17: Macro flipping for reduced wirelength.

from and to these corners is computed according to the algorithms shown
in Sect. 5.5.4. A simulated annealing process is done for the horizontal
and vertical dimensions. The solution space is a bit vector indicating
whether or not each macro has been flipped in the dimension, and its
perturbation is to flip one of the bits. A flip in the horizontal dimen-
sion causes the coordinates of the left corners to swap, and same for the
right corners. The function to minimize is analogous to the DATAFLOW
component in Sect. 5.5.5.

The process is repeated several times for each dimension. It is efficient,
given that the perturbation is fast and the cost function can be computed
incrementally, and allows pins to face the most urgent direction according
to dataflow affinity, ensuring that very connected clusters of macros have
their ports facing each other.

5.6 Experimental Results

Array information for dataflow analysis is essential for the quality of re-
sults in our method. Unfortunately, this information is not available in
open benchmarks available to academia such as the ICCAD’12 bench-
marks [34]. For this reason, a set of 8 real industrial examples of chal-
lenging circuits were used to validate our approach. The approach could
not be compared to other academic efforts due to the partially industrial
nature of our project (given their licenses only allow academic use, but

5.6. Experimental Results 89

Table 5.2: Average WL, WNS and effort for the three flows.

WL WNS TNS Effort
IndEDA 1.143 -39.1% -1810 10-30 mins (CPU)
HiDaP 1.013 -24.6% -1059 0.5-2 hours (CPU)
handFP 1.000 -17.9% -835 2-4 weeks (engineers + CPU)

had to run on company servers). The final handcrafted layouts obtained
by expert backend engineers were available for comparison. The follow-
ing three floorplan flows are compared:

Industrial EDA (IndEDA) Floorplan obtained with a state-of-the-art in-
dustrial tool using high effort settings.

Hierarchical Dataflow Placement (HiDaP) Floorplan by HiDaP, best WL
of three (λ = 0.2,0.5,0.8).

Handcrafted floorplan (handFP) Floorplan manually obtained by expert
backend engineers at the company.

Metrics are taken after placement of standard cells using the same tool
as IndEDA. Wirelength averages are shown using the geometric mean to
reduce sensitivity to extreme values. The more positive the worst nega-
tive slack and total negative slack metrics are, the better (0 means timing
closed).

Table 5.2 shows summarized flow results, with average WL relative to
handFP, WNS in clock cycle percentage, TNS in ns and the effort to create
the solutions. While IndEDA execution takes from 10 to 30 minutes, our
approach HiDaP takes from 30 minutes to 2 hours and obtains results ap-
proaching those of the handFP flow, where floorplans have taken weeks
of iterations by the physical design engineers.

Table 5.3 shows the detailed metrics. Rows represent a circuit and
floorplan flow, and columns give information on wirelength (in meters,
and normalized with respect to handFP), congestion (global routing over-
flow percentage) and timing information (worst negative slack, in per-
centage of the clock period, and total negative slack). When comparing
the HiDaP and IndEDA flows, wirelength is smaller using HiDaP in all
but one case. Congestion is similar, with two cases with noticeably less
(c6, c7). Our flow always obtains lower WNS, and also lower TNS in most
cases.

The mean wirelength in IndEDA is 14.3% higher than handFP while
obtaining generally worse congestion and timing. When comparing HiDaP
and handFP, the mean WL increase is only 1.3%, and the manual flow ob-
tains generally better results in all metrics with 2 exceptions. In c3, our

90 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

Table 5.3: Metrics after placement using the three flows.

Wirelength Cong. Timing
Flow WL norm. GRC% WNS% TNS

c1 IndEDA 13.19 1.029 6.51 0.0 0
520k cells HiDaP 13.40 1.046 7.83 0.3 0
32 macros handFP 12.81 1.000 7.36 -0.2 0

c2 IndEDA 46.01 1.180 12.99 -44.5 -931
3.95M cells HiDaP 40.72 1.045 13.00 -19.0 -329
100 macros handFP 38.97 1.000 9.33 -11.2 -213

c3 IndEDA 44.83 1.175 10.09 -75.5 -553
3.78M cells HiDaP 35.02 0.918 8.29 -17.5 -260
94 macros handFP 38.16 1.000 9.15 -17.8 -317

c4 IndEDA 45.03 1.174 7.24 -54.4 -2167
4.81M cells HiDaP 40.43 1.054 4.94 -31.2 -2686
122 macros handFP 38.35 1.000 3.33 -22.8 -1736

c5 IndEDA 44.25 1.162 2.02 -30.8 -1940
1.39M cells HiDaP 39.51 1.038 4.72 -25.1 -1149
133 macros handFP 38.06 1.000 3.42 -39.8 -1017

c6 IndEDA 96.42 1.288 9.95 -70.0 -15341
2.87M cells HiDaP 79.20 1.058 2.22 -37.0 -5051
90 macros handFP 74.87 1.000 1.63 -27.3 -3688

c7 IndEDA 41.44 1.174 38.56 -34.9 -1060
1.67M cells HiDaP 35.52 1.007 6.47 -29.9 -1059
108 macros handFP 35.29 1.000 4.61 -20.4 -774

c8 IndEDA 24.85 0.987 1.02 -3.4 -44
2.20M cells HiDaP 23.75 0.944 1.37 0.0 0
37 macros handFP 25.17 1.000 0.93 -3.9 -24

flow obtains 8.2% less wirelength with reduced congestion and timing,
and in c8, HiDaP beats the other flows in wirelength and closes timing
while maintaining similar congestion.

5.7 Conclusions

This chapter proposed HiDaP, a tool that exploits RTL information for
macro floorplanning using a hierarchical multi-level flow. The key con-
tributions presented in this chapter include:

1. Multi-level macro placement based on recursive block floorplanning
with hierarchy-aware declustering.

5.A. Design Mapper 91

2. Multiple graph-based data structures to model the circuit and esti-
mate dataflow affinity between blocks, considering register pipeline
latency and width.

3. Block area modeling considering macros and standard cells, with a
top-down area-budgeting strategy aiming to avoid overlaps.

It has been tested on a suite of large industrial designs and compared
against a state-of-the-art industrial floorplanner and against handcrafted
macro placements. HiDaP improves on the industrial floorplan tool, and
the obtained results are close to handcrafted designs with a fraction of the
effort involved, providing a more promising start for the physical design
iteration process. After validating the approach in this chapter and re-
ceiving feedback from a team of physical designers, the following chapter
builds on the presented methods to obtain macro placements with better
timing properties and user-friendly constraints, such as the capability to
receive preferred macro locations as additional input.

5.A Design Mapper

This appendix presents the integration of the presented dataflow analysis
algorithms into the Design Mapper system, to help engineers visualize
and understand the structure and floorplans of their blocks.

5.A.1 Motivation

As presented in previous sections, floorplanning has a huge impact on
the final quality of results of a circuit layout. Although current EDA
tools offer some macro placement capabilities, their final locations and
orientations are decided manually by expert physical design teams. They
usually receive the netlist from an RTL team, with possibly a high-level
idea of the main structures and communications in the design. However,
when this description is inaccurate, obsolete or not available, the phys-
ical design team is left with the task of reverse-engineering the design
communications and guessing how to best place the macros. Recover-
ing high-level information from the netlist has been attracting attention
lately [58]. Hierarchy information has already been used in GUIs as an
exploration tool for designers, but the array information present at the
RTL has not been sufficiently explored. In particular, exploiting array
structures, such as multibit registers and ports, can help understand the

92 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

Figure 5.18: Nodes and dataflow edge example

data flow relations of blocks in a design, which is an essential part to
finding a good floorplan in as few iterations as possible.

Our proposal

Design Mapper is a design analysis system with the goal of easing the
process of understanding circuit structure by automatically processing
its netlist and producing human-readable visualizations. The system is
composed of three tools:

Design Analyzer Corresponding to the presented HiDaP, back-end tool
that takes a netlist as an input and, from a graph modeling the
circuit, extracts the dataflow affinity relations between blocks of the
design.

Dataflow Viewer renders graphs showing the structural information dis-
covered by Design Analyzer. Useful to explore design structure and
dataflow relations.

Layout Explorer receives a macro or block placement and shows a layout
viewer enriched with dataflow affinity information. It can be used
to understand the relation between particular block configurations
and their dataflow, becoming a great help for layout validation.

5.A.2 Dataflow Viewer

Dataflow Viewer is the interface to visualize the dataflow graph, which is
rendered using GraphViz [28]. Nodes are represented by colored cylin-
ders with block name, area and macro count. The edges between them
have three rows, offering average dataflow affinity, block dataflow and
macro dataflow information.

In the example shown in Fig. 5.18, the second row (block dataflow)
indicates there are 23 bits at flop latency 3 and 514 at flop latency 4 going
from block A to block B. To assign an overall dataflow affinity score to

5.A. Design Mapper 93

(a) Full graph (b) Simplified graph.

Figure 5.19: Views of a dataflow affinity graph

each row, we use ∑i #bitsi / latencyk
i as proposed in previous sections,

based in the dataflow affinity relation. i iterates over all pairs #bits/latency
and parameter k controls the exponential decay impact of latency. In this
case, the block dataflow between the blocks is 34.68. On the other hand,
there are 2944 bits at flop latency 8 going from block A to block B through
other blocks, with a macro dataflow of 46. The resulting 40.34 dataflow
affinity is the average of both.

These graphs can have in the order of tens of nodes and hundreds
of edges. Fig. 5.19a offers the view of the full graph for a real circuit
with 94 macros and 3.78 million cells. In order to provide basic insight
on circuit structure at a glance, the size of the edges is proportional to
the amount of dataflow between the blocks. To allow for an easier ex-
ploration to designers, a GUI tool has been developed to filter the graph
according to several criteria: removing edges with low block or macro
affinity, removing ports with low bitcount or focusing on particular parts
of the hierarchy or blocks. Fig.5.19b shows a view of the same graph
after the less relevant edges are removed, revealing a pipeline structure
between the blocks.

94 Chapter 5. RTL-Aware Dataflow-Driven Macro Placement

5.A.3 Layout Explorer

Layout Explorer is an interactive GUI that combines information from the
dataflow affinity file and design layout. A first floorplan quality assess-
ment can be conducted using Layout Explorer in block mode as shown
in Fig. 5.20a. Position of blocks can be inspected together with dataflow
affinity information. By hovering and selecting a block (white focus), the
related edges are highlighted and additional information is provided.

If a full macro placement is available, more information at macro level
is shown as seen in Fig. 5.20b, where the macro placement corresponding
to the block layout are seen. Again, the dataflow affinity information is
printed in the form of edges between components, which can be filtered
according to their weights, ports according to bit count, etc. Fig. 5.20c
shows the same macro placement with additional array and hierarchy in-
formation. A view of the circuit by a state-of-the-art industrial physical
design tool is shown in Fig. 5.20d, with red lines marking the proposed
block coordinates by a floorplanner based on the dataflow affinity analy-
sis.

Conclusions

Design Mapper offers a global view of current complex designs by ana-
lyzing and displaying the dataflow relations between circuit components
discovered by HiDaP. The information is helpful during both floorplan-
ning exploration and validation. Our system contributes to closing the
gap between the engineers and EDA tools, and it has been deployed in
current design flows to help physical designers find better floorplans in
less time.

5.A. Design Mapper 95

(a) Block view (b) Macros view

(c) Detailed macros view (d) Commercial tool viewer

Figure 5.20: Multiple design views

Chapter 6

Adaptive Macro Placement
Guided by Analytic Methods

This chapter extends the macro placement approach presented in the pre-
vious chapter with the aim of obtaining layouts with better quality and
enhancing usability from the point of view of the engineers. The key im-
provement is to allow the simulated annealing search to minimize macro
distances to suggested locations, which can either be provided by the
engineer or obtained via automated methods. In order to do so, the ob-
jective function becomes a multi-objective cost function with self-adaptive
parameters to minimize dataflow, overlaps and distance to preferred posi-
tions. Additionally, methods to suggest macro locations based on spectral
and force methods are proposed. Experimental results show our floor-
plans can obtain, after placement, better timing (44% reduction in TNS
and 7.7% of period in WNS) with a reduction of about a 1% in terms of
wirelength when compared to handcrafted macro placements, and can be
brought to almost timing closure with few DRC violations after minimum
manual modification.

6.1 Motivation

The results of the approach presented in the previous chapter showed
how HiDaP managed to find layouts that were close in quality to tapeout-
ready macro placements with a fraction of time involved in manual de-
sign. In particular, WL increase was close to a mere 1%, but timing results
were still generally worse in terms of WNS and TNS.

On the other hard, HiDaP was integrated in the physical design flow
of eSilicon and tested by several teams of physical designers. Their main

97

98 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

concern with respect to the usability of the tool came from a certain lack
of interaction. In particular they asked for:

Macro location control For the tool to be most usable in the flow, the
engineers asked for a method to be able to suggest macro locations
to HiDaP. Given their domain knowledge of particular blocks or
design constraints, they might decide that certain macros should be
in particular locations.

Reduced solution variability The engineers observed that several lay-
outs with similar dataflow scoring can have substantial differences
with regards to block relative locations.

Keepout sizing control Modern technology nodes impose minimum dis-
tances between macros, but often they are not enough to ensure
good routability. Although the problem of deciding good channel
sizes is complex and has not been automated, our proposed first
step is to allow the configuration of macro and block walls keep-
outs to avoid trivially solvable congestion-induced DRC violations
hotspots.

Dealing with keepout sizing is relatively easy by modifying compo-
nent and block sizes. The first and second demands require a more in-
depth modification of the algorithm to be realized given the stochastic
nature of the algorithm. However, it also presents potential synergy with
our aim of obtaining better quality in our layouts. All these issues are
addressed by adding the minimization of distance to preferred block lo-
cations into the layout generation phase. These preferred block locations
can be a human input to the algorithm or can be generated by methods
which do not necessarily need to provide non-overlapping solutions, but
provide rough estimations of good macro locations.

A multi-objective cost function is introduced to model the problem of
minimizing wirelength and timing (dataflow), distances to preferred loca-
tions and overlaps. The weight of each component is parametrized using
constants that must be introduced by the user. However, their value must
adapt to the current execution conditions to obtain good results, because
different circuits and even different floorplanning subproblems inside a
same circuit can have very different value ranges in the cost function
components. An adaptive scheme updates these parameters so that they
always represent a percentage of the global cost function, automating
their adjustment and easing user interaction.

6.2. Contributions 99

After describing the contributions related to both these items to obtain
better quality and address engineer feedback, extensive experimental re-
sults are presented. The central question these experiments answer is
whether or not HiDaP can be useful for engineers. Other concerns such
as the impact of particular algorithms options and configurations are also
addressed. The results prove the success of the approach and suggest
future lines of work for solving the macro placement problem in modern
circuit designs and technologies.

6.2 Contributions

The algorithms presented in Chapter 5 are extended to incorporate the
new desired functionality and quality improvement. In particular, the
problem definition is updated (in bold) to reflect these requirements. The
new aim is to obtain floorplans that show:

1. No overlaps between macro components.

2. Least possible wirelength, worst negative slack and total negative
slack.

3. Macros being close to predefined preferred locations.

The last item provides additional control of the result of the algorithm
to the physical engineers: extra input can be provided, proposing loca-
tion for a set of the macros in the design. Our approach is ready to take
them into consideration during floorplan generation by minimizing the
distances in the solution to these proposed distances. Preferred locations
can also be generated algorithmically by our spectral and force-directed
methods, or any other third party method such as an industrial coarse
placer. Other extensions to support additional engineer input are incor-
porated, such as macro and block keepout configurations.

Adaptive Multi-objective Cost Function.
The multi-objective cost function allows the simultaneous minimiza-

tion of dataflow, distances to preferred locations and overlap. In line
with our concern for the usability of our tool and to let the user find the
most suitable macro placement for their needs, the engineers can decide
the relative weight of each optimization objective in the novel adaptive
multi-objective cost function, and modify the criteria to decide the best
solution. More details can be found in Sect. 6.3.

100 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Automated Macro Placement Suggestions.
The source for the preferred macro locations can be another algorithm.

Our proposal is to use spectral and force methods to compute these lo-
cations automatically. These are methods that are good at finding loca-
tions for point objects and can provide an idea of where macros want
to go. In particular, spectral methods alone can be used to determine
the location of each block in a particular simulated annealing instance
by running spectral placement of its dataflow graph. On the other hand,
force-directed methods can be added for extra spreading and allow the
method to be applied once at the beginning of the HiDaP execution on
the sequential graph, providing a global view of the macro preferred lo-
cations.

6.3 Multi-Objective Cost Function

As exposed in Sect. 6.2, our method proposes to find layouts that mini-
mizes several metrics at the same time: wirelenght and timing (modeled
by dataflow), distances to preferred locations and overlaps. The proposed
cost function to minimize is:

minµ1 ×DATAFLOW + µ2 ×DISTANCE + µ3 ×OVERLAP

The parameters µ1,µ2, and µ3 adjust the weights of the components
and are automatically updated during the simulated annealing execution
as expained in the next section. DATAFLOW represents, for each pair
of blocks bi,bj, the sum of the products of their dataflow affinity and
distance,

DATAFLOW = ∑
bi,bj

distance(bi,bj)× dataflow_affinity(bi,bj)

The minimization of the DATAFLOW component ensures that blocks
that have large array connections and relatively small latency are close
in the layout, aiming at obtaining good properties in terms of wirelength
and timing. The position of ports and macros outside the current place-
ment instance are considered a fixed points during the computation. The
second component DISTANCE represents the displacement between the
block in the layout and its preferred location (see Sect. 6.4 for details). Fi-
nally, the OVERLAP factor represents the sum of overlapping areas in the
layout multiplied by a constant that increases with the severity of each il-
legality. This mechanism is used to ensure macro overlaps penalize more
than standard cell area overlaps.

6.3. Multi-Objective Cost Function 101

6.3.1 Adaptive Parameters

The adaptive parameters µ1,µ2, and µ3 automatically adjust the relative
weight of the components in the objective function during the explo-
ration. This approach presents two benefits:

1. The algorithm adjusts the objective function weights automatically
for all possible designs: if the weights were fixed, they would need
to be hand-tuned for each new instance according to the relative
value of each component in the function.

2. The objective function automatically becomes smoother with re-
gards to the OVERLAP factor. At high temperature, illegal layouts
should not be penalized severely to allow the heuristic to explore
the solution space, but by the end of the exploration they should be
avoided.

In order to control the multiparameter optimization, the user does not
directly indicate µ1,µ2, and µ3, but the desired relative weights for each
one of the components of the formula: α1,α2, and α3 (with αi ∈ [0,1], and
α1 + α2 + α3 = 1). At each temperature change in the simulated annealing,
the values of µ1,µ2, and µ3 are updated to ensure their components have
the chosen relative weight in the aggregate function.

Algorithm 8 Update of objective function weights.
1: Input: µ1,µ2,µ3,α1,α2,α3
2: Output: µ1,µ2,µ3
3: max_var← β× (1−DT)
4: µ′1← (α1 ×mean_total_cost)/mean_DATAFLOW_cost
5: µ′2← (α2 ×mean_total_cost)/mean_DISTANCE_cost
6: µ′3← (α3 ×mean_total_cost)/mean_OVERLAP_cost
7: if µ′1 ≥ µ1 then µ1 = min(µ′1,µ1 × (1 + max_var))
8: else µ1 = max(µ′1,µ1 × (1−max_var)) {Same for µ2,µ3}

The update method is shown in Algorithm 8. In line 3, DT is the
temperature decay factor of the simulated annealing. When multiplied
by a user-defined parameter β (2 in all our experiments), it is stored in
max_diff as the maximum variation (as a percentage) allowed to µ1,µ2,µ3.
In lines 4 to 6, values for the multipliers are proposed to that each com-
ponent has the relative weights α1,α2,α3. Lines 7-8 show how the increase
is reduced if it is bigger than max_var. This mechanism, along with using
the mean values of the cost components of the layouts found during the

102 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Figure 6.1: Evolution of separate cost components.

last temperature, ensure the multipliers do not change sharply, trapping
the current layout in a early local minimum.

Fig. 6.1 illustrates the evolution of the objective function components
during a real execution. The graphics from top to down represent DATA-
FLOW, DISTANCE and OVERLAP. The x axis counts how many times
temperature has decreased (up to 400 temperature changes). At the be-
ginning of the search, all three components get reduced. While exploring
through illegal solutions is allowed, the OVERLAP component steadily
declines until it becomes close to zero. At this point, its µ3 becomes a
high constant, and the search proceeds to optimize with the remaining
µ1,µ2 until convergence in a final layout.

6.3.2 Keeping the Best Solution

HiDaP includes a mechanism to keep the best solution visited during the
search. The final solution at the end of the search shown in Fig. 6.1 has
no OVERLAP and reduced DATAFLOW, but not the lowest DISTANCE
when compared to previously visited solutions. The example reveals it is
not straightforward to define what the best solution is. More legal solu-
tions are always considered better, and a trade-off is used to balance the
final solution in terms of DATAFLOW and DISTANCE.

The proposed solution consists of keeping a set of good layouts found
during the exploration. They are stored as a set of Pareto points in two
dimensions (DATAFLOW and DISTANCE of the solution). The points
are only stored if their OVERLAP value is equal to the lowest found un-
til the point, ensuring the best solution is always the most legal. At the
end of the search, given the lowest found DISTANCE score mind, the

6.4. Preferred Macro Locations 103

Figure 6.2: Example of a Pareto-optimal set of solutions.

solution with a DISTANCE equal or lesser to γ × mind with the lowest
DATAFLOW is considered the best solution (γ ≥ 1 is a user-defined pa-
rameter).

The mechanism is illustrated in Fig. 6.2. It depicts a set of candidate
layouts where the x and y axis represent DISTANCE and DATAFLOW,
and each point is one of the most legal Pareto optimal solution at the end
of a simulated annealing search. If the user-configurable parameter γ is
1, the best solution is the one where DISTANCE = 100, DATAFLOW =
200. But if more flexibility is allowed in DISTANCE minimization (γ is 2),
a sligthly better solution in terms of DATAFLOW can be found (180, 160).
Finally if a much greater γ is allowed, the solution that best minimizes
DATAFLOW is (420, 100).

6.4 Preferred Macro Locations

Preferred macro locations allow for extra engineer control and solution
quality. Through this section, it is assumed that the provided preferred
locations have good properties, either because they have been obtained
using good placement algorithms (point placement techniques give op-
timal solutions assuming the elements are dots) or provided by expert
engineers. Our approach helps in three regards:

Reduce solution variability
Biasing the search towards some preferred macro locations can help
to more thoroughly explore the solution neighborhood around the
preferred locations and reducing solution variability.

104 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Figure 6.3: Taxonomy of preferred location sources.

Increase solution quality
In case of several solutions with similar dataflow, preferred locations
with good properties (for example, minimizing WL or other metrics)
should break the tie towards better solutions.

Increase engineer interactivity
Engineers can provide locations to guide the search and use the
parameters described in the previous sections to decide their level
of influence.

Fig. 6.3 shows the three proposed methods to provide preferred coor-
dinates to the floorplanner. On one hand, they can be given at two levels:
macro locations or block locations. The simulated annealing algorithm
always works at a block level, but these blocks contain macros. If block
coordinates are provided, they are directly used during the optimization
problem (as shown in Sect. 6.3). If macro coordinates are provided, the
center of gravity of the location of all macros inside a given block is com-
puted to find the preferred block location.

The source of these coordinates can an external .def file, force-directed
methods or spectral methods. The first two correspond to macro coordi-
nates and propose a global suggestion for the entire macro placement
problem, whereas the last provides block coordinates directly. Succinctly,

1. Spectral methods are executed at each multi-level instance of sim-
ulated annealing and find the coordinates for each block based on
the dataflow graph Gdf of that particular instance.

6.4. Preferred Macro Locations 105

2. Force-directed methods rely on placing the sequential graph Gseq
at the beginning of HiDaP execution, by obtaining an initial so-
lution using spectral methods but refining it using force-directed
algorithms with special forces to avoid macro overlap.

6.4.1 Spectral Dataflow Placement

The input to the spectral dataflow placement is the placement area (a
rectangle) and the dataflow graph Gdf, where each node is a block to be
floorplanned and edge weights represent the dataflow affinity between
them. The output is the location for each block inside the rectangle. Co-
ordinates of ports and macros are also provided to consider their loca-
tion (possibly outside the placement region) during the spectral dataflow
placement. The algorithm that has been implemented is a modified ver-
sion of the spectral graph drawing method proposed by Koren [45], which
is computationally fast and could be extended to handle fixed ports. The
following introduction to spectral drawing can be found in more detail in
Koren’s paper.

Spectral Drawing Basics.
Given a weighted graph G(V, E) with n nodes, its adjacency matrix A:

Ai,j =

{
0, i = j
wij, i 6= j

and let its Laplacian matrix L be:

Li,j =

{
deg(i), i = j
−wij, i 6= j

where wi j represents the weight of the edge between nodes i, j and
deg(i) = ∑j wij for every j neighbor of i. The paper denotes the 1-D layout
of a graph G by x ∈ R where x(i) is the location of node i. This x is the
solution of the constrained minimization problem:

min
x

E(x) = ∑
〈i,j〉∈E

wij(x(i)− x(j))2

st. Var(x) = 1.

This amount can be understood as an energy that strives to make edge
lengths short, and specially edges with larger wij, which is desirable from
a placement point of view. Var(x) = 1 forces nodes in the drawing area

106 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

and prevents them overcrowding the same point. However, E(x) can be
rewritten as xT Lx = ∑〈i,j〉∈E wij(x(i)− x(j))2, and the desired 1-D layout
can be described as the solution of the constrained minimization problem

min
x

xT Lx

st. xTx = 1.

in the subspace: xT · 1n = 0.

The solution of this problem is proven to be x = v2, the second small-
est eigenvector of L, with an optimal energy value of λ2, its related eigen-
value. To make a 2-D drawing, an additional vector y is computed. As
there must be no correlation between x and y to obtain them maximum
new information, the problem is further constrained,

min
y

yT Ly

st. yTy = 1.

in the subspace: yT · 1n = 0, yT · v2 = 0.

The process could continue for other dimensions, but our focus is two
dimensional drawing to get a placement of our components.

Drawing using degree-normalized eigenvectors.
The innovation in the method presented in [45] comes with the pro-

posal of the use of degree-normalized eigenvectors for graph drawing,
and a fast optimization method to compute them that we adapt for our
problem. Let us define the degrees matrix as an n× n diagonal matrix D
with Dii = deg(i). Taking the original minimization problem and weight-
ing sums according to masses produces the problem

min
x

xT Lx

st. xTDx = 1

in the subspace: xTD1n = 0.

The solution x = u2 is the second smallest generalized eigenvector of
(L, D), whose eigenvectors are called the degree-normalized eigenvectors.
These are shown to coincide with the eigenvectors of the matrix D−1A,
the transition matrix of a random walk on graph G.

Using degree-normalized eigenvectors avoids the typical situation in
which dense clusters are drawn very densely and the rest of the area is

6.4. Preferred Macro Locations 107

not well used. This is a situation that arises when minimizing wirelength
without considering whitespace distribution, as all cells want to be close
to each other (for example using techniques such as quadratic placement).
This approach adjusts edge weights to reflect relative importance to the
local scale.

Computing degree-normalized eigenvectors with fixed nodes.
Given a node i, differentiating E(x) with respect to x(i), equating the

result to zero and isolating x(i) gives

x(i) =
∑〈i,j〉∈E wijx(j)

deg(i)
.

That is, the optimal position for node i to minimize E(x) is the weighted
centroid of i’s neighbors. But putting each node at the weighted centroid
of its neighbors is the same as multiplying x by D−1A. Iterating this
process gives the dominant eigenvector of D−1A, and can be modified to
ensure convergence to u2. The algorithm to compute degree-normalized
eigenvectors relies on this fact to iteratively perform this product with
other small adjustments until convergence is reached.

Our extension of the original algorithm consists in the incorporation
of fixed nodes to the formulation. After each product xi+1 = D−1Axi,
the location of the fixed nodes is updated with its known positions. All
nodes which are not fixed begin at a random position and converge to
their ideal position.

Algorithm 9 Spectral placement with fixed nodes.
1: Input: Dataflow Graph (G), convergence criteria (ε)
2: Output: Coordinates (X,Y)
3: for dim = 2 to 3 do
4: for i = 1 to N do
5: if fixed(i) then udim(i) = known_location(dim, i) {Assign initial locations.}
6: else udim(i) = random(0,1)
7: while not converged(ε) do
8: if dim = 3 then orthogonalize(udim,u1) {Orth. to previous eigenvector.}
9: for i = 1 to N do

10: udim(i)←
(

udim(i) +
∑〈i,j〉∈E wijx(j)

deg(i)

)
{Power iteration.}

11: for i = 1 to N do
12: if fixed(i) then udim(i) = known_location(dim, i) {Fixed nodes to place.}
13: udim← udim

||udim||
{Normalize vectors.}

14: return u2,u3 {Return X, Y coordinates.}

108 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Our modified algorithm based on the proposal in [45] is shown in Al-
gorithm 9. The input is the graph and a convergence control parameter ε,
and the output are the X,Y coordinates of all vectors, from the eigenvec-
tors u2,u3. As explained, first the X coordinates are computed. First the
initial position for the dimension in udim is decided, to its known location
if the node is fixed, or to a random position otherwise. Then until conver-
gence, the vector is orthogonalized to the X vector (if computing Y), and
the optimal position for each element is computed. Finally fixed nodes
return to place and the positions are normalized. The resulting vectors
u2,u3 contain the second and third degree-normalized eigenvectors and
their values are interpreted as the desired coordinates for the blocks in
our floorplanning problem.

In our use case, the number of nodes is small, usually less than 30.
Some examples of resulting placements are shown in Fig. 6.4. In Fig. 6.4a,
the spectral placement of the top simulated annealing problem of a de-
sign is shown. Black dots represent blocks and red dots represent fixed
elements. Fig. 6.4b shows the spectral placement of an intermediate sim-
ulated annealing subproblem in the multilevel execution. The placement
area is restricted with respect to the available space for the particular
problem, but block ports and macros outside (in red) are still taken into
account during spectral placement.

6.4.2 Force-directed Sequential Placement

The other analytic flow proposed in this chapter is the force-directed se-
quential placement, which is applied to the sequential graph Gseq instead
of the dataflow graph Gdf. The Gseq models macros, registers and ports,
where edges represents amount of bits going from one to the other as seen
in Chapter 5. It has tens of thousands of nodes, and the spectral method
does not produce enough spreading, nor does provide good mechanisms
to avoid macro overlap. The force-directed method is applied once at the
beginning of the flow and macro positions are later used in the corre-
sponding block floorplanning problems during the whole HiDaP execu-
tion.

The initial positions are determined by the spectral method, and later
refined by graph-drawing force-directed algorithms based in well-known
spring methods [25] [84]. The basic idea of these approaches is that
edges in the graph represent springs. The nodes are placed in a two-
dimensional layout and the system is released, so that springs move the
nodes to find the minimal energy state where they are as close to their

6.4. Preferred Macro Locations 109

(a) Top block spectral placement.

(b) Intermediate block spectral placement.
Figure 6.4: Example results of spectral placements.

110 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

desired length as possible. The corresponding spring force also depends
on its edge weight, and the final effect is that nodes with higher weight
end up being closer in the layout.

To avoid having all nodes being too clustered in these approaches, a
repulsion force is added that pushes nodes away from all other nodes.
However, in circuit placement uses, the presence of ports at the boundary
of the drawing zone already has a graph-spreading effect. To suit our
particular placement needs and for efficiency reasons, instead of this gen-
eral repulsion force, a macro overlap removal force has been added, also
providing some extra spreading to the register nodes.

Algorithm 10 Force-directed sequential placement, top view.
1: Input: Coordinates (X,Y), sizes (S), termination criteria (max_iters, ε), force pa-

rameters (ctea,cteoa)
2: Output: Coordinates (X′,Y′)
3: for i = 1 to N do
4: Pi← (Xi,Yi) {Assign locations from spectral.}
5: iter← 1
6: while iter≤ max_iters and not converged(ε) do
7: for i ∈ mobile_nodes do
8: P← attraction_forces(i, P,ctea) {Macros and registers.}
9: for i ∈ macro_nodes do

10: P← avoid_overlap_forces(i, P,cteao) {Macros only.}
11: (X′,Y′)← P
12: return X′,Y′ {Return X, Y coordinates.}

The top view of our force-directed sequential placement algorithm is
shown in Algorithm 10. The input are the vectors with X,Y,S coordi-
nates from spectral placement and component sizes, termination criteria
parameters and user-defined force parameters ctea,cteoa to control the im-
pact of the attraction and overlap avoidance forces. First, the position vector
for each component is created. While the number of iterations has not ex-
ceeded max_iters and the system is not stable, all mobile nodes (registers
and macros) are moved sequentially according to their attraction forces
(ie. edges to other components), and all macros are moved to try to re-
duce overlap. At the end of the process, the new X′,Y′ coordinates for all
components are returned. The following sections explains the details of
the attraction and overlap avoidance forces.

Attraction forces computation.
The basic idea for the action of attractive forces is shown in Fig. 6.5.

Each node i (gray boxes) is attracted to all its neighbors j with a force

6.4. Preferred Macro Locations 111

Figure 6.5: Example of attraction forces.

Faij depending on their distance and edge weight wij (black arrows). All
of these attractive forces are added (blue arrows) in the resultant force
Fai (red arrow), and the node i moves a certain distance in its direction
(new position is marked by the white box). Movement in any direction is
halted if the node is to leave the placement area.

Algorithm 11 Force-directed sequential placement, attraction forces.
1: Input: Node (i), positions (P), force parameters (ctea)
2: Output: Positions (P)
3: Fai = (0,0)
4: for j ∈ neighbors(i) do
5: δij← Pi − Pj

6: directionij←
δij

‖δi,j‖

7: magnitudeij←
‖δi,j‖2

k × wij
8: Faij← directionij ×magnitudeij
9: Fai← Fai + Faij {Accumulate individual forces.}

10: Pi← Pi + Fai × ctea
11: return P {Return updated coordinates.}

The detailed algorithm to modify the position of node i according to
the attraction forces of its neighbors is shown in Algorithm 11. The re-
sultant force is accumulated in Fai. For each neighbor, their displacement
vector δij is computed. To form the attraction force Faij, the direction
is obtained by normalizing the displacement vector. Following the cited
methods [25] [84], the magnitude is proportional to both the square of the
norm of the displacement

∥∥δi,j
∥∥2 and the weight of the edge between the

112 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

(a) Move towards less overlap. (b) Scan in grid around macro.

Figure 6.6: Overlap avoidance force.

nodes wij, and decreases with the ideal spring length constant k =
√

1/N.
Finally, the forces are accumulated in Fai. At the end of the process, the
position of the node Pi moves according to Fai multiplied by a constant
user parameter ctea which governs the overall impact of the attraction
forces.

Overlap avoidance forces computation.
The motivation of overlap avoidance forces is to attract macros to po-

sitions where they overlap less with other macros. The basic idea is that,
for each overlap, neighboring locations are scanned and its overlap with
other macros is computed. The overlap avoidance force moves the macro
in the direction of the position with least overlap and closest to its own
location. If the macro has no overlaps, it has no motivation to move. The
algorithm is essentially quadratic (worst case compares overlap of each
pair of macros), but is feasible in reasonable time given that it is only
applied to macro objects (which are in the several hundreds at most), and
only considers a restricted local area. The idea is illustrated in Fig. 6.6a.
The black boxes represent macros (with some overlaps), and the process
focuses on the one with wider border. Several candidate locations are
considered (1 to 4, in red), and their amount of overlap against other
macros is computed. Finally the Foa force goes towards 1, which has no
overlap with other macros and is closer than 3.

In order to find candidate positions to reduce overlap, a grid scan
is executed centered at the current macro location. Given a window_size
and grid_unit parameter, the considered positions are a quadratic search
around the macro, with x position from x−window_size to x+window_size,
step grid_unit, and simultaneously y − window_size to y + window_size,

6.4. Preferred Macro Locations 113

step grid_unit. An example is shown in Fig. 6.6b with some grid_unit = g
and window_size = 1. In practice, grid_unit is a fraction (tuned by user pa-
rameter grid_size_factor) of the area of the smallest macro, ignoring aspect
ratios,

min
i∈macros

√
wi × hi

grid_size_factor

Additionally, to make the process happen smoothly, macro size scales
as iteration count advances, from points at iter = 1 to their full size at
iter = max_iters, and overlapping with canvas borders or outside implies
infinite overlap.

The computation of the overlap avoidance force Faoi for a given macro
i is illustrated in Algorithm 12. The input to the process is the node i,
the positions P and sizes S of all components, the current iteration count
iter to control macro scaling and the parameters grid_unit, window_size to
control the grid exploration. First, to increase efficiency, the set of macros
that overlap with the whole grid exploration zone is computed in conflict-
ing_macros. The overlap function computes the amount of overlapping
area, considering a rectangle or the point, size and scale of a macro. Then
the grid scan begins, and for each candidate position, the sum of its over-
lap with conflicting macros (and block borders) is computed. If it is less
than the minimum found, or equal but its position is closer to the current
position, the best point is updated. Finally, a force from the current point
to the best position is applied using the methods shown for attraction
forces. The impact of the overlap avoidance forces is controlled by cteoa,
which can be several orders of magnitude bigger than ctea to compensate
the fact that there is no weight coming from the graph multiplying its
magnitude.

An example of the evolution of the execution of the force-directed al-
gorithm is shown in Fig. 6.7. Rectangles represent macro and registers,
and the color depend of their top hierarchical block. At the beginning
(Fig. 6.7a) the positions come from spectral placement (which had cer-
tain spreading properties). When forces begin to act and macros are still
small, the design tends to contract (Fig. 6.7b). Later by Fig. 6.7c, hier-
archical groups have more or less gotten together and begin to spread
thanks to the effect of macros growing and trying to avoid overlap. By
the end of the iteration count (Fig. 6.7d), the design is much more spread
and macros are near their ideal positions (if they were points) according
to the connections modeled in the sequential graph. Notice the final goal
of our force-directed placement is to obtain preferred macro locations for

114 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Algorithm 12 Force-directed sequential placement, overlap avoid forces.
1: Input: Node (i), positions (P), sizes (S), algorithm parameters

(iters,grid_unit,window_size), force parameters (cteoa)
2: Output: Positions (P)
3: scale← iter/max_iters
4: exploration_area← find_exploration_area(Pi,grid_unit,window_size)
5: conflicting_macros← ∅ {Prune for efficiency.}
6: for j ∈ macro_nodes do
7: if overlap(exploration_area, Pj,Sj,scale) then conflicting_macros.insert(j)
8: best_point = (0,0) {Keep best candidate.}
9: min_overlap←∞

10: associated_distance←∞
11: for x←−window_size to window_size do
12: for y←−window_size to window_size do
13: p′← pi + (x× grid_unit,y× grid_unit) {Grid scan.}
14: sum_overlap← 0
15: for j ∈ conflicting_macros do
16: sum_overlap← overlap(p′,Si, Pj,Sj,scale)
17: dist← distance(Pi, p′)
18: if sum_overlap < min_overlap ∨ (sum_overlap = min_overlap ∧ dist <

associated_distance) then
19: best_point← p′

20: min_overlap← sum_overlap
21: associated_distance← distance(Pi, p′)
22: δ← Pi − p′ {Apply overlap avoidance force.}
23: direction← δ

‖δ‖

24: magnitude← ‖δ‖2

k
25: Faoi← direction×magnitude
26: Pi = Pi + Faoi × cteao
27: return P {Return updated coordinates.}

6.4. Preferred Macro Locations 115

(a) (b)

(c) (d)

Figure 6.7: Evolution of the forces-directed process.

116 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Table 6.1: Benchmark cell and macro count.

Bench. Cells Macros Bench. Cells Macros
c1 520× 103 32 c5 1.39× 106 133
c2 3.95× 106 100 c6 2.87× 106 90
c3 3.78× 106 94 c7 1.67× 106 108
c4 4.81× 106 122 c8 2.20× 106 37

the floorplanning algorithm of HiDaP: it is not to distribute the objects
perfectly evenly and with zero overlap. The runtime for the biggest cir-
cuits is of about 5 minutes.

6.5 Experimental Results

The previous chapter presented the initial results on the work on macro
placement, showing promise in the method to produce layouts with good
wirelength and timing properties which could help to reduce turn-around
time. This section shows more in depth experimental results, and its aim
is to answer the following questions:

• Do the spectral/force-directed methods help to obtain better macro
layouts?

– Subsections 6.5.1 to 6.5.3.

• What is the effect of individual features and parameters?

– Subsections 6.5.2 to 6.5.5.

• Does the adaptive multiparameter approach help minimize distance
to engineer-provided desired locations?

– Subsection 6.5.6.

• What quality do our layouts show after routing? Can they be brought
to timing-closure with close to no DRC violations?

– Subsection 6.5.7 to 6.5.8.

As exposed in Chapter 5, array information for dataflow analysis is
essential to our approach but is not available in open benchmarks avail-
able to academia such as the ICCAD’12 benchmarks [34]. The same set

6.5. Experimental Results 117

of 8 real industrial examples of challenging circuits are used to validate
our approach (see Table 6.1). This time the comparison is done against
the industrial floorplanning tool, tape-out ready final handcrafted layouts
and the previously reported results. The following four floorplan flows
are compared:

Industrial EDA (IndEDA) Floorplan obtained with a state-of-the-art in-
dustrial tool using high effort settings.

Handcrafted floorplan (handFP) Floorplan manually obtained by expert
backend engineers at the company.

DATE results (DATE) Results reported in Chapter 5 [80]. Best of three
generated floorplans.

Our results (HiDaP) Results obtained using the approaches presented in
this chapter.

Unless stated otherwise, metrics are taken after placement of standard
cells using the same tool as IndEDA. Wirelength and total negative slack
averages are shown using the geometric mean to reduce sensitivity to
extreme values. The more positive the and total negative slack metrics
are, the better (0 means timing closed). To understand the behaviour of
our tool and given the stochastic nature of its optimization algorithm, the
HiDaP flow is normally run 5 times, and the presented results are their
average or their best, as indicated.

6.5.1 Results After Placement

The plots in Fig. 6.8 compare the average results across our whole bench-
mark. Wirelength is shown in meters, the is given in positive and in per-
centage of the clock period, and TNS is shown in positive and in ns (less
is better). The reference values include the manual floorplans (handFP),
industrial (IndEDA) and results from Chapter 5 (DATE) to the left.

Spectral average (HiDaP-SA) Using spectral methods on Gdf and keep-
ing the average of 5.

Spectral minimum (HiDaP-SM) Using spectral methods on Gdf and keep-
ing the minimum of 5.

Forces average (HiDaP-FA) Using force-directed methods on Gseq and
keeping the average of 5.

118 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Figure 6.8: Comparison of HiDaP to other approaches. To the left,
using layouts obtained manually (handFP), using industrial EDA tool
(IndEDA) and presented in the previous chapter (DATE). To the right,
our approach using spectral methods, average of 5 (HiDaP-SA) and min-
imum of 5 (HiDaP-SM), and using forces methods, average of 5 (HiDaP-
FA) and minimum of 5 (HiDaP-FM).

6.5. Experimental Results 119

Table 6.2: Results comparison with HiDaP-SA, HiDaP-SM.

Wirelength Cong. Timing
Flow WL Norm. %GRC WNS Incr. TNS Norm.

handFP 34.13 1.000 3.87 -17.96 0% -835 1.00
IndEDA 39.02 1.143 6.86 -39.07 21.1% -1810 2.17
DATE 34.56 1.012 4.99 -19.93 2.0% -1059 1.27
HiDaP-SA 34.67 1.016 4.78 -21.48 3.5% -1029 1.23
HiDaP-SM 34.01 0.996 3.92 -15.93 -2.0% -750 0.90

Forces minimum (HiDaP-FM) Using force-directed methods on Gseq and
keeping the minimum of 5.

When comparing the results of automated flows against the manual
handFP flow, current state of the art tool IndEDA shows the least promis-
ing results, with remarkably worse results in all areas (up to 14% WL
increase, and near double congestion, WNS and TNS). The results re-
ported in Chapter 5 are much closer to the ones from the handcrafted
macro floorplans, obtaining slightly worse results in all areas. The WL
when using spectral and force-directed methods remains very similar to
the manual results and obtained with DATE in Chapter 5. However from
a timing perspective, using spectral and force-directed methods clearly
gives better results, obtaining similar results to those of DATE when tak-
ing the average of 5 (HiDaP-SA, HiDaP-FA), and obtaining lower TNS
and WNS when taking the min of 5 runs per circuit (HiDaP-SM, HiDaP-
FM).

Table 6.2 shows concrete numbers on an example of our basic exper-
iment for a particular configuration of the tool using spectral methods
(corresponding to columns HiDaP-SA/HiDaP-SM in the previous plots).
Rows represent average results of each floorplan flow across all circuits,
and columns give information on wirelength (in meters, and normalized
with respect to handFP), congestion (global routing overflow percentage)
and timing information. The is given in percentage of the clock period,
with its increase over the handcrafted result. Its TNS is shown in ns and
normalized. Numbers with the previous approaches (IndEDA, handFP,
DATE) are reported for one floorplan, and for the current approach, the
average (HiDaP-SA) and minimum results (HiDaP-SM) over the 5 gener-
ated macro placements are presented. The spectral flow on average across
5 floorplans, HiDaP-SA, manages to obtain similar results to Chapter 5,
which took the best of 3 floorplans. When taking the best results ac-
cording to the approach presented in this paper (HiDaP-SM), the results

120 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

show better WL (-0.4%) when compared to the manual flow handFP,
along with a noticeable improvement in WNS (2% of clock period and
10% of the TNS), while reporting only a slight increase in congestion.

The detailed results for each of the 5 flows seen on Table 6.2 are pre-
sented in Table 6.3. When comparing the Chapter 5 results to the current,
although the circuits where it did a good job got similar results (c3, c8),
significant breakthroughs were observed in other circuits like c7. One the
other hand, circuits like c6 remain challenging from a timing perspective
at this stage. This experiment suggests that the results from our approach
HiDaP at placement prove to be generally competitive to manually ob-
tained floorplans from handFP. They can be obtained at a fraction of
the time and in parallel, creating opportunities for engineers to use our
tool to prototype and advance promising macro placements through the
physical design flow.

6.5.2 Parameter Exploration

The variety of algorithm recipes and parameters, in combination with
each particular design, makes it difficult to establish the default running
mode of the tool. Table 6.4 is an example of the experiments that have
been run to determine them, and it explores the impact of the use of
spectral and force-directed methods to prototype block desired coordi-
nates before the simulated annealing stage and the use of macro affinity
dataflow (λ). Experiments were run 5 times on each circuit for 8 tool con-
figurations, with λ = {1,0.8} (not using and using macro dataflow) and
turning spectral and force-directed methods on and off. The multiobjec-
tive alpha weight are, for α1,α2,α3, 0.4,0.4,0.2 (for spectral experiments)
and 0.7,0.1,0.2 (for forces experiments), with γ = ∞ (always keep best
solution with best dataflow). This generated a total of 40 floorplans per
benchmark, which were brought to placement and evaluated. The results
of handFP, IndEDA and DATE are also shown for reference.

When comparing the use of spectral and forces versus not using them,
the results show that on the average of 5 cases they do not seem to help
much in WL, but it is always desirable to use them from a timing point
of view. For example with λ = 1, average TNS results are better than the
ones obtained for DATE (which was a best of 3), and the average WNS
when using forces is only 0.6% of period worse than with the manual
tape-out layouts handFP. When looking at the best of 5 results, timing
is almost always better than the reported for handFP with similar WL
quality. The only case in which using spectral/forces does not seem to

6.5. Experimental Results 121

Table 6.3: Metrics after placement for a configuration.

Case Wirelength Cong. Timing
c1 WL Norm. %GRC WNS Incr. TNS Norm.

handFP 12.81 1.000 7.36 -0.2 0% -0.01 1.00
IndEDA 13.19 1.029 6.51 0.0 -0.2% -0.01 1.00
DATE 13.40 1.046 7.83 0.3 -0.5% 0 0.00
HiDaP-SA 13.93 1.088 9.62 0.23 -0.4% 0 0.00
HiDaP-SM 13.66 1.067 8.06 0.79 -1.0% 0 0.00

c2 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.97 1.000 9.33 -11.24 0% -213 1.00
IndEDA 46.01 1.181 12.99 -44.53 33.28% -932 4.37
DATE 40.72 1.045 13.00 -19.00 7.76% -329 1.55
HiDaP-SA 40.94 1.050 14.40 -22.13 10.89% -281 1.32
HiDaP-SM 40.29 1.034 13.71 -16.63 5.38% -213 0.99

c3 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.15 1.000 9.15 -17.78 0% -317 1.00
IndEDA 44.83 1.175 10.09 -75.52 57.7% -553 1.74
DATE 35.02 0.918 8.29 -17.50 -0.3% -260 0.82
HiDaP-SA 36.01 0.944 8.70 -19.76 2.0% -350 1.103
HiDaP-SM 35.56 0.932 7.10 -16.78 -1.0% -257 0.81

c4 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.34 1.000 3.33 -22.81 0% -1736 1.00
IndEDA 45.03 1.174 7.24 -54.43 31.6% -2167 1.25
DATE 40.43 1.054 4.94 -31.20 8.4% -2686 1.55
HiDaP-SA 39.59 1.032 4.76 -26.21 3.4% -2755 1.59
HiDaP-SM 39.24 1.023 4.21 -21.20 -1.6% -1956 1.13

c5 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.06 1.000 3.42 -39.82 0% -1017 1.00
IndEDA 44.25 1.162 2.02 -30.80 -9.0% -1940 1.90
DATE 39.51 1.038 4.72 -25.10 -14.7% -1149 1.13
HiDaP-SA 39.49 1.037 3.95 -22.79 -17.0% -1357 1.33
HiDaP-SM 38.03 0.999 3.20 -18.50 -21.3% -858 0.84

c6 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 74.86 1.000 1.63 -27.28 0% -3688 1.00
IndEDA 96.42 1.288 9.95 -68.87 41.7% -15341 4.16
DATE 79.20 1.058 2.22 -37.00 9.7% -5051 1.37
HiDaP-SA 77.72 1.038 2.56 -61.60 34.3% -6400 1.74
HiDaP-SM 75.54 1.009 2.17 -41.72 14.4% -5448 1.48

c7 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 35.29 1.000 4.61 -20.44 0% -774 1.00
IndEDA 41.44 1.174 38.56 -34.89 14.4% -1060 1.37
DATE 35.52 1.007 6.47 -29.90 9.4% -1059 1.37
HiDaP-SA 34.79 0.986 4.48 -17.63 -2.8% -505 0.65
HiDaP-SM 33.85 0.959 3.63 -13.06 -7.4% -358 0.46

c8 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 25.17 1.000 0.93 -4.17 0% -24 1.00
IndEDA 24.85 0.987 1.02 -3.42 -0.8% -44 1.80
DATE 23.75 0.944 1.37 0.0 -4.2% 0 0.00
HiDaP-SA 24.26 0.964 1.04 -1.96 -2.2% -23 0.9
HiDaP-SM 23.95 0.951 0.67 -0.35 -3.8% 0 0.00

122 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Table 6.4: Parameter exploration.

Best of 5 Average of 5
Flow Mode WL TNS WNS WL TNS WNS
handFP - 34.14 -835 -18.0% only one run
IndEDA - 39.03 -1810 -39.2% only one run
DATE - 34.57 -1059 -19.9% only one run
HiDaP No Forces 34.07 -797 -14.8% 34.97 -1441 -22.0%
λ = 1 Forces 34.32 -678 -14.5% 34.91 -1039 -18.6%
HiDaP No Forces 34.24 -882 -16.3% 35.00 -1422 -25.4%
λ = 0.8 Forces 34.48 -780 -15.0% 35.16 -1319 -23.4%
HiDaP No Spectral 34.19 -670 -13.0% 34.86 -1267 -22.0%
λ = 1 Spectral 34.01 -750 -15.9% 34.68 -1029 -21.5%
HiDaP No Spectral 34.26 -850 -16.9% 35.38 -1326 -21.5%
λ = 0.8 Spectral 34.30 -740 -15.2% 35.00 -1262 -20.9%

Table 6.5: Results with best layouts after placement.

Wirelength Cong. Timing
Flow WL Norm. %GRC WNS Incr. TNS Norm.

handFP 34.13 1.000 3.87 -17.96 0% -835 1.00
IndEDA 39.02 1.143 6.86 -39.07 21.1% -1810 2.17
DATE 34.56 1.012 4.99 -19.93 2.0% -1059 1.27
HiDaP-WL 33.52 0.981 3.53 -13.40 -4.6% -625 0.75
HiDaP-TNS 34.10 0.998 4.06 -10.29 -7.7% -463 0.56

improve is in best results for λ = 1, but this does not translate to the
average experimental results. In general, it can also be said that the results
for λ = 1 are better than λ = 0.8. This is not the case in all circuits, and
reveals further investigation is required to understand how to best tune
all parameters given a particular benchmark.

6.5.3 Best Layouts After Placement

Table 6.5 shows the average metrics picking the best layout per circuit
(among the 8 layouts that were found during the experiment in the pre-
vious section, the ones with best WL and TNS respectively), with a chart
view in Fig. 6.9. Reference results are also shown for comparison. The
WNS is given in positive and in percentage of the clock period, and TNS
is shown in positive and in ns (less is better). When focusing on the best

6.5. Experimental Results 123

Figure 6.9: Placement results, charts of Table 6.5. To the left, using layouts
obtained manually (handFP), using industrial EDA tool (IndEDA) and
presented in the previous chapter (DATE). To the right, our approach
keeping the best placement out of 40 in terms of wirelength (HiDaP-WL)
and total negative slack (HiDaP-TNS).

124 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Table 6.6: Detailed results with best TNS layouts.

Case Wirelength Cong. Timing
c1 WL Norm. %GRC WNS Incr. TNS Norm.

handFP 12.81 1.000 7.36 -0.2 0% -0.01 1.00
HiDaP 13.40 1.046 9.99 0.3 -0.5% 0 0.00

c2 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.97 1.000 9.33 -11.24 0% -213 1.00
HiDaP 40.47 1.038 12.81 -15.23 3.4% -170 0.79

c3 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.15 1.000 9.15 -17.78 0% -317 1.00
HiDaP 34.71 0.910 8.09 -9.67 -8.1% -168 0.53

c4 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.34 1.000 3.33 -22.81 0% -1736 1.00
HiDaP 38.54 1.005 4.38 -17.34 -5.5% -1725 0.99

c5 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 38.06 1.000 3.42 -39.82 0% -1017 1.00
HiDaP 39.18 1.029 4.36 -11.89 -27.9% -633 0.63

c6 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 74.86 1.000 1.63 -27.3 0% -3688 1.00
HiDaP 74.56 0.996 1.36 -16.5 -10.73% -1189 0.32

c7 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 35.29 1.000 4.61 -20.44 0% -774 1.00
HiDaP 35.24 0.999 3.07 -11.98 -8.5% -267 0.35

c8 WL Norm. %GRC WNS Incr. TNS Norm.
handFP 25.17 1.000 0.93 -4.17 0% -24 1.00
HiDaP 24.46 0.972 1.23 0.02 -4.2% 0 0.00

WL reduction, WL drops by a 2% while WNS is reduced in close to a 5%
of cycle time and TNS is reduced on a 25% compared to handFP. When
focusing on timing, WNS is reduced close to a 8% of cycle time when
compared to the handFP results, and the TNS is reduced up to a 44%.
On the other hand, congestion is kept at similar levels when compared to
the manual designs. This numbers reveal the potential of the tool to find
very good layouts in terms of quality at the price of (parallelizable) CPU
time.

The detailed view for the results comparing the layouts with best TNS
against the manual layouts handFP is shown in Table 6.6, and in chart
form (including IndEDA results) in Fig. 6.10. When using the HiDaP
flow, two of the circuits get fully timing closed (c1, c8). Whereas a very
good candidate for the circuit with more TNS (c6) in terms of timing is
found, the one with second worst TNS (c4) proves to be much harder for

6.5. Experimental Results 125

Figure 6.10: Placement results, charts of Table 6.6. Detailed results for
each circuit, comparing the results after placement for several metrics of
the manual layout (handFP), industrial EDA layout (IndEDA) and the
best layout of our approach after the parameter exploration conducted in
the previous section (HiDaP).

126 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Table 6.7: Effect of latency decay factor.

Wirelength Timing
Flow k WL Norm. WNS Incr. TNS Norm.

handFP - 34.13 1.000 -17.96 0% -835 1.00
0 35.04 1.026 -28.22 10.26% -1393 1.67

HiDaP 1 34.57 1.013 -23.38 5.42% -1254 1.50
2 34.86 1.021 -21.95 3.99% -1266 1.52

Table 6.8: Effect of macro orientation.

Wirelength Timing
Flow WL Norm. WNS Incr. TNS Norm.

handFP 34.13 1.000 -17.96 0% -835 1.00
HiDaP-D 35.29 1.034 -24.67 6.71% -1405 1.68
HiDaP-C 35.13 1.029 -24.91 6.95% -1486 1.77
HiDaP-F 34.99 1.025 -23.31 5.35% -1382 1.65

HiDaP. Overall, the results indicate layouts with better properties than
manually obtained layouts can be found when evaluated at the placement
stage, enabling the tool to be successfully used in an exploratory manner
for highly critical blocks. A picture of the HiDaP layouts presented in
this table for each circuit can be found in Appendix 6.A at the end of this
chapter.

6.5.4 Effect of Latency Awareness

The effect of the variation of the latency decay parameter k (introduced in
Sect. 5.5.4), affecting the computation of the edges weights in the dataflow
graph, is shown in Table 6.7. A value of k = 0 means considering all
latencies to be 1, whereas k = 2 means considering them squared. All
results are worse when ignoreing flop pipeline stages, specially WNS,
which is a 10% worse than handFP in percentage of cycle time. When
increasing k, the best point for WL and TNS seems to be at k = 1, although
a significant further reduction in WNS can be achieved with k = 2. This
reinforces the idea that considering flop latencies between components is
a key element to achieving floorplans which can get timing closed.

6.5. Experimental Results 127

(a) Preferred macro locations. (b) Constrained floorplan.

Figure 6.11: Guiding HiDaP using known macro locations.

Table 6.9: DATAFLOW and DISTANCE optimization tradeoff

γ = ∞ γ = 1
α1,α2,α3 (1) (2) (2) (3)

DATAFLOW 1.00 1.03 1.30 1.38
DISTANCE 4.73 3.64 1.13 1.00

6.5.5 Effect of Macro Orientation

Table 6.8 studies the impact of macro orientation by comparing the re-
sults using three approaches: default orientation (HiDaP-D, all orienta-
tions set to N), having macro sides with most ports looking to the center
(HiDaP-C, suggested in works such as [12]) and flipping SA (HiDaP-F,
our approach). Compared with the default, HiDaP-C obtains slightly bet-
ter WL, but worse WNS and TNS. In this case, our approach proves to
beat the default in all three areas by reducing WL by a 1% and WNS by a
1.5% of cycle time while also maintaining lower TNS.

6.5.6 DATAFLOW-DISTANCE Tradeoff

When the engineer suggests preferred locations to the tool, it is often the
case that dataflow reduction is negatively impacted in order to reduce
distances to such locations. Table 6.9 shows the impact of each compo-

128 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Table 6.10: Geo. mean over all circuits after routing. The first two rows av-
erage over the eight circuits, the next three over the only six that IndEDA
managed to route.

Wirelength Legal? Timing
Flow WL Norm. #DRCv WNS Norm. TNS Norm.

handFP 34.27 1.000 1447 -23.0 1.00 -298 1.00
HiDaP-M 34.71 1.013 1561 -16.5 0.71 -92 0.31
handFP 33.42 1.000 1546 -20.0 1.00 -73 1.00
IndEDA 38.16 1.142 55288 -19.5 0.98 -28 0.38
HiDaP-M 34.05 1.019 1720 -15.7 0.78 -21 0.30

nent of the cost function in average across all circuits, 5 runs per each,
when using the handFP solution to guide the search of the HiDaP flow.
Columns represent 4 parameters recipes. Recall when γ = ∞, the result
with lowest DATAFLOW is kept, and when γ = 1, the result with lowest
DISTANCE is kept. The alphas are, for α1,α2,α3, (1) = 0.8,0.0,0.2 (op-
timize only dataflow and overlap), (2) = 0.4,0.4,0.2 (optimize all) and
(3) = 0.0,0.8,0.2 (optimize only distances and overlap).

When both the optimization effort and best solution are set to mini-
mize dataflow (γ = ∞, (1)), the distance to desired positions is 4.73 times
the minimum distance possible. When minimizing distances to positions
is prioritized, the DATAFLOW component is 38% higher. This trade-
off does not always ocur: in c5, both components can be simultaneously
minimized as the handmade placement also minimized dataflow affinity.
Fig. 6.11 shows the effect of giving macro location preferences visually:
the layout to the left is the handFP layout for c2, whereas the layout to
the right is the one obtained by HiDaP when given the handFP layout as
a preferred locations and enforcing distance minimization.

6.5.7 Results After Routing

All circuits used in the spectral flow for our experiment in Sect. 6.5.1 were
also brought to routing in order to check the effects of congestion after
placement and ensure layout quality was preserved. Table 6.10 shows a
summary of the results, also in chart form in Fig. 6.12. For each one of the
5 layouts generated by our tool for each circuit, the reported results are
shown for the best layout according to a team of physical designers, who
have also done manual iterations to bring these 8 best layouts to virtual
timing closure and DRC clearness.

6.5. Experimental Results 129

Figure 6.12: Routing results, charts of Table 6.10, showing the average
results accross all circuits after routing, using layouts obtained manually
(handFP), using industrial EDA tool (IndEDA) and the best of 5 with our
method (HiDaP-M).

Each line in Table 6.10 represents the average of the best layouts for
each circuit for a given flow. The first two lines average over all circuits,
and the last three over the ones that IndEDA could finish routing of (6
circuits of 8, since it was no able to obtain routing results for c4 and c7 in
reasonable time). The results show how WL reduction results observed in
placement hold after routing, with timing showing even better reduction
(-29% WNS, -70% TNS), while showing a similar number of DRC viola-
tions. When focusing only on the set of circuits that IndEDA was able to
fully route, the results by the industrial tool confirm again the important
gap in WL. The timing results IndEDA shows are better than the manual
designs, but the layouts present an enormous number of DRC violations.

130 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Table 6.11: Metrics after routing of layouts in Sec. 6.5.1.

Case Wirelength Legal? Timing
c1 WL Norm. #DRCv WNS Norm. TNS Norm.

handFP 12.97 1.000 4 0 0% -0.1 1.00
IndEDA 14.98 1.155 1 -1.4 1.4% -0.2 2.00
HiDaP-M 14.29 1.102 2 -0.8 0.8% -0.1 1.00

c2 WL Norm. #DRCv WNS Incr. TNS Norm.
handFP 39.40 1.000 58 -51.7 0% -1760 1.00
IndEDA 45.12 1.145 > 105 -7.8 -43.9% -4 0.00
HiDaP-M 41.14 1.044 14 -4.9 -46.8% -3 0.00

c3 WL Norm. #DRCv WNS Incr. TNS Norm.
handFP 38.27 1.000 30 -5.8 0% -8 1.00
IndEDA 42.02 1.098 > 104 -12.7 6.82% -7 0.94
HiDaP-M 36.34 0.950 37 -15.0 9.2% -13 1.66

c4 WL Norm. #DRCv WNS Incr. TNS Norm.
handFP 38.34 1.000 2253 -31.7 0% -998 1.00
IndEDA Could not finish routing
HiDaP-M 38.70 1.009 2269 -24.6 -4.0% -1259 1.26

c5 WL Norm. #DRCv WNS Incr. TNS Norm.
handFP 38.72 1.000 518 -10.0 0% -48 1.00
IndEDA 44.87 1.159 > 104 -20.5 10.53% -220 4.58
HiDaP-M 39.126 1.014 633 -12.4 2.4% -28 0.58

c6 WL Norm. #DRCv WNS Incr. TNS Norm.
handFP 74.21 1.000 3169 -35.8 0% -1978 1.00
IndEDA 99.14 1.336 > 105 -40.5 4.6% -389 0.20
HiDaP-M 75.33 1.015 2869 -51.0 15.2% -4409 2.23

c7 WL Norm. #DRCv WNS Incr. TNS Norm.
handFP 35.64 1.000 49 -32.5 0% -215 1.00
IndEDA Could not finish routing
HiDaP-M 34.28 0.962 62 -12.7 -19.8% -33 0.15

c8 WL Norm. #DRCv WNS Incr. TNS Norm.
handFP 24.79 1.000 5498 -16.4 0% -774 1.00
IndEDA 24.85 0.987 5457 -34.1 17.8% -1014 1.36
HiDaP-M 23.95 0.951 6338 -16.9 0.5% -547 0.77

6.5. Experimental Results 131

Figure 6.13: Routing WL and DRC results, charts of Table 6.11, comparing
the manual layout (handFP), industrial EDA tool layout (IndEDA) and
the best out of 5 for our tool (HiDaP-M) accross all 8 circuits in our
benchmark.

132 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Figure 6.14: Routing WNS and TNS results, charts of Table 6.11, compar-
ing the manual layout (handFP), industrial EDA tool layout (IndEDA)
and the best out of 5 for our tool (HiDaP-M) accross all 8 circuits in our
benchmark.

6.5. Experimental Results 133

Table 6.12: Timing-closure results after manual layout modification.

Case #FEP WNS TNS DRC
c5 2632 -9.1% -28.7 633
c5 + manual 112 -3.3% -0.65 34
c7 1528 -12.5% -32.84 62
c7 + manual 479 -2.5% -1.54 22

Detailed results by circuit are shown in Table 6.11, and in chart form in
Fig. 6.13 and Fig. 6.14. The only circuits where the IndEDA macro place-
ments managed to finish with reasonable DRC violations are c1 and c8,
which are the ones with less macros (32, 37 respectively). Our approach
HiDaP-M obtained results comparable to handFP in all circuits, specially
in c2, where it nearly close timing, and c7, with a reduction of close to
4% in WL, -20% of clock cycle in WNS and 85% of the TNS. On the other
hand, the manual floorplans still achieved better results in circuits c3 and
c6, specially considering timing results.

6.5.8 Post-Routing Timing Closure

In order to check if the floorplans can serve as initial proposals for in-
dustrial block design, a team of engineers took the HiDaP-M layouts at
routing stage and tried to close timing without DRC violations. They
pushed the macro placements through the full production physical de-
sign flow. Four of the circuits (c1, c3, c4, c7) were practically brought
to sign-off (residual WNS/TNS and DRC violations) with little macro
adjustment (aligning and small moves): that is, at most one iteration of
macro refinement. The other circuit were also brought to completion after
2 macro refinement iterations.

Table 6.12 shows detailed results for the process in c5 and c7. Whereas
the c5 and c7 rows show the values for the automated layouts after pass-
ing the whole physical design process, the same layouts after being man-
ually modified by our engineers are respectively c5 + manual and c7 +
manual. Columns represent number of failing endpoints #FEP, WNS (%
period), TNS (ns) and number of design rule check violations. Notice
how the results after small manual modification are almost timing closed
and DRC clear.

Fig. 6.15 shows the automatic macro placement generated by HiDaP
of the c5 circuit after routing, and Fig. 6.16 after manual modifications,
which in this case include rearranging the macros to the left of the central

134 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Figure 6.15: c5 automatic macro placement.

Figure 6.16: c5 after light manual editing.

6.5. Experimental Results 135

Figure 6.17: c7 automatic macro placement.

Figure 6.18: c7 after light manual editing.

gap, reordering the macros to the top right and adding blockages to the
bottom-right. The same kind of modifications have been applied to the
layout of c7, as shown in Fig. 6.17 and Fig. 6.18. These results show that
our tool has been able to produce competitive macro placements which
could be brought to timing closure in a fraction of the manual engineering
effort that would have been needed otherwise.

136 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

6.6 Conclusions

This chapter built on the previous to provide macro floorplans with en-
hanced quality and add designer-friendly capabilities such as suggested
macro location and keepouts. Better layouts have been achieved by adding
spectral and force placement methods to automatically generate desired
macro locations, and these are taken into account during the simulated
annealing algorithm by minimizing an adaptive multi-objective cost func-
tion. A new round of comprehensive experiments shows the resulting
macro placements have quality close to handcrafted floorplans in terms
of WL and are generally better in terms of timing. The best layouts at
the routing stage have been brought to almost sign-off with little man-
ual modification, showing our tool is capable of providing good starting
points for engineers to find a final layout in reduced turnaround time.

Future Work.
After gathering feedback from the physical design engineers, it is clear

there are many possible future lines of work for the project. On one
hand, some feature requests involve making the tool aware of yet more
reality-driven enhancements such as multiple clock domains, support for
notches in the block size (rectilinear blocks) or support for macro place-
ment blockages. More effort could also be devoted to increase channel
and congestion awareness of our tool, as well as to improve the regular-
ity of the resulting layouts.

On the other hand, the tool has been integrated into an industrial
physical design flow, and ongoing experimentation is running to find the
best way to integrate the designed algorithms with the designer workflow,
and on trying the tool in new benchmarks with different design styles and
characteristics, and preparing it for future technology node constraints
(7nm and beyond).

6.A HiDaP layouts

This appendix includes standard cell density views of the best TNS lay-
outs shown in Sect. 6.5.3. These images can give an idea of the amount
of macro area and their shapes in our benchmark. Contrary to other
packing-based approaches, HiDaP can distribute macros across the whole
area of the block (c2, c3). Space is nonetheless reserved for standard cell
logic if they appear reflected on the hierarchy (c1, c4 and others).

6.A. HiDaP layouts 137

Figure 6.19: c1 layout.

138 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Figure 6.20: c2 layout.

Figure 6.21: c3 layout.

6.A. HiDaP layouts 139

Figure 6.22: c4 layout.

Figure 6.23: c5 layout.

140 Chapter 6. Adaptive Macro Placement Guided by Analytic Methods

Figure 6.24: c6 layout.

Figure 6.25: c7 layout.

6.A. HiDaP layouts 141

Figure 6.26: c8 layout.

Chapter 7

Conclusion and Future Work

The goal of the thesis has been to explore new algorithmic techniques
to ease the time-consuming manual steps of physical synthesis and find
better physical realizations of the gate netlist after logic synthesis. The
presented approaches and results have proved to advance the state-of-
the-art in several points of the physical design process, by identifying
some of its needs and proposing novel algorithmic methods to address
them. This chapter finishes the thesis by summarizing the conclusions
that have been drawn during its development, most of which have already
been mentioned in other parts of this thesis. Additionally, several lines of
future work are given.

7.1 Under-the-Cell Routing

The first contribution on under-the-cell routing has shown that poten-
tial gains can be obtained by systematically exploiting the use of lateral
pins for standard cell abutment connections. Academic tools have been
extended to generate layouts enriched with such lateral pins.

Experiments have shown that using microplacement techniques to
maximize the opportunity for lateral connections, over a 30% of 2-pin
nets can be routed without going to upper metal layers and about 11.5%
of pins and 6.7% of the circuit vias can be removed. The approach proved
to remove DRC violations in nearly all the tests, resulting in layouts which
are easier to bring to the sign off stage.

It is important to remember that, given the limited resources available,
the experiments were obtained on a 45nm technology, and the impact
of such reductions can only be expected to grow in FinFET technology
nodes and beyond. To further validate the approach, the collaboration

143

144 Chapter 7. Conclusion and Future Work

with standard cell providers and EDA companies would be desirable.
On one side, full modeling and validation of the generated layouts for
the standard cells and their direct use in the EDA flow would help show
the value of our approach. In that direction, another line of work would
be to find the minimum set of standard cells with lateral pins that would
cover most of the lateral connections appearing in real cases. The ques-
tions being of the type: is it enough to enable lateral wires in only the
inverter, and and or gates? On the other hand, directly extending existing
placements algorithms to consider horizontal abutability to be an opti-
mization constraint would directly incorporate the problem to already
known formulations and methods. The final goal would be a full integra-
tion of all these pieces into a transparent flow to the user. The proposal is
ambitious, but once adopted could easily become a standard practice in
industry to help pushing designs down to the newest, most challenging
technology nodes.

7.2 Macro Placement

The second contribution of the thesis contains a state-of-the-art study of
current macro placement practices, both academic and industrial, to iden-
tify key areas for improvement. The HiDaP tool has been written to ad-
dress some of these needs by exploiting RTL information from the netlist
to group components and identify the dataflow relations between them.
This information has both been used to guide an automated macro placer
and to generate graph representations to help designers in the macro
placement stage. Following the feedback of physical designers, the ap-
proach has been enriched with methods to suggest macro locations to the
tool, either provided by them or by spectral and force based placement
algorithms such as the ones proposed in the last chapter.

The experimental results on the last version of the tool shows that,
after placement, the generated layouts can have up to less 40% worst
negative slack and total negative slack when compared to tape-out-ready
designs done by expert back-end engineers, while obtaining similar wire-
length and congestion results. The best design among five for each circuit
was given to a physical designer, tasked with bringing the layout to tim-
ing closure with close to no design rule violations. They succeeded in
their task in only one to two rounds of manual macro layout modifi-
cations, proving the applicability of the tool in a real design flow as a
prototyping helper for physical design engineers.

7.2. Macro Placement 145

In fact, given its promising results, the development of HiDaP is ex-
pected to continue in the future. Some lines of work were already given in
Chapter 6, including block and notch support and other reality-driven en-
hancements, and well as further testing with other benchmarks with dif-
ferent design styles and characteristics in new technology nodes. Looking
back at Chapter 4, some other lines of work emerge. For instance,

1. Floorplanners are still not modeling detailed macro placement, in-
cluding notions such as regularity, channel sizes and techniques
such as back to back placement. These might have an important
effect in final DRC count, specially in new technology nodes.

2. The interaction between macro placement and standard cell place-
ment is not well solved, as most macro placers do not scale enough,
and most cell placers have problems during the legalization phase.
Although our approach has tried to work in the direction of plac-
ing macros considering standard cells, we acknowledge more effort
is needed in this direction so that our tools efficiently explore the
solution space.

3. Our approach relies on the RTL information left in the netlist, which
is assumed to be a good guide for the physical design process, but
what would happen if this information was not physically-aware or
created pathological problems with the algorithm? Methods to de-
cide whether a hierarchy is usable and bypass or modify it when it
is not adequate for the physical design process may help to alleviate
this issue.

Another topic that was discussed in Chapter 5 is on obtaining bet-
ter netlist abstractions at the RTL-floorplan boundary for fast diagnosis.
The work in this thesis has provided a method to automatically generate
graphs which describe the main circuit components and their relations.
Other more general questions remain yet to be addressed, and the most
urgent is: how do we know a macro placement is good? Of course, with-
out having to run it through expensive placement methods. A future line
of work would be to develop methods centered in this question to be able
to assess macro placement quality fast. If this existed, new uses for such
tool in the flow could appear, for example combining a macro placer with
a macro selection tool to do architectural prototyping, that is, picking the
macros that will lead to a better macro placement (instead of considering
them an fixed input to the problem). As we move into a sea-of-macros

146 Chapter 7. Conclusion and Future Work

paradigm inside each block, re-adapting placement techniques or the dis-
covery of new ones is a must to handle the increasing complexity and
challenges in future technology nodes.

Bibliography

[1] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L.
Markov. Unification of Partitioning, Placement and Floorplan-
ning. In IEEE/ACM International Conference on Computer Aided De-
sign, 2004. ICCAD-2004., pages 550–557, Nov. 2004.

[2] S. N. Adya and I. L. Markov. Combinatorial Techniques for Mixed-
Size Placement. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 10(1):58–90, 2005.

[3] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta,
S. Reda, M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan,
W. Swartz, L. Wang, Z. Wang, M. Woo, and B. Xu. Toward an Open-
Source Digital Flow: First Learnings from the OpenROAD Project.
In Proceedings of the 56th Design Automation Conference, pages 76–79.
ACM, June 2019.

[4] I. L. M. J. H. Andrew B. Kahng, Jens Lienig. VLSI Physical Design:
From Graph partitioning to Timing Closure. Springer, 2011.

[5] B. Cakir and S. Malik. Reverse Engineering Digital ICs through Ge-
ometric Embedding of Circuit Graphs. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 23(4):50, July 2018.

[6] W. J. Chan, Y. Du, A. B. Kahng, S. Nath, and K. Samadi. BEOL
Stack-Aware Routability Prediction From Placement Using Data
Mining Techniques. In 2016 IEEE 34th International Conference on
Computer Design (ICCD), pages 41–48, Oct. 2016.

[7] W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena. Routability Op-
timization for Industrial Designs at Sub-14nm Process Nodes Using
Machine Learning. In Proceedings of the 2017 ACM on International
Symposium on Physical Design, pages 15–21. ACM, Mar. 2017.

147

148 Bibliography

[8] C. H. Chang, Y. W. Chang, and T. C. Chen. A Novel Damped-Wave
Framework for Macro Placement. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 504–511, 2017.

[9] Y.-W. Chang and K.-T. Cheng, editors. Electronic Design Automation:
Synthesis, Verification, and Test. Morgan Kaufmann, 2009.

[10] D. P. M. Charles J. Alpert and S. S. Sapatnekar, editors. Handbook of
Algorithms for Physical Design Automation. CRC Press, 2008.

[11] S. T. Chen, Y. W. Chang, and T. C. Chen. An Integrated-
Spreading-Based Macro-Refining Algorithm for Large-Scale Mixed-
Size Circuit Designs. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 496–503, 2017.

[12] T. C. Chen, P. H. Yuh, Y. W. Chang, F. J. Huang, and T. Y. Liu. MP-
Trees: A Packing-Based Macro Placement Algorithm for Modern
Mixed-Size Designs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(9):1621–1634, 2008.

[13] Y. F. Chen, C. C. Huang, C. H. Chiou, Y. W. Chang, and C. J. Wang.
Routability-Driven Blockage-Aware Macro Placement. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2014.

[14] C. Cheng, A. B. Kahng, I. Kang, and L. Wang. RePlAce: Advancing
Solution Quality and Routability Validation in Global Placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pages 1717–1730, 2018.

[15] Ching-Chung Hu, De-Sheng chen, and Yi-Wen Wang. Fast Multi-
level Floorplanning for Large Scale Modules. In 2004 IEEE Interna-
tional Symposium on Circuits and Systems (IEEE Cat. No.04CH37512),
volume 5, May 2004.

[16] C. H. Chiou, C. H. Chang, S. T. Chen, and Y. W. Chang. Circular-
Contour-Based Obstacle-Aware Macro Placement. In 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), pages
172–177, 2016.

[17] W. Choi and K. Bazargan. Hierarchical Global Floorplacement us-
ing Simulated Annealing and Network Flow Area Migration. In
Design, Automation and Test in Europe Conference and Exhibition, 2003,
pages 1104–1105. IEEE, 2003.

Bibliography 149

[18] Y. L. Chuang et al. Design-Hierarchy Aware Mixed-Size Placement
for Routability Optimization. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer Aided Design, 2010., pages 663–668,
2010.

[19] J. P. Cohoon and W. Paris. Genetic Placement. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 6(6):956–
964, Nov. 1987.

[20] J. Cong, M. Romesis, and J. R. Shinnerl. Fast Floorplanning by
Look-ahead Enabled Recursive Bipartitioning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 25(9):1719–
1732, Sept. 2006.

[21] J. Cortadella, J. Petit, S. Gómez, and F. Moll. A Boolean Rule-Based
Approach for Manufacturability-Aware Cell Routing. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
33(3):409–422, Mar. 2014.

[22] P. Cremer, S. Hougardy, J. Schneider, and J. Silvanus. Automatic
Cell Layout in the 7nm Era. In Proceedings of the 2017 ACM on In-
ternational Symposium on Physical Design, pages 99–106. ACM, Mar.
2017.

[23] A. E. Dunlop and B. W. Kernighan. A Procedure for Placement of
Standard-Cell VLSI Circuit. IEEE Transactions of Circuits and Systems,
4(1):92–98, 1985.

[24] Hard Macros will Revolutionize SoC Design. Last accessed
november 2019, https://www.eetimes.com/document.asp?doc_
id=1217863.

[25] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-
Directed Placement. Software - Practice & Experience, 21(11):1129–
1164, Nov. 1991.

[26] J. Funke, S. Hougardy, and J. Schneider. An Exact Algorithm for
Wirelength Optimal Placements in VLSI Design. Integration, the
VLSI Journal, 52:355–366, Jan. 2016.

[27] Gang Xu, Ruiqi Tian, D. Z. Pan, and M. D. F. Wong. CMP Aware
Shuttle Mask Floorplanning. In Proceedings of the ASP-DAC 2005.
Asia and South Pacific Design Automation Conference, 2005., volume 2,
pages 1111–1114 Vol. 2, Jan. 2005.

https://www.eetimes.com/document.asp?doc_id=1217863
https://www.eetimes.com/document.asp?doc_id=1217863

150 Bibliography

[28] Graphviz. Last accessed november 2019, http://www.graphviz.
org/.

[29] K. M. Hall. An r-Dimensional Quadratic Placement Algorithm.
Management Science, 17(3):219–229, 1970.

[30] M. Hsu, Y. Chen, C. Huang, S. Chou, T. Lin, T. Chen, and Y. Chang.
NTUplace4h: A Novel Routability-Driven Placement Algorithm
for Hierarchical Mixed-Size Circuit Designs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 33(12):1914–
1927, Dec. 2014.

[31] M. K. Hsu et al. Routability-Driven Placement for Hierar-
chical Mixed-Size Circuit Designs. In Proceedings of the 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2013.

[32] C. C. Huang, H. Y. Lee, B. Q. Lin, S. W. Yang, C. H. Chang, S. T.
Chen, Y. W. Chang, T. C. Chen, and I. Bustany. NTUplace4dr:
A Detailed-Routing-Driven Placer for Mixed-Size Circuit Designs
With Technology and Region Constraints. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(3):669–
681, Mar. 2018.

[33] Y.-H. Huang, Z. Xie, G.-Q. Fang, T.-C. Yu, H. Ren, S.-Y. Fang,
Y. Chen, and Jiang Hu. Routability-Driven Macro Placement with
Embedded CNN-Based Prediction Model. In Design, Automation
and Test in Europe Conference and Exhibition, 2019, Mar. 2019.

[34] ICCAD 2012 Hierarchy-Aware Placement Contest. Last ac-
cessed november 2019, http://cad-contest.cs.nctu.edu.tw/
CAD-contest-at-ICCAD2012/.

[35] Synopsys IC Compiler. Last accessed november 2019, www.
synopsys.com/Tools/Implementation/PhysicalImplementation/
Pages/ICCompiler.aspx.

[36] itc99 Benchmark Homepage. Last accessed november 2019, https:
//github.com/squillero/itc99-poli.

[37] Jai-Ming Lin and Yao-Wen Chang. TCG: a Transitive Clo-
sure Graph-based Representation for Non-slicing Floorplans. In
Proceedings of the 38th Design Automation Conference (IEEE Cat.
No.01CH37232), pages 764–769, June 2001.

http://www.graphviz.org/
http://www.graphviz.org/
http://cad-contest.cs.nctu.edu.tw/CAD-contest-at-ICCAD2012/
http://cad-contest.cs.nctu.edu.tw/CAD-contest-at-ICCAD2012/
www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/ICCompiler.aspx
www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/ICCompiler.aspx
www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/ICCompiler.aspx
https://github.com/squillero/itc99-poli
https://github.com/squillero/itc99-poli

Bibliography 151

[38] A. B. Kahng. Classical Floorplanning Harmful? In Proceedings of
the 2000 international symposium on Physical design, pages 207–213.
ACM, May 2000.

[39] A. B. Kahng, I. Mǎndoiu, Q. Wang, X. Xu, and A. Z. Zelikovsky.
Multi-project Reticle Floorplanning and Wafer Dicing. In Proceed-
ings of the 2004 International Symposium on Physical Design, pages
70–77. ACM, Apr. 2004.

[40] A. B. Kahng and S. Reda. Reticle Floorplanning with Guaranteed
Yield for Multi-project Wafers. In IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 2004., pages 106–
110, Oct. 2004.

[41] I. Kang, F. Qiao, D. Park, D. Kane, E. F. Y. Young, C.-K. Cheng,
and R. Graham. Three-dimensional Floorplan Representations by
Using Corner Links and Partial Order. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 24(1):13, Jan. 2019.

[42] D. H. Kim and S. K. Lim. Bus-Aware Microarchitectural Floorplan-
ning. In Proceedings of the 12th Asia and South Pacific Design Automa-
tion Conference, pages 204–208. IEEE Computer Society Press, Jan.
2008.

[43] M. Kim and I. L. Markov. ComPLx: A Competitive Primal-dual
Lagrange Optimization for Global Placement. In DAC Design Au-
tomation Conference 2012, pages 747–755, June 2012.

[44] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji.
MAPLE: Multilevel Adaptive Placement for Mixed-Size Designs. In
Proceedings of the 2012 ACM international symposium on International
Symposium on Physical Design, pages 193–200. ACM, 2012.

[45] Y. Koren. On Spectral Graph Drawing. In Proceedings of the 9th an-
nual International Conference on Computing and Combinatorics, pages
496–508. Springer-Verlag, July 2003.

[46] P. Kumar, A. Fell, and S. Mathur. Automated, inter-macro channel
space adjustment and optimization for faster design closure. In 2017
30th IEEE International System-on-Chip Conference (SOCC), pages 74–
79, Sept. 2017.

152 Bibliography

[47] M. Lai and D. F. Wong. Slicing Tree is a Complete Floorplan Rep-
resentation. In Proceedings Design, Automation and Test in Europe.
Conference and Exhibition 2001, pages 228–232, Mar. 2001.

[48] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia. WordRev: Finding Word-level Struc-
tures in a Sea of Bit-level Gates. In 2013 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST), pages 67–74,
June 2013.

[49] J. Lin, Y. Deng, S. Li, B. Yu, L. Chang, and T. Peng. Regularity-Aware
Routability-Driven Macro Placement Methodology for Mixed-Size
Circuits With Obstacles. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, pages 1–12, 2018.

[50] J.-M. Lin, S.-T. Li, and Y.-T. Wang. Routability-driven Mixed-size
Placement Prototyping Approach Considering Design Hierarchy
and Indirect Connectivity Between Macros. In Proceedings of the
56th Annual Design Automation Conference 2019, page 119. ACM,
June 2019.

[51] J. M. Lin, B. H. Yu, and L. Y. Chang. Regularity-Aware Routability-
Driven Placement Prototyping Algorithm for Hierarchical Mixed-
Size Circuits. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 438–443, Jan. 2017.

[52] M.-C. Lin, K. Ferguson, M. Y. Fang, and S.-P. Ko. Automatic Abut-
ment for Devices with Horizontal Pins, US patent US9348963B1,
May 2016.

[53] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev. PO-
LAR: A High Performance Mixed-Size Wirelengh-Driven Placer
With Density Constraints. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 34(3):447–459, Mar. 2015.

[54] Y.-C. Liu, T.-C. Chen, Y.-W. Chang, and S.-Y. Kuo. MDP-trees:
multi-domain macro placement for ultra large-scale mixed-size de-
signs. In Proceedings of the 24th Asia and South Pacific Design Automa-
tion Conference, pages 557–562. ACM, Jan. 2019.

[55] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong,
L. Sha, D. Huang, Y. Luo, C.-C. Teng, and C.-K. Cheng. ePlace-MS:

Bibliography 153

Electrostatics-Based Placement for Mixed-Size Circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
34(5):685–698, May 2015.

[56] Marc Pons Solé. Layout Regularity for Design and Manufacturability.
PhD thesis, Polytechnic University of Catalonia, July 2012.

[57] I. L. Markov, J. Hu, and M.-C. Kim. Progress and Challenges in
VLSI Placement Research. Procs. of the IEEE, 103(11):1985–2003,
2015.

[58] Maxeda. Last accessed november 2019, http://www.maxeda.tech/
product.html.

[59] G. E. Moore. Cramming More Components onto Integrated Cir-
cuits. Electronics (magazine), 38(8), 1965.

[60] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI Mod-
ule Placement Based on Rectangle-packing by the Sequence-pair.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(12):1518–1524, Dec. 1996.

[61] Nangate 45nm Open Cell Library. Last accessed november 2019,
https://www.silvaco.com/products/nangate/FreePDK45_Open_
Cell_Library.

[62] V. Nookala, Ying Chen, D. J. Lilja, and S. S. Sapatnekar.
Microarchitecture-Aware Floorplanning Using a Statistical Design
of Experiments Approach. In Proceedings. 42nd Design Automation
Conference, 2005., pages 579–584, June 2005.

[63] R. H. Otten. Efficient Floorplan Optimization. In Proceedings of
International Conference on Computer Design, pages 499–502, 1983.

[64] D. Pan, B. Yu, and J.-R. Gao. Design for Manufacturing With Emerg-
ing Nanolithography. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(10):1453–1472, Oct. 2013.

[65] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. Temporal
Floorplanning Using the T-tree Formulation. In IEEE/ACM Inter-
national Conference on Computer Aided Design, 2004. ICCAD-2004.,
pages 300–305, Nov. 2004.

http://www.maxeda.tech/product.html
http://www.maxeda.tech/product.html
https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library
https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library

154 Bibliography

[66] R. S. S. Prashant Saxena and S. S. Sapatnekar. Routing Congestion
in VLSI Circuits - Estimation and Optimization. Series on Integrated
Circuits and Systems. Springer, 2007.

[67] J. Roy, S. Adya, D. Papa, and I. Markov. Min-cut Floorplacement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(7):1313–1326, July 2006.

[68] J. Roy, N. Viswanathan, G.-J. Nam, C. Alpert, and I. Markov. CRISP:
Congestion Reduction by Iterated Spreading During Placement. In
IEEE/ACM International Conference on Computer-Aided Design - Digest
of Technical Papers, 2009. ICCAD 2009, pages 357–362, Nov. 2009.

[69] N. Ryzhenko, S. Burns, A. Sorokin, and M. Talalay. Pin Access-
Driven Design Rule Clean and DFM Optimized Routing of Stan-
dard Cells under Boolean Constraints. In Proceedings of the 2019
International Symposium on Physical Design - ISPD ’19, pages 41–47,
San Francisco, CA, USA, 2019. ACM Press.

[70] C. D. G. S. Kirkpatrick and M. P.Vecchi. Optimization by Simulated
Annealing. Science, 220:671–680, 1983.

[71] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf Place-
ment and Routing Package. IEEE Journal of Solid-State Circuits,
20(2):510–522, 1985.

[72] D. Shi and A. Davoodi. Improving Detailed Routability and Pin
Access with 3d Monolithic Standard Cells. In Proceedings of the 2017
ACM on International Symposium on Physical Design, pages 107–112.
ACM, Mar. 2017.

[73] L. Stockmeyer. Optimal Orientations of Cells in Slicing Floorplan
Designs. Information and Control, 57(2):91–101, May 1983.

[74] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan, A. Ti-
wari, N. Shankar, S. A. Seshia, and S. Malik. Reverse Engineering
Digital Circuits Using Structural and Functional Analyses. IEEE
Transactions on Emerging Topics in Computing, 2(1):63–80, Mar. 2014.

[75] A. F. Tabrizi, N. K. Darav, S. Xu, L. Rakai, I. Bustany, A. Kennings,
and L. Behjat. A machine learning framework to identify detailed
routing short violations from a placed netlist. In Proceedings of the
55th Annual Design Automation Conference, page 48. ACM, June 2018.

Bibliography 155

[76] T. Taghavi, C. Alpert, A. Huber, Z. Li, G.-J. Nam, and S. Ramji. New
Placement Prediction and Mitigation Techniques for Local Routing
Congestion. In 2010 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 621–624, Nov. 2010.

[77] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham,
A. Kemper, T. Neumann, and H. T. Vo. The more the merrier: effi-
cient multi-source graph traversal. Proceedings of the VLDB Endow-
ment, 8(4):449–460, Dec. 2014.

[78] Tung-Chieh Chen and Yao-Wen Chang. Modern Floorplanning
Based on B*-tree and Fast Simulated Annealing. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
25(4):637–650, Apr. 2006.

[79] Tung-Chieh Chen, Yao-Wen Chang, and Shyh-Chang Lin. A New
Multilevel Framework for Large-Scale Interconnect-Driven Floor-
planning. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(2):286–294, Feb. 2008.

[80] A. Vidal-Obiols, J. Cortadella, J. Petit, M. Galceran-Oms, and
F. Martorell. RTL-Aware Dataflow-Driven Macro Placement. In
2019 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 186–191, Mar. 2019.

[81] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. The DAC
2012 Routability-driven Placement Contest and Benchmark Suite.
In 2012 49th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 774–782, June 2012.

[82] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. ICCAD-2012
CAD Contest in Design Hierarchy Aware Routability-driven Place-
ment and Benchmark Suite. In 2012 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 345–348, Nov. 2012.

[83] N. Viswanathan, M. Pan, and C. Chu. FastPlace 3.0: A Fast Multi-
level Quadratic Placement Algorithm with Placement Congestion
Control. In Proceedings of the 2007 Asia and South Pacific Design
Automation Conference, pages 135–140. IEEE Computer Society, Jan.
2007.

[84] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph
Drawing. In Proceedings of the 8th International Symposium on Graph
Drawing, pages 171–182. Springer-Verlag, Sept. 2000.

156 Bibliography

[85] D. F. Wong and C. L. Liu. A New Algorithm for Floorplan De-
sign. In 23rd ACM/IEEE Design Automation Conference, pages 101–
107, June 1986.

[86] Xiaoping Tang, Ruiqi Tian, and D. F. Wong. Fast evaluation of se-
quence pair in block placement by longest common subsequence
computation. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 20(12):1406–1413, Dec. 2001.

[87] Xiaoping Tang and D. F. Wong. FAST-SP: a Fast Algorithm for Block
Placement Based on Sequence Pair. In Proceedings of the ASP-DAC
2001. Asia and South Pacific Design Automation Conference 2001 (Cat.
No.01EX455), pages 521–526, Feb. 2001.

[88] Z. Xie, Y. Huang, G. Fang, H. Ren, S. Fang, Y. Chen, and J. Hu.
RouteNet: Routability prediction for Mixed-Size Designs Using
Convolutional Neural Network. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8, Nov. 2018.

[89] X. Xu, B. Cline, G. Yeric, B. Yu, and D. Pan. Self-Aligned Dou-
ble Patterning Aware Pin Access and Standard Cell Layout Co-
Optimization. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 34(5):699–712, May 2015.

[90] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu, and D. Pan. PARR: Pin Access
Planning and Regular Routing for Self-aligned Double Patterning.
In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–6, June 2015.

[91] H. Yamazaki, K. Sakanushi, N. Shigetoshi, and K. Yoji. The 3D-
packing by Meta Data Structure and Packing Heuristics. IEICE
Trans. Fundamentals of Electronics, Communications and Computer Sci-
ences, E83-A(4):639–645, Apr. 2000.

[92] J. Z. Yan, N. Viswanathan, and C. Chu. Handling complexities in
modern large-scale mixed-size placement. In 2009 46th ACM/IEEE
Design Automation Conference, pages 436–441, July 2009.

[93] F. Y. Young and D. F. Wong. How Good are Slicing Floorplans?
Integration, the VLSI Journal, 23(1):61–73, Oct. 1997.

[94] F. Y. Young and D. F. Wong. Slicing Floorplans with Pre-placed
Modules. In Proceedings of the 1998 IEEE/ACM international confer-
ence on Computer-aided design, pages 252–258. ACM, Nov. 1998.

Bibliography 157

[95] F. Y. Young, D. F. Wong, and H. H. Yang. Slicing Floorplans with
Boundary Constraints. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 18(9):1385–1389, Sept. 1999.

[96] F. Y. Young, D. F. Wong, and H. H. Yang. Slicing floorplans with
range constraint. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 19(2):272–278, Feb. 2000.

[97] F. Y. Young, M. D. F. Wong, and H. H. Yang. On Extending slic-
ing Floorplan to Handle L/T-shaped Modules and Abutment Con-
straints. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 20(6):800–807, June 2001.

[98] W. S. Yuen and F. Y. Young. Slicing Floorplan with Clustering Con-
straints. In Proceedings of the ASP-DAC 2001. Asia and South Pacific
Design Automation Conference 2001 (Cat. No.01EX455), pages 503–
508, Feb. 2001.

[99] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. Temporal Floorplanning
Using the Three-dimensional Transitive Closure subGraph. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
12(4):37, Sept. 2007.

[100] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei
Wu. B*-trees: a New Representation for Non-slicing Floorplans. In
Proceedings 37th Design Automation Conference, pages 458–463, June
2000.

[101] H. Zhang, M. Wong, and K.-Y. Chao. On Process-aware 1-D Stan-
dard Cell Design. In Design Automation Conference (ASP-DAC), 2010
15th Asia and South Pacific, pages 838–842, Jan. 2010.

[102] Y. Zhang and C. Chu. CROP: Fast and Effective Congestion Re-
finement of Placement. In IEEE/ACM International Conference on
Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009,
pages 344–350, Nov. 2009.

	Abstract
	Resum
	Preface
	Acknowledgments
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	The IC Design Flow
	Motivation
	Thesis Contributions
	Under-the-Cell Routing
	Macro Placement

	Manuscript Organization

	Preliminaries
	Semi-Custom Design
	Physical Synthesis
	Floorplanning
	Placement
	Routing
	Design for Manufacturability
	Conclusions

	Under-the-Cell Routing
	Motivation
	Related Work
	Contributions
	Standard Cells with Lateral Pins
	Defining the I/O Interface
	Generating the Cells
	Selecting the Sharing Track

	Placement and Routing
	Synthesis Flow
	Microplacement
	Cell Assignment

	Experimental Results
	Conclusions

	Modern Macro Placement: Theory and Practice
	Floorplanning Foundations
	Slicing Structures
	Shape Curves
	Simulated Annealing using Slicing Tree
	Other Floorplan Representations

	Modern Macro Placement Automation
	Macro Placer Taxonomy
	Other Considerations

	Macro Placement in the Industrial Flow
	Some Rules for Macro Placement
	Redefining Engineer Interaction

	Conclusions

	RTL-Aware Dataflow-Driven Macro Placement
	Motivation
	Contributions
	Preliminaries
	Block Representation
	Dataflow Affinity
	Circuit Abstractions

	Algorithmic Overview
	Algorithmic Details
	Shape Curves Generation
	Hierarchical Declustering
	Target Area Assignment
	Dataflow Inference
	Layout Generation
	Macro Orientation

	Experimental Results
	Conclusions
	Design Mapper
	Motivation
	Dataflow Viewer
	Layout Explorer

	Adaptive Macro Placement Guided by Analytic Methods
	Motivation
	Contributions
	Multi-Objective Cost Function
	Adaptive Parameters
	Keeping the Best Solution

	Preferred Macro Locations
	Spectral Dataflow Placement
	Force-directed Sequential Placement

	Experimental Results
	Results After Placement
	Parameter Exploration
	Best Layouts After Placement
	Effect of Latency Awareness
	Effect of Macro Orientation
	DATAFLOW-DISTANCE Tradeoff
	Results After Routing
	Post-Routing Timing Closure

	Conclusions
	HiDaP layouts

	Conclusion and Future Work
	Under-the-Cell Routing
	Macro Placement

	Bibliography

