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Abstract—The advent of FPGA-based accelerators has
encouraged the use of high-level synthesis (HLS) for rapid
prototyping and design space exploration. In this context,
design optimization at behavioral level becomes a criti-
cal task for the delivery of high-quality solutions. Time
elasticity opens a new avenue of optimizations that can be
applied after HLS and before logic synthesis, proposing new
sequential transformations that expand beyond classical
retiming and enlarge the register-transfer level (RTL)
exploration space. This paper proposes a mathematical
model for RTL transformations that exploit elasticity to
select the best implementation for each functional unit and
add pipeline registers to increase performance. Two simple
examples are used to validate the effectiveness and potential
benefits of the model.

I. INTRODUCTION

High-level synthesis (HLS) [1] has raised the abstrac-
tion level at which designers can specify the behavior of
a system. HLS produces a register-transfer level (RTL)
description in which operations are scheduled in time
and resources are assigned to operations [2].

The RTL description usually consists of a datapath
and a control unit. The datapath contains functional
units (e.g. arithmetic units) and registers that perform
operations and store data, respectively. The control unit
determines the execution steps of the algorithm and the
dataflow across functional units.

The functional units are often obtained from a li-
brary of reusable building blocks (integer/floating-point
adders/multipliers, shifters, etc), where different imple-
mentations are eligible for each block to trade-off area
and performance. For example, a ripple-carry or carry-
lookahead adder can be selected to perform additions.
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The library may also contain implementations with dif-
ferent timing characteristics, e.g. a combinational or
sequential multiplier.

During HLS, performance analysis must resort to
simple delay models to estimate the critical paths of the
system. Such estimations may suggest chaining multiple
units on the same cycle and reducing the number of
execution steps or having multi-cycle operations to avoid
excessively long cycle periods [3]. After synthesis, the
common strategy for HLS tools is to deliver cycle-
accurate static schedules that cannot be modified during
RTL synthesis. This means that a combinational unit
cannot be substituted by a sequential one or that two
chained operations cannot be separated by a register.

Elastic circuits [4] have emerged as an alternative
to design correct-by-construction systems with elastic
timing. The basic idea behind this concept is that timing
can be elasticized by using handshake signals that indi-
cate the availability of data and resources. Thus, elastic
modules can be connected with a modular plug-and-play
interconnectivity paradigm. By using elastic units, timing
can be modified without affecting functionality.

II. OVERVIEW

This paper proposes a Mixed-Integer Linear Program-
ming (MILP) model that enables the exploration of RTL
optimizations using elastic timing. To illustrate the set
of optimizations that can be handled by the model, we
use the simple example depicted in Fig. 1.

The figure shows an RTL block diagram with func-
tional units (F1-F4) and registers (shadowed boxes).
Retiming [5] is one of the transformations implicitly
represented by the model. However, elasticity also allows
the model to support the insertion of bubbles (registers
with invalid data), as proposed in [6]. For example, by
inserting a bubble between F3 and F4 (dotted box),
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Fig. 1. Example to illustrate RTL optimizations.
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Fig. 2. Interface of the hierarchical ILP model.

the cycle period (measured as ns/cycle) could be re-
duced. However, this also reduces the throughput of
the system, since the cycle F1-F3-F4-F1 would contain
three registers: two with valid data (tokens) and one
with invalid data (bubble). The throughput would be
reduced to 2/3 tokens/cycle. Still, the important figure
of merit is performance (tokens/ns). If each functional
unit would take a 1ns delay, then cycle period would
be reduced from 2ns (chain of F3-F4) to 1ns, thus
increasing performance from 1/2 to 2/3 tokens/ns.

An important RTL optimization is the binding (se-
lection) of units to operations in case the library con-
tains multiple implementations for the same operation.
Figure 1 shows three possible implementations for F3.
Two of them (F3a and F3b) are combinational units
with different area/performance parameters. The third
one (F3c) is a pipelined unit represented as a netlist of
two combinational blocks and one register.

Again, the modularity enabled by elastic systems is
what allows the selection of units with different timing
characteristics (e.g., combinational or pipelined). In gen-
eral, any arbitrary netlist of combinational blocks and
registers can be accepted as an implementation for an
operation, as long as the interface is elastic. The MILP
model allows to select the best implementation to opti-
mize the desired figure of merit (area or performance)
under a set of constraints (also in area or performance).

The modularity of elastic systems can also be exported
to the MILP model in such a way that the top model can
be built by hierarchically composing the MILP models
of the components. Each MILP model provides a set
of interface variables that can be connected to other
MILP models according to the structure of the system.
Figure 2 depicts the interface variables of each model:
arrival times at the inputs/outputs of the component

(tin, tout ), area (Area(F)), register retiming (r(F)) and
token retiming (σ(F)). It is important to realize that
r(F) and σ(F) are used to model retiming hiearchically,
i.e., moving registers and tokens across the full unit F
without modifying the internal structure of the unit. Fluid
retiming is used to model the throughput of the system.

The next sections describe the details of the MILP
model and illustrate how RTL optimizations can be
exploited by using two simple examples.

III. HIERARCHICAL SPECIFICATION

We can consider a system as a composition of modules
in which each module has an interface and an inter-
nal implementation. The interface specifies the set of
input/output ports and their bitwidth. A composition of
modules is defined by connecting ports via channels.

Every module can have various architectures (imple-
mentations). For example, the module multiplier may
have two architectures: a combinational multiplier (cmul)
and a sequential one (smul). All architectures have the
same interface.

Architectures are defined recursively. An architecture
can be either
• a combinational block, possibly with registers at its

input/output ports. Combinational architectures are
the leaf components of the hierarchy, i.e., they do
not contain other modules, or

• a netlist of modules connected by channels (see
Fig. 1). Each channel can hold registers and each
module can recursively have various architectures
(implementations). There is no limit in the depth of
the hierarchy as long as it is finite, i.e., no cyclic
definitions exist.

The combinational (leaf) blocks of the hierarchy have
attributes that describe the area of the block and the pin-
to-pin delay of the combinational logic. A cost-per-bit
attribute also defines the cost of registers. The total cost
of each register finally depends on the bitwidth of the
channel where it is located.

Figure 3 depicts an architectural hierarchy that de-
scribes a microprocessor. Modules are represented by
ovals, netlists by rectangles and combinational blocks
by trapezoids. The root module (µP) represents the mi-
croprocessor and only has one architecture (Arch). The
architecture includes several modules (Regfile, Exec, . . . )
and their interconnects. Each module may have different
architectures. E.g., there are two architectures for the
FPU unit: FPU1 and FPU2. FPU1 is a netlist with three
components (FADD, FMUL and FDIV). FMUL has two
architectures, the former being a netlist of two modules
and the latter being a combinational architecture.
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Fig. 3. Example of architectural hierarchy.

IV. THE MILP MODEL

In this section we describe the elements of the MILP
model that, given an architectural hierarchy, selects its
best implementation in order to optimize area or perfor-
mance, subject to performance or area constraints.

The underlying theory of the model is based on
the one presented in [6]. Two main contributions are
incorporated to that model:
• It can handle hierarchy without the need to flatten

the original specification.
• It allows to have several architectures for each

module and select the best one according to the
cost function and constraints.

On one hand, the MILP model will perform an ex-
ploration that is represented by an AND-OR tree. Mod-
ules correspond to OR nodes that represent all possible
choices for their implementation. In a particular imple-
mentation, each module shall select exactly one archi-
tecture. Netlists are AND nodes, i.e., all child modules
of the netlist should be present in the implementation.
Finally, combinational nodes are at the leaves of the tree.
The exploration returns a possible implementation, that
is, a subtree of the hierarchy in which the OR nodes
preserve exactly one child and the AND nodes preserve
all children. Fig. 4 depicts a possible implementation
obtained from the architectural hierarchy in Fig. 3.

On the other hand, the MILP model will also have to
decide the location of the registers according to the rules
of retiming and bubble insertion.

The MILP model is constructed hierarchically in a
way that each node in the hierarchy defines a set of
local variables and constraints. The top model is finally
obtained by joining all the constraints and by relating
the variables associated to the interfaces of the nodes
according to the connectivity provided by the netlists.

In the following, we detail in turn the variables and
constraints for each component in the hierarchy, for the
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Fig. 4. A subtree representing a possible implementation (OR nodes
only have one child).

combinational blocks (leaf nodes), for the netlist blocks
(AND nodes), and for the selection blocks (OR nodes).
We finally present the possible optimization functions.

Note that some constraints introduced in this section
use conditions; these may be easily linearized using
standard piecewise linear functions tricks. Also, unless
said otherwise, all variables are real.

A. Global variables

The model has three global variables that determine
the area and performance parameters of the system.
These variables can be defined as constants (as a con-
straint) or used in the cost function for optimization:

Amax : The maximum area of the system
Tmax : The maximum cycle period

θ : The minimum throughput

B. Interface variables at each component

For all nodes N in an architectural hierarchy, the MILP
defines the following interface variables:
• Variable Area(N) is the area of component N.
• For all ports p of N, the variables t(p), r(p)

and σ(p). The variable t(p) represents the arrival
time at p, whereas the integer variable r(p) and
the real variable σ(p) represent the retiming value
and the fluid retiming of tokens (used to calculate
throughput) at p, respectively..

In order to ensure that the arrival times do not exceed
the cycle period, the following constraint is defined for
every port p: t(p)≤ Tmax.

When a module can be implemented by several archi-
tectures, a binary selection variable sel(A) is defined for
each architecture A.

C. MILP model for combinational architectures

Let A be a combinational architecture node associated
to one of the leaves of the hierarchy (see Fig. 5). A
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Fig. 5. Model for a combinational architecture.

has a set of input ports {x1, . . . ,xn} and output ports
{z1, . . . ,zm}. Each port p can potentially hold a register
between the environment and the combinational logic
(dotted slots in the figure). The combinational logic is
also characterized by all the port-to-port delays repre-
sented by a delay matrix D(xi,z j).

Following the theory in [6], each combinational block
A has three variables to model the presence of registers
and tokens in the register holders:

• R(p) denotes the number of registers at the holder
of port p after retiming.

• r(A) is the retiming value of the block.
• σ(A) is the fluid retiming value of tokens.

The fluid retiming of tokens determines the average
number of tokens present in a register during runtime.
This number is required to compute the throughput.

For the propagation of combinational delays across the
register holders, the following two variables are defined
for every port p:

• •t(p) denotes the arrival time before the holder.
• t•(p) denotes the arrival time after the holder.

The arrival time of the output of a register is the clock-
to-Q delay (denoted by Dreg). For simplicity, all registers
are assumed to have the same delay.

The following equations define the constraints for the
arrival times at each port p:

t•(p) =
{ •t(p) if R(p) = 0,

Dreg if R(p)> 0.

The propagation delays across the combinational logic
are modeled by the following constraint applied to each
output port z:

•t(z) = max
x∈X

(
t•(x)+D(x,z)

)
≤ Tmax,

where X is the set of inputs of A, and D(x,z) is the delay
from x to z.

The following constraints define the number of reg-
isters at the holders of each input port x and output

port z; notice that the inequality allows the insertion of
bubbles [6]:

R(x)≥ R0(x)− r(x)+ r(A),

R(z)≥ R0(z)+ r(z)− r(A),

where R0(p) is the initial number of registers at the hold-
ers of the port before retiming. Similarly, the constraints
for the fluid retiming of tokens to guarantee a minimum
throughput θ are

θ ·R(x)≤ R0(x)−σ(x)+σ(A), (1)
θ ·R(z)≤ R0(z)+σ(z)−σ(A). (2)

Finally, the interface variables obbey the following
constraints:

For every input port x, t(x) = •t(x).
For every output port z, t(z) = t•(z).

Area(A) = CombArea(A)+ ∑
p∈Ports(A)

Areg(p) ·R(p).

where CombArea represents the area of the combina-
tional circuit and Areg(p) is the area of a register located
at port p.

D. MILP model for netlist architectures

Let N be a netlist node in the hierarchy. Let Mods(N)
and Chans(N) denote the set of modules and channels
of the netlist, respectively. Each channel c = (p→ q) ∈
Chans(N) is a link between a source port p and a
destination port q.

As in combinational architectures, we define a se-
lection binary variable sel(N) to indicate whether N is
selected or not. We also define variables R(c) that denote
the number of registers for all c ∈ Chans(N).

The following constraints (over all channels
c = p→ q) take care of the register and token
retiming variables:

R(c)≥ R0(c)− r(p)+ r(q),

θ ·R(c)≤ R0(c)−σ(p)+σ(q) (3)

where R0(c) is the initial number of registers present at
channel c before applying retiming.

The following constraints (also over all channels
c = p→ q) propagate times accross channels under the
presence of lack of registers:

t(q) =
{

t(p) if R(c) = 0,
Dreg if R(c)> 0.

The area is defined as:

Area(N) = ∑
M∈Mods(N)

Area(M)+ ∑
c∈Chans(M)

Areg(c) ·R(c).
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with Areg(c) being the area of a register present at
channel c.

E. MILP model for selection modules
A selection module M consists of a set of architectures

among which exactly one of them must be selected. Let
Archs(M) denote the set of possible architectures of M.

Given an architecture a ∈ Archs(M) and one of its
ports p, we denote by ta(p), ra(p) and σa(p) the vari-
ables representing the arrival time and retiming values
of p in a. Likewise, we denote by sel(a) and Area(a)
the variables representing the selection and area of a.

The following constraint guarantees that exactly one
architecture is selected:

∑
a∈Archs(M)

sel(a) = 1.

Bearing in mind that only one of the above selection
variables is non-zero, the remaining interface variables
for the module can be represented as follows:

Area(M) = ∑
a∈Archs(M)

sel(a) ·Area(a),

t(p) = ∑
a∈Archs(M)

sel(a) · ta(p),

r(p) = ∑
a∈Archs(M)

sel(a) · ra(p),

σ(p) = ∑
a∈Archs(M)

sel(a) ·σa(p).

The terms at the RHS of the equations are non-linear.
They can be easily linearized by using some known
tricks for binary variables.

F. Objective functions
The objective function can be defined according to

the constraints of the design and the parameter that is
to be optimized. The parameters that can be used are
throughput (θ), cycle period (Tmax) and area (Amax). Two
options are possible to keep the problem linear:

1) Minimize Amax for a given θ and Tmax.
2) Minimize Tmax for a given Amax and θ.

Notice that the minimization of θ is not possible due to
the non-linearity of constraints (1-3) and the presence of
θ in the LHS of the inequalities.

An interesting problem is the maximization of per-
formance (θ/Tmax) for a given area constraint. This
problem must be solved iteratively. This problem must
be solved iteratively by defining constants values of θ

and minimizing cycle period. One strategy is to solve
multiple MILP models by applying a binary search
on the value of θ. The strategy is similar to the one
presented in [6].

Fig. 6. Sample 4×4 systolic toroidal grid.

V. TWO EXAMPLES

In this section we present the application of the previ-
ous model to two examples that illustrate the capability
of design exploration using the proposed mathemati-
cal model. The MILP models have been solved using
Gurobi [7].

A. Systolic grid

Consider the 4× 4 systolic toroidal grid shown in
Figure 6. Two architectures can implement the combi-
national modules in the grid: a small but slow archi-
tecture (area=10, delay=2, white) and a fast but large
architetcure (area=20, delay=1, gray). Let us assume that
each register has area=5 and zero delay. The goal is
to study which are the Pareto-optimal design points of
performance (θ/Tmax) with respect to area.

Table I shows the Pareto-optimal choices found by the
exploration. Figure 7 depicts the actual Pareto solutions.

It is important to notice that some of the designs
include bubbles (registers with invalid data.). The bub-
bles are represented by green rectangles. Bubbles appear
when θ < 1 and contribute to reduce the cycle period at
the expense of reducing throughput. Even though the
introduction of fast modules helps to reduce the cycle
period, it has no impact until the particular configuration
C is obtained. Solution C guarantees that two fast mod-
ules are present in each row and each column without
registers between them.

The next Pareto-optimal point achieves the minimum
Tmax. However, this configuration requires the insertion
of bubbles to avoid chains of two modules.

The modularity of the MILP model determined by
the hierarchical structure of the system introduces some
algebraic redundancies, which are usually eliminated
by the presolver (e.g., by variable substitution). In this
example, the initial MILP model has 1766 rows and
1334 columns, with 578 integer variables, 66 binary
variables and 4778 non-zeros. After presolving, the
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TABLE I
PARETO-OPTIMAL POINTS FOR THE 4×4 GRID.

Sol Area Tmax θ θ/Tmax

A 280 4 1 1/4
B 320 2 3/4 3/8
C 360 2 1 1/2
D 480 1 3/4 3/4

Fig. 7. Pareto solutions for the 4×4 grid.

matrix is reduced to 857 rows and 809 columns, with
432 integer and 16 binary variables with 2752 non-zeros.
Two minutes of CPU were required to solve the most
difficult instances.

B. Fork/join pipeline

We show now another example for architectural ex-
ploration. Figure 8 depicts a cyclic pipeline with a
join/fork structure. Each stage of the pipeline can hold
multiple functional units of the same type separated by
communication FIFOs.

Each pipeline stage can have multiple functional units
of the same type. The basic unit (F) at stage S has the
area and delay shown in the picture. Hence, the through-
put achievable by each unit is θ(F) = 1/delay(F). If a
pipeline stage S holds k units of F then we assume that
Area(S) = k ·Area(F) and θ(S) = k ·θ(F).

The problem to be solved is: given a constraint on the
total area, what is the maximum achievable throughput?
The problem can be formulated as an exploration in the
same terms proposed in the previous section. The “trick”
here is to model the choice of k for each stage as a

Fig. 8. Sample fork/join pipeline.

TABLE II
PARETO-OPTIMAL POINTS FOR THE EXAMPLE OF FIG. 8.

A B C D E Area θ

1 1 1 1 1 75 1/40
2 2 2 1 1 95 1/30
3 3 3 2 2 185 3/40
4 4 4 3 2 250 1/10

module with kmax architectures, each one representing a
different value for k.

Table II shows the Pareto-optimal points of throughput
with respect to area for this example. Every row repre-
sents a different design and indicates the number of units
associated to each pipeline stage.

VI. CONCLUSION

Elastic systems open new opportunities for the appli-
cation of RTL optimizations after high-level synthesis.
This paper has proposed a mathematical model for a
specific set of transformations. The scalability of the
model and the extension to other optimizations are some
aspects that must be explored in the future.
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