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Abstract—State encoding of asynchronous controllers is a
challenging problem that faces a vast space of solutions. Subtle
differences in the insertion of signals may result in significant
variations in the complexity of the logic. This paper proposes
a novel approach that models the encoding problem as Pseudo-
Boolean formula. A cost function that estimates the complexity of
the logic is incorporated, where the estimator of essential literals
becomes one of the most important terms of the function. The
new approach has been tested in 175 benchmarks with encoding
conflicts, including 127 four-phase latch controllers. The presence
of logic estimators in the formula contributes to an average
reduction of 43% in literals when compared to a plain SAT
version of the problem, at the expense of a longer runtime. When
comparing to the region-based approach in petrify, an average
reduction of 14% in literals is obtained.

I. INTRODUCTION

State encoding is one of the critical problems during the
synthesis of asynchronous control circuits. Several methods
have been proposed in the past, either for circuits working
in fundamental mode [1] or input/output mode [2], among
others. In the latter case, the concurrency between input and
output events imposes more severe constraints on the insertion
of internal signals to disambiguate encoding conflicts. What
makes encoding difficult is the preservation of the imple-
mentability properties of the specification (e.g., consistency
and persistence) after the insertion of new events.

In this paper we will face the encoding problem in its
most generic form, i.e., using state-based models (state graphs)
in which all possible interleavings of concurrent events are
explicitly represented. State graphs (SGs) can be derived from
higher level formalisms such as Signal Transition Graphs
(STGs) or Burst-Mode (BM) machines.

The space of configurations for state encoding is huge and
similar solutions may result in significantly different logic
complexity. One of the challenges in solving the problem is
finding low-complexity correct solutions.

This paper proposes an approach based on satisfiability
(SAT) with two main features: (1) all possible solutions for
the encoding problem are represented by one Boolean formula
and (2) simple estimators of logic complexity are added to
the formula in such a way that high-quality solutions can be
obtained by Pseudo-Boolean optimization.

The work goes beyond a previous SAT-based approach
presented in [3], both in the space of explored solutions and in
the estimation of logic complexity. The results obtained by our
method shows that still a tangible margin for improvement was
left by the best previous approaches implemented in petrify [2]
or MPSAT [4].

II. OVERVIEW

Let us consider the following sequence of events that models
the behavior of a controller with {r0, a1, a2} and {a0, r1, r2}
as input and output signals, respectively:
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The bullets • represent a pair of states with the same
encoding separated by a complementary subsequence of events
(r+

1 a
+
1 r
−
1 a
−
1 ). Solving the encoding problem requires the in-

sertion of a signal x with an event that breaks this subsequence.
Given that a1 is an input signal, a new event (e.g., x+)

can only be inserted between a+
1 and r−1 in order to maintain

the handshaking protocol with the environment. Still, there is
some freedom for the insertion of the complementary event
x−. Let us consider three different solutions:
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A well-established estimator of the complexity of a logic
circuit is the number of literals of the Boolean equations after
logic minimization. We use the same criterion in this paper.

The state encoding problem faces a vast space of solutions.
The challenge is to find the ones that lead to simpler circuits
without resorting to logic minimization during the exploration.

This paper proposes a SAT-based approach. in which the
main contribution is the incorporation of logic complexity
estimators in the same formula. The most important estimator
used in this paper is the number of essential literals. Infor-
mally, if the encoding of two states, s1 and s2, only differs in
one signal value (e.g., z = 1 in s1, z = 0 in s2), and s1 and
s2 belong to the on- and off-set of the next-state function
for signal x, respectively, then z is essential for x, i.e., z
must be in the support of x. The important aspect is that the
presence of essential literals is a local property (between pairs
of states) that can be efficiently encoded in a Boolean formula.
Moreover, the number of essential literals can be minimized
by using Pseudo-Boolean optimization [5].

We have observed that there is a very high correlation
between the number of essential literals and the final literals
of a function represented as a factored form. Fig. 1 depicts a
plot comparing essential vs. actual literals for a large number
of controllers. The solid line represents the ideal prediction
(essential = actual). The red dashed line represents a linear
regression (R2 = 0.91), that indicates that the number of
essential literals is a good estimator.
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Fig. 1: Essential literals vs. literals in factored form.
The following table reports the logic equations for the

previous solutions of the example. The number of essential
literals is represented in brackets and is a lower bound (and a
good estimator) of the number of literals of the equations.

Solution (1) Solution (2) Solution (3)
r1 = [2] r0x̄ [2] r0x̄ [2] r0r̄2x̄
r2 = [3] r0ā1x [2] ā1x [3] ā1x + r0a2

a0 = [2] a2 + a0x [1] a2 [2] a2x̄
x = [3] a1 + a2 + ā0x [3] a1 + r0x [3] a1 + a2x

Besides essential literals, there are other estimators that also
have some correlation with the complexity of the logic: size of
the don’t care set and number of entry points of the excitation
regions. These estimators will be discussed later in the paper.

III. BACKGROUND

This section reviews some known concepts on Boolean
functions, state graphs and speed-independent circuits.

A. Boolean Functions

An incompletely specified function (ISF) is a functional
mapping F : B → {0, 1,−}, where B = {0, 1} and ’−’
represents the don’t care (DC) value. The subsets of Bn in
which F has the 0, 1 and DC values are called the OFF-, ON-
and DC-set, respectively.

Let F (x1, x2, . . . , xn) be a Boolean function of n Boolean
variables. The set X = {x1, x2, ..., xn} is the support of the
function F. A variable xi ∈ X is essential for function F if
there exist at least two elements of Bn, v1 and v2, that only
differ on the value of xi, such that F (v1) = 0 and F (v2) = 1.

B. State graphs

The work presented in this paper uses State Graphs (SG),
that can be derived from higher-level formalisms such as STGs
or BM machines. An SG is a 4-tuple (S, T,Σ, δ) such that S
is a finite set of states, T ⊆ S×S is the set of transitions and
Σ = In ∪ Out ∪ Int is a set representing the input, output and
internal signals. Finally, δ : T → Σ × {+,−} is a labelling
function that associates a signal transition to each transition.

Rising and falling transitions of signal a between states s1

and s2 are represented by s1
a+

→ s2 and s1
a−

→ s2, respectively.
A generic transition of signal a is represented by s1

a→ s2. A
signal a is said to be enabled at state s1 if there exists a tran-
sition of the form s1

a→ s2 for some s2 ∈ S. Henceforth, we
will assume that the SGs used for synthesis are deterministic.

Signal transitions implicitly induce a state encoding. Thus,
s(a) = 1 or s(a) = 0 represent the fact that a has value

1 or 0 in state s, respectively. In particular, s1
a+

→ s2 im-

plies s1(a) = 0 and s2(a) = 1. Similarly, s1
a−

→ s2 implies
s1(a) = 1 and s2(a) = 0. If s1

b→ s2, for any b 6= a, then
s1(a) = s2(a). An SG is said to be consistent if these
rules can be applied to every signal and state without
any contradiction. code(s) = (s(a1), s(a2), ..., s(an)), with
Σ = {a1, a2, ..., an} defines the encoding of state s.

The positive and negative excitation regions of signal a,
denoted ER+

a and ER−a respectively, are the sets of states in
which a+ (for ER+

a ) and a− (for ER−a ) are enabled. The
positive and negative quiescent regions of signal a, denoted
QR+

a and QR−a respectively, are the sets of states in which a
is not enabled and has value 1 (for QR+

a ) and 0 (for QR−a ).
For convenience we also define ERa = ER+

a ∪ ER−a and
QRa = QR+

a ∪ QR−a . When referring to individual states,
ER+

a (s), ER−a (s), QR+
a (s) and QR−a (s) denote that s belongs

to ER+
a , ER−a , QR+

a and QR−a respectively.
We define ONa = ER+

a ∪ QR+
a and OFFa = ER−a ∪ QR−a .

The next-state function of a signal defines its future value
in the next stable state. Thus, an enabled signal toggles its
value, whereas a stable signal maintains its value. The next-
state function for signal a is an ISF defined as follows:

ONset(a) = ∪s∈ONa
code(s)

OFFset(a) = ∪s∈OFFa
code(s)

DCset(a) = Bn \ (ONset(a) ∪ OFFset(a))

C. Speed independence

A signal a triggers a signal b if there is a transition s1
a→ s2

such that b is enabled in s2 and not enabled in s1. Conversely,
a disables b if b is enabled in s1 and not in s2. An SG is said
to be output persistent if for any pair of signals a and b such
that a disables b, then both a and b are input signals.

An SG satisfies the Unique State Coding (USC) condition
if every state in S is assigned a unique binary code, i.e.,

∀s1, s2 ∈ S : s1 6= s2 =⇒ code(s1) 6= code(s2).

An SG satisfies the Complete State Coding (CSC) condition
if the next-state function for any non-input signal is well
defined, i.e.,

∀s1,s2 ∈ S, ∀a ∈ Out ∪ Int :

(s1 ∈ ONa ∧ s2 ∈ OFFa) =⇒ code(s1) 6= code(s2)

An SG is said to be commutative if for any state s1 in
which the traces ab and ba are enabled, the firing of the traces
leads to the same state, i.e., if s1

a−→ s2, s2
b−→ s4, s1

b−→ s3

and s3
a−→ s5, then s4 = s5.

An important result on speed independence is as follows [2]:
a deterministic SG with CSC that satisfies per-
sistency and commutativity is implementable as a
speed-independent circuit.

An additional important property is input-properness. An
SG is input-proper if no internal signal triggers any input
signal. This guarantees that the behavior of the environment
does not depend on any unobservable signal of the circuit.



Solving the state encoding problem is based on inserting
new signals to disambiguate CSC violations. The insertion of
new signals proposed in this paper preserves the conditions
for speed-independence and input-properness.

D. Signal Insertion
The insertion of a new internal signal into an existing

SG is now described. This transformation preserves trace
equivalence. An in-depth explanation signal insertion can be
found in [2], [3].

Henceforth, the new inserted signal will be named x /∈ Σ,
whereas the signals from the original SG will be named
a, b ∈ Σ. The signal insertion process requires all states in S
to be partitioned into four sets1: ER+, ER−, QR+ and QR−.
These sets will determine the future ERs and QRs of x.

After inserting signal x, some transitions will be delayed
(triggered) by x. These are the transitions that exit ER:

EXIT ={s1 → s2 |
(ER+(s1) ∧ ¬ER+(s2)) ∨ (ER−(s1) ∧ ¬ER−(s2))}

Some other transitions will become concurrent with x.
These are transitions that will remain inside ER:

CONC ={s1 → s2 |
(ER+(s1) ∧ ER+(s2)) ∨ (ER−(s1) ∧ ER−(s2))}

The set of new states created by the insertion of x is called
Ŝ. For every state s ∈ ER a new sibling state ŝ ∈ Ŝ is
added. New transitions are also added with the new states.
In particular, the new sets of transitions are:

Tx ={s→ ŝ : s ∈ ER}
Td ={ŝ1 → s2 : s1 → s2 ∈ EXIT}
Tc ={ŝ1 → ŝ2 : s1 → s2 ∈ CONC}

with Tx referring to the transitions between siblings, Td to the
delayed transitions and Tc to the concurrent transitions.

The new SG (S′, T ′,Σ′, δ′), obtained after the insertion of
x in the original SG (S, T, λS , λE) is defined as:
• S′ = S ∪ Ŝ
• T ′ = (T ∪ Tx ∪ Td ∪ Tc) \ EXIT
• Σ′ = Σ ∪ {x}
• The labeling function defined as:

– δ′(s→ ŝ) = x+ if s ∈ ER+

– δ′(s→ ŝ) = x− if s ∈ ER−

– δ′(ŝ1 → ŝ2) = δ(s1 → s2)
– δ′(ŝ1 → s2) = δ(s1 → s2)
– δ′(s1 → s2) = δ(s1 → s2)

Fig. 2 shows an example of signal insertion on a fragment
of an SG. On the left, the figure shows the SG before signal
insertion in which every state has been tagged with one of the
ERs or QRs of x. On the right, states in the ER of x have
been duplicated and the new transitions defined accordingly.

A generic view of signal insertion is depicted in Fig. 3. On
the left, the partition of S into the four ER/QR regions of x
is shown. On the right, the state space after adding the sibling
states is shown.

1When no subscript is specified in the sets, they are assumed to refer to
the new inserted signal.
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Fig. 2: SG before and after signal insertion.

Fig. 3: Partitioning of the state space into the ER and QR
regions of x before (left) and after (right) the insertion.

IV. SAT FORMULA FOR THE SIGNAL INSERTION PROBLEM

The SAT formulation is inspired by the work in [3]. The
main difference of this paper is that the CSC problem is
solved by inserting signals sequentially rather than inserting
all signals at once. This strategy explores a larger space of
solutions, since it allows one internal signal to trigger another
internal signal. This enables the generation of solutions that
cannot be found by the approach in [3].

Signal insertion is based on partitioning the set of states
into four subsets as described in the previous section. The
SAT formula encodes this partitioning. Additionally, it also
encodes the properties for speed-independent implementabil-
ity: consistency, persistence and input-properness.

A. Boolean variables

Two variables are defined for every state s: v1(s) and v2(s).
They encode the membership of s to one of the ER/QR regions
of x. The encoding used in this work is:

ER+(s) = v1(s) ∧ v2(s) ER−(s) = v1(s) ∧ ¬v2(s)
QR+(s) = ¬v1(s) ∧ v2(s) QR−(s) = ¬v1(s) ∧ ¬v2(s)

The total number of variables is 2×|S|. Additional variables,
will be required for optimization purposes (see Section V).

B. Consistency

Constraints to ensure the consistency of x (i.e., x+ and x−

alternate) must be included in the SAT formula. That means
that all paths across the SG must visit the insertion regions
in the order2 ER+ → QR+ → ER− → QR− → ER+ → · · · .

2Transitions ER+ → ER− and ER− → ER+ are also possible.

ER+ QR+

QR− ER−

ER+ QR+

QR− ER−

Fig. 4: Consistent (left) and inconsistent (right) transitions.
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Fig. 6: Persistent insertions are circled on the left. Non-
persistent insertions are shadowed in gray.

Fig. 4 shows the legal transitions between sets (left) and the
illegal transitions (right). The constraint can be formulated as:

∀s1 → s2 ∈ T :

¬(QR−(s1) ∧ QR+(s2)) ∧ ¬(QR−(s1) ∧ ER−(s2))∧
¬(QR+(s1) ∧ QR−(s2)) ∧ ¬(QR+(s1) ∧ ER+(s2))∧
¬(ER+(s1) ∧ QR−(s2)) ∧ ¬(ER−(s1) ∧ QR+(s2))

C. Persistence

The insertion of a new signal must guarantee that no new
non-persistence is introduced. For that, it suffices to look at
diamonds of concurrent transitions [2], [3]. Fig. 5 (left) depicts
a diamond with a possible assignment of ER/QR regions for
signal insertion. On the right, the result after signal insertion is
shown. It can be noticed that this insertion does not maintain
persistence, e.g., a is enabled in s1 but not in s3.

Fig. 6 shows all possible allocations of ERs in a diamond.
The circled states identify the ER for insertion. Circled regions
preserve persistence, whereas shadowed regions do not.

For each diamond s1
a→ s2

b→ s4 and s1
b→ s3

a→ s4, persis-
tence can be formulated with the following three constraints:

ER+(s1) ∧ ER+(s4) ⇒ ER+(s2) ∧ ER+(s3)

¬ER+(s1) ∧ ¬ER+(s4) ⇒ ¬ER+(s2) ∧ ¬ER+(s3)

ER+(s2) ∧ ER+(s3) ⇒ ER+(s4)

Similar clauses apply for ER−.

D. Input-properness

Input-properness is guaranteed by forbidding x to trigger
an input signal, i.e., not allowing any input transitions to exit
ER. Formally, for each s1

a→ s2, such that a is an input event:

(ER+(s1)⇒ ER+(s2)) ∧ (ER−(s1)⇒ ER−(s2))

V. PSEUDO-BOOLEAN FORMULA FOR OPTIMIZATION

This section introduces the optimization part of the SAT
formula for generating high-quality solutions. Optimization is
performed by defining a cost function as a linear combination
of Boolean variables. This function biases the explored so-
lutions towards disambiguating CSC conflicts with low logic
cost. Methods for Pseudo-Boolean optimization can be used
to formulate the problem with a linear cost function and still
using SAT solving engines [5].

A. Reduction of CSC Conflicts

After the insertion of a signal x, some of the CSC conflicts
will be solved and some will not. We next propose a formu-
lation to quantify the remaining conflicts after the insertion.

Let us call CSCpairs the sets of pairs of states with CSC
conflicts. For each pair (si, sj) in the previous set we define a
new variable ci,j that denotes whether a CSC conflict remains
after signal insertion.

A CSC conflict is solved for (si, sj) if the two states have a
different value for x. This requires both states to be in different
QRs of x. Notice that the presence in some ER means that
sibling states would be created that would inherit the original
CSC conflict. Thus, for any (si, sj) ∈ CSCpairs:

¬ci,j ⇔ [QR−(si) ∧ QR+(sj)] ∨ [QR+(si) ∧ QR−(sj)]

USC conflicts may also become CSC conflicts after signal
insertion (they are called secondary conflicts). They occur
when two states still have the same code and x becomes
enabled in one of them but not in the other one. While this
can be easily modelled as a Boolean formula, these conflicts
have a very minor impact and can be ignored in practice.

The total number of conflicts (minus secondary conflicts)
that will remain after inserting x can be easily computed as:

Conf =
∑

(si,sj)∈CSCpairs

ci,j .

B. Estimation of logic: essential literals

The encoding for essential literals is the most elaborate of
the ones presented here. For clarity, let us define d̂(s1, s2)
as the Hamming distance between the binary encodings of
s1 and s2 after the insertion of x. Additionally, the predicate
d̂1(s1, s2) is true if d̂(s1, s2) = 1. This predicate can also be
extended and used for sibling states, e.g., d̂1(s1, ŝ2). We will
use the predicates ÔNy(s) and ÔFFy(s) to denote the fact that
state s belongs to the on- and off-set of signal y, respectively,
after the insertion of signal x. Further details about the
encoding of these predicates are given in the appendix.

The basic condition for a signal z becoming an essential
literal for signal y is as follows: there must be a pair of
states s1 ∈ ÔNy(s) and s2 ∈ ÔFFy(s), such that d̂1(s1, s2)
and s1(z) 6= s2(z). We can also distinguish between positive
and negative essential literals depending on the polarity of the
essential literal z with regard to y.



We can now define the basic predicate that represents the
fact that two states (or their siblings) with Hamming distance
one can be at the on/off-set of y after the signal insertion:

D1(s1, s2, y) ≡ (d̂1(s1, s2) ∧ ÔNy(s1) ∧ ÔFFy(s2))∨
(d̂1(ŝ1, s2) ∧ ÔNy(ŝ1) ∧ ÔFFy(s2))∨
(d̂1(s1, ŝ2) ∧ ÔNy(s1) ∧ ÔFFy(ŝ2))∨
(d̂1(ŝ1, ŝ2) ∧ ÔNy(ŝ1) ∧ ÔFFy(ŝ2))

Next, the constraint for essential literals is defined, where
E+
z→y and E−z→y are new boolean variables that represent the

fact that z is a positive and negative essential literal for y,
respectively.

∀s1, s2 ∈ S :(
D1(s1, s2, y) ∧ s1(z) = 1 ∧ s2(z) = 0⇒ E+

z→y

)
∧(

D1(s1, s2, y) ∧ s1(z) = 0 ∧ s2(z) = 1⇒ E−z→y

)
The number of essential literals after the insertion of x can
now be computed as:

EssLit =
∑

y,z∈Σ∪{x}

E+
z→y + E−z→y

C. Don’t Care set
A large DC-set increases the opportunities for logic mini-

mization. After the insertion of the new signal, the size of the
DC-set depends on the amount of new sibling states, which
is determined by the size of the ERs for signal x. A simple
way for estimating their size is to count the signals that are
concurrent with x after the insertion.

The variables conca+ and conca− indicate whether there
is a transition a+ or a−, concurrent with x. The following
predicates represent the concurrent events with x:

∀ s1
a+−−→ s2 :

(ER+(s1) ∧ ER+(s2)) ∨ (ER−(s1) ∧ ER−(s2))⇒ conca+

∀ s1
a−−−→ s2 :

(ER+(s1) ∧ ER+(s2)) ∨ (ER−(s1) ∧ ER−(s2))⇒ conca−

The number of concurrent signals, highly correlated with the
size of the ERx, is thus computed as:

ERsize =
∑
a∈Σ

(conca+ + conca−)

D. Entry points
We say that s is an entry point (EP) for ER+

x if s ∈ ER+
x

and all its predecessor states are outside ER+
x (similarly for

ER−x ). The events leading to EPs determine the trigger signals
of x. Thus, reducing the number of EPs also contributes to
reduce the causality relations with the remaining signals of
the circuit. We have observed that penalizing the amount of
EPs helps to find solutions with simpler logic.

For each state s, we define the variable ep(s) that determines
whether s is an EP for x:

∀si → sj :(
¬ER+(si) ∧ ER+(sj)

)
∨
(
¬ER−(si) ∧ ER−(sj)

)
=⇒ ep(sj)

The number of entry points can now be computed by:

numEP =
∑
s∈S

ep(s)

E. Cost function

The multiobjective cost function used to estimate the quality
of a solution is defined as:

Cost = α · Conf + β · EssLit + γ · numEP + δ · ERsize (4)

with α, β, γ, δ being adjustable coefficients.
This function needs to be encoded as a SAT formula. The

larger the coefficients, the more complex the formula. This
affects the runtime dramatically and limits the range of values
that can be used in practice. We found that weights ≤ 3
produce good results with reasonable execution times.

Having a diversity of cost functions with different coeffi-
cients also contributes to a wider exploration of solutions. In
our experiments we have also generated results by exercising
a small set of cost functions and selecting the best solution.
This strategy will be further discussed in Section VIII.

VI. SAT-BASED OPTIMIZATION ALGORITHM

The optimization algorithm iteratively tries to insert new
signals (one at a time) into the SG until CSC is solved or no
satisfiable is found. The core of the algorithm is the function
findModelForOneSignal, which returns a model that encodes
the definition of the ER±/QR± regions for the insertion of a
new signal.

Algorithm 1 sketches the procedure to find a solution for
signal insertion using pseudo-Boolean optimization. The cost
function (4) is encoded as a set of SAT clauses [6]. The
function is minimized by iteratively constraining the formula
until it becomes unsatisfiable. If a model with Cost = k is
found in one iteration, the constraint Cost < k is encoded
and added for the next iteration. This strategy speeds-up the
optimization by taking advantage of the clauses learned by the
SAT solver from the previous iterations [6].

A binary search on the value of k could also be possible,
but it cannot take advantage of the learned clauses. We have
not observed a clear benefit when using binary search.

Algorithm 1: FINDMODELFORONESIGNAL(G)
input : An SG with CSC conflicts.
output: A SAT model for signal insertion.
begin

CNF = encodeCSCconstraints(G)
model = SATsolver(CNF)
bestModel = model
while isSatisfiable(model) do

k = getCost(model)
addClausesForCost(CNF, Cost < k)
model = SATsolver(CNF)
if isSatisfiable(model) then bestModel = model

return bestModel



The PBLib [7] toolkit was used for the encoding of Pseudo-
Boolean constraints and solving the SAT formulas. Internally,
PBLib uses Minisat [8] as SAT solver.

VII. COMPARISON WITH PREVIOUS ART

We next discuss the main differences with the most relevant
approaches proposed for asynchronous controllers working in
input/output mode. We can distinguish two main categories:
• Structural methods working at Petri net level, such as

MPSAT [4] (based on unfoldings) and structural methods
using integer-linear programming [9].

• State-based methods, such as petrify [2] and a previous
SAT-based approach [3].

We will use the example of Fig. 7, depicting one of the
4-phase latch controllers presented in [10], to discuss the
differences among tools. This figure includes the approach
presented here, that will from now on be referred to as PBASE.
The logic equations for each solution are the following:

MPSAT Petrify PBASE
la = x2(rr+x̄1)+x3 x̄1 x̄1

rr = x2 lr x̄1+x3 x2+rr x̄1 (x̄1 ra)+rr x̄1

x1 = x̄2 lr+x1(ra+x̄3) (x̄2 rr)+x1+ l̄r (ra rr lr)+x1(rr lr)
x2 = (x3+x1)+x2 lr ra(x̄1+lr)+x2 lr
x3 = (x2x1ra)+x3x̄1

Regarding the exploration of insertion points for the new
signals, the main limitation of the structural methods is that the
original specification acts as a corset. The new events must be
anchored in existing nodes of the Petri net (or its unfolding).
If two different Petri nets have the same reachability graph,
the space of solutions is also different and a subset of the
solutions available at SG level. Moreover, the insertion must
be done in such a way that the causality relations can be
expressed with the semantics of a Petri net. In Fig. 7, the
MPSAT solution requires three new signals and 22 literals.
The reader can intuitively perceive that the new events have
simple causality relations. This phenomenon also occurs for
the ILP-based method proposed in [9].

Petrify is a special case. The insertion of signals is done
at state level, however the sets of states for insertion are built
based on combinations of regions (that correspond to Petri
net places). Petrify only uses simple combinations of regions
that prevent the exploration of intricate solutions that could
potentially be better. It requires two signals and 13 literals.

PBASE provides the most efficient solution, with only one
signal and 11 literals. Notice that the two new events have
multiple causality relations (two input and two output arcs).
Although the figure shows a Petri net, these relations are
naturally found at state level ignoring the model of the
original specification. In this particular case, the solution was
representable as a nice Petri net.

With regard to the estimation of logic, structural methods
are mostly based on finding trigger relations between events.
This gives a lower bound on the number of literals, although it
is less accurate than the estimation given by essential literals.

The SAT-based approach presented in [3] has two main lim-
itations. First, all new signals are inserted simultaneously and
cannot have mutual trigger relations between them. Second,

the approach is simply based on finding valid solutions without
any estimation of the logic cost. The solutions provided by this
approach are significantly worse than the ones generated by
the other tools discussed in this section.

VIII. RESULTS

This section shows the experimantal results for PBASE and
a comparison with Petrify and MPSAT. Additionally, we have
re-implemented the approach from [3] (referred to as SAT),
and included it as a baseline.

We have used a large diversity of benchmarks from the
literature and all the 4-phase latch controllers presented in [10]
(127 out of 137 had CSC conflicts). The solutions for all
benchmarks can be found in [11].

Table I shows the results for a variety of heterogeneous
controllers. The column Signals/Literals reports the number of
state signals that were inserted and the number of literals of
the Boolean equations (in factored form) after logic synthesis.
CPU(sec) reports the CPU time required to solve CSC. The
number of states of the SG is in column |S|. The I/O column
contains the number of input/output signals of the SG. This
table compares results between Petrify, MPSAT and two
versions of PBASE, single and multi, using different versions
of the (α, β, γ, δ) coefficients for optimization function (4):
• PBASE(single): using the coefficients (2,1,3,2).
• PBASE(multi): using multiple different values for the

coefficients and choosing the best solution. The set of co-
efficients were (0,1,1,1), (3,2,2,0), (3,1,1,0) and (1,0,1,1),
besides the one used for PBASE(single).

PBASE(multi) explores a larger variety of solutions at the
expense of computational time. It also uses a fast heuristic
in the first iteration to be able to solve larger problems. A
10-minute timeout is set up and the best solution found when
the timeout expires is returned. The combination of the fast
heuristic with the timeout allows to solve problems that could
not be solved with the simpler version.

In some cases, the tools were not able to complete the task.
These cases are reported with one of the following codes:
• Unsf: Unsafe Petri nets. MPSAT is unable to solve them.
• Fail: The tool was unable to find a solution.
• Time: No solution found in less than 1 hour.
A summary of the results for Table I can be found in

Table II, including the results for SAT [3]. This table presents
a comparison between PBASE(multi) and the other tools. Row
Solved reports the number of solved instances. The remaining
data in the table only report the total results for the benchmarks
that were solved by both tools under comparison. Results for
those not solved by both were ignored in the summary. The
CPU time is divided into 3 groups as a function of problem
size (see Table III for the group division). This puts into scale
the amount of time used for the largest problems. The final
row reports the ratio of literals obtained by any pair of tools
taking the other tools as a reference.

SAT gives the lowest-quality solutions, as it does not include
any quality estimator in the model, while PBASE outperforms
the other methods, with an average improvement of 13% in



(a) Original STG (b) MPSAT (c) Petrify (d) PBASE

Fig. 7: 4-phase latch controller L220oR2242 (from [10]). State encoding solutions obtained by different tools.

TABLE I: Experimental results for Petrify (Pfy), MPSAT (MP), PBASE(single) (PB(s)) and PBASE(multi) (PB(m)).
CPU(sec) Signals/Literals CPU(sec) Signals/Literals

Example I/O |S| Pfy MP PB(s) PB(m) Pfy MP PB(s) PB(m) Example I/O |S| Pfy MP PB(s) PB(m) Pfy MP PB(s) PB(m)
adc.buff1 0/2 6 0.4 0.9 0.3 5.4 2/9 2/9 2/11 2/9 nowick 3/2 18 0.2 0.1 0.2 5.4 1/13 1/13 1/13 1/13
adfast 3/3 44 1.2 0.1 5.6 16.0 2/14 2/21 2/14 2/14 par2 3/3 28 0.2 0.1 4.4 12.9 2/16 2/16 2/16 2/16
alloc-outbound 4/3 17 0.2 0.1 0.8 7.3 2/16 2/17 2/16 2/16 par4 5/5 628 3.9 0.2 Time 544.6 4/32 4/32 -/- 4/32
buf2 0/2 8 0.1 Unsf 0.8 7.9 3/14 -/- 3/15 3/13 pla 0/3 12 0.1 0.1 0.2 4.5 1/14 2/16 1/14 1/14
buf dum.1 0/2 8 0.1 0.1 0.8 6.8 3/14 3/15 3/15 3/13 ram-read-sbuf 5/5 36 1.8 0.1 1.2 10.3 1/18 1/19 1/22 1/18
buf unsafe.1 0/2 12 Fail Unsf 5.3 23.3 -/- -/- 5/26 5/26 read write 7/4 322 2.0 0.2 79.1 164.8 1/24 1/26 1/24 1/24
c10 0/10 2046 Time Fail 32.7 136.7 -/- -/- 1/31 1/31 sbuf-ram-write 5/5 58 5.0 0.2 9.1 24.1 2/22 2/31 2/23 2/21
c6 0/6 126 4.2 0.8 1.1 6.9 1/19 1/19 1/19 1/19 sbuf-read-ctl 2/4 14 0.1 0.2 0.2 4.5 1/15 1/15 1/15 1/15
csc-div1 0/2 8 0.0 0.1 0.1 4.7 1/16 1/16 1/16 1/16 seq2 3/3 12 0.1 0.1 0.1 3.0 1/8 1/8 1/8 1/8
duplicator 2/2 20 0.4 0.1 0.5 5.9 2/18 2/13 2/13 2/13 seq3 4/4 16 0.5 0.1 0.6 6.9 2/14 2/14 2/14 2/14
future 4/4 36 1.0 0.2 0.4 6.0 1/18 3/33 1/18 1/18 seq4 5/5 20 1.3 0.2 1.4 8.3 3/20 3/20 2/19 2/19
glc 2/1 17 0.1 0.1 0.1 4.9 1/10 1/11 1/10 1/10 seq8 9/9 36 4.7 1.1 108.7 302.6 4/47 7/44 3/44 3/37
ircv-bm 5/4 44 5.8 0.4 9.8 39.9 2/37 2/31 2/35 2/28 seq-mix 4/4 20 1.1 0.2 2.2 10.8 3/20 3/20 3/18 2/18
isend 4/3 36 4.2 0.4 4.4 23.8 3/48 3/34 3/29 2/29 sis-master-read 6/7 1882 3.3 0.3 Time 309.3 1/38 1/40 -/- 1/39
lazy ring.noncsc 5/3 160 1.7 0.4 27.6 53.9 1/24 2/29 1/22 1/20 trcv-bm 5/4 44 8.7 0.3 7.6 35.3 2/37 2/32 2/31 2/31
master-read 6/7 8932 54.6 Fail Time Time 8/68 -/- -/- -/- tsend-bm 5/4 40 4.6 0.2 7.9 21.0 2/39 2/27 3/34 1/28
master-read2 0/13 8932 26.3 15.5 Time Time 6/70 5/75 -/- -/- vbe4a.nousc 3/3 58 1.4 0.2 5.1 21.1 3/26 4/23 3/18 3/16
master-read.1098 6/7 1098 9.7 3.3 Time 537.3 4/57 6/43 -/- 5/41 vbe5a 3/3 44 0.9 0.1 4.2 15.0 2/14 2/21 2/14 2/14
mmu0 4/4 174 2.7 0.1 89.1 198.3 3/29 3/28 3/28 3/26 vbe6a.nousc 4/4 128 1.1 0.2 41.0 114.4 3/31 2/30 2/30 2/30
mmu1 4/4 82 1.1 0.2 8.1 27.1 2/32 2/25 2/25 2/23 vbe6x.nousc 3/3 48 0.4 0.2 4.4 17.3 2/22 2/22 2/23 2/22
mod4 counter 1/2 16 0.1 0.1 0.3 8.0 2/26 2/25 2/26 2/26 vme read 8/6 251 4.0 0.1 16.2 39.0 1/32 1/33 1/30 1/30
mr0 5/6 302 4.4 0.4 Time 600.2 3/45 4/29 -/- 4/33 vme read write 3/3 28 0.3 0.3 1.0 8.6 1/23 2/27 1/22 1/22
mr1 4/5 190 3.4 0.6 91.6 201.7 4/35 4/31 3/26 3/25 vme write 8/6 817 7.8 0.2 Time 602.1 1/38 1/38 -/- 1/35
nak-pa 4/5 56 0.7 0.1 0.7 9.0 1/18 1/18 1/18 1/16 vmebus 3/3 24 0.8 0.2 0.5 7.2 1/19 2/28 1/19 1/19

TABLE II: Summary for the benchmarks in Table I.
Pfy PB(m) MP PB(m) SAT PB(m) PB(s) PB(m)

Solved 46 46 44 46 43 46 41 46
CPU (small) 13 163 4 155 0 148 26 186
CPU (medium) 30 226 2 226 0 226 62 226
CPU (large) 53 3675 8 3675 73 3812 487 1218
Signals 88 83 97 80 72 78 78 74
Literals 1081 943 1042 930 1938 948 864 820
Ratio 1.00 0.87 1.00 0.89 1.00 0.49 1.00 0.95

TABLE III: Average CPU time for different SG sizes.
Avg. CPU (s)

Size Condition n PB(s) PB(m)
small |S| < 40 ∧ |Σ| ≤ 15 22 1.2 8.5
medium 40 ≤ |S| < 100 ∧ |Σ| ≤ 15 10 6.2 22.6
large |S| ≥ 100 ∨ |Σ| > 15 9(s)/14(m) 54.1 272.3

the number of literals with regard to petrify. PBASE(multi)
offers a tangible improvements with regard to PBASE(single).
However, this comes at the expense of a higher computational
cost. Section VIII-A discusses this problem.

Interestingly, one of the tiniest and most difficult problems
for state encoding (buf_unsafe.1), was only solved by
PBASE. It required 5 state signals and the SG was expanded
from 12 states to 69 after signal insertion.

Table IV reports the summary of results for the 127 4-phase
latch controllers [10] without CSC. Even though all bench-
marks were small, only Petrify and PBASE could solve all

TABLE IV: Summary for the 127 4-phase latch controllers.
Pfy PB(m) MP PB(m) SAT PB(m) PB(s) PB(m)

Solved 127 127 72 127 85 127 127 127
CPU (sec) 41 928 11 347 1 430 118 928
Signals 231 207 111 84 110 110 207 207
Literals 1818 1550 952 778 1386 943 1593 1550
Ratio 1.00 0.85 1.00 0.82 1.00 0.68 1.00 0.97

of them. Since many of them were specified as unsafe Petri
nets, MPSAT could not handle them. SAT also failed in many
examples due to the impossibility of inserting state signals
with causality relations among them. This feature was essential
for the other methods to solve some of the examples. The
results for both tables show an average reduction of 14% in
literals when compared to petrify.

A. Scalability

A major concern is scalability with the size of the SG. The
main reason for the increase of the CPU time is the size of
the SAT formula, which is mainly dominated by the clauses
representing the cost function (Pseudo-boolean constraints).

Table III reports the average execution times for the bench-
marks classified in three categories according to the number of
states (|S|) and signals (|Σ|) of the SG (n reports the number
of instances in each class). While the runtime is low for small
examples, it drastically increases for large SGs.



Our current work is focused on resorting to decomposition
techniques that can handle SGs with 106 states and beyond,
inspired by approaches previously proposed at the level of
STG [12]. The existing algorithms to calculate projections on
subsets of events using algorithms with O(m log n) complex-
ity3 [13] may play a crucial role to achieve that goal.

IX. CONCLUSIONS

This paper has introduced a novel approach for state en-
coding based on Pseudo-Boolean optimization. The approach
allows to encode any valid solution as well as estimators of
logic complexity. The results show a significant reduction in
the number of literals with respect to the existing tools.

Scalability for large controllers is an aspect that must
be considered in the near future, possibly using divide-and-
conquer strategies to decompose the specification into a set of
smaller communicating controllers.

The exploration of solutions trading-off performance and
complexity is also another aspect that can be addressed to
reduce the input/output response time of the controllers.

APPENDIX

This section defines some Boolean predicates that were used
in Section V for the cost function. Henceforth, the suffix ± is
used to indistinctly refer to the positive and negative regions.

The next predicate indicates that a transition in the original
SG is delayed by x after its insertion:

Delx(s, a) ≡ ∃s a−→ s′ : s→ s′ ∈ EXIT

It can also be interpreted as “x is a trigger of a in s”. The
following predicates encode the ERs and QRs in the new SG
based on the original one. The ̂ symbol indicates that the
region refers to the new SG after inserting signal x:

Q̂R
+

a (s) = QR+
a (s) ∨ (ER−a (s) ∧ Delx(s, a))

Q̂R
−
a (s) = QR−a (s) ∨ (ER+

a (s) ∧ Delx(s, a))

ÊR
±
a (s) = ER±a (s) ∧ ¬Delx(s, a)

ÊR
±
a (ŝ) = ER±a (s) ∧ ER±x (s) Q̂R

±
a (ŝ) = QR±a (s)

ÊR
±
x (s) = ER±x (s) Q̂R

±
x (s) = QR±x (s)

ÊR
±
x (ŝ) = False Q̂R

±
x (ŝ) = ER±x (s)

Predicates denoting the membership of a state to the onset or
offset of a signal after the insertion of x are defined as:

ÔNy(s) ≡ ÊR
+

y (s) ∨ Q̂R
+

y (s); ÔFFy(s) ≡ ÊR
−
y (s) ∨ Q̂R

−
y (s)

The following predicates define the encoding of x in a state
s after signal insertion:

ÔNEy(s) = ÊR
−
y (s) ∨ Q̂R

+

y (s); ẐEROy(s) = ÊR
+

y (s) ∨ Q̂R
−
y (s)

ÊQy(s1, s2) = ẐEROy(s1) ∧ ẐEROy(s2) ∨ ÔNEy(s1) ∧ ÔNEy(s2)

3n is the number of states and m is the number of arcs.

The Hamming distance of the encoding of two states, s1 and
s2, before the insertion of signal x is defined as:

d(s1, s2) =
∑
a∈Σ

(s1(a) 6= s2(a)).

Finally, we are interested in the Hamming distance being one
after the insertion of x. This is defined by d̂1(s1, s2):

d̂1(s1, s2) ≡


False if d(s1, s2) > 1

ÊQY (s1, s2) if d(s1, s2) = 1

¬ÊQY (s1, s2) if d(s1, s2) = 0
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