Product of polynomials

• Given two polynomials on one variable and real coefficients, compute their product

(we will decide later how we represent polynomials)

• Example: given $x^2 + 3x - 1$ and $2x - 5$, obtain

$$2x^3 - 5x^2 + 6x^2 - 15x - 2x + 5 = 2x^3 + x^2 - 17x + 5$$

Product of polynomials

• Key point:
Given $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$

and $q(x) = b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0$,

what is the coefficient c_i of x^i in $(p \cdot q)(x)$?

• We obtain x^{i+j} whenever we multiply $a_i \cdot b_j \cdot x^i$

• Idea: for every i and j, add $a_i \cdot b_j$ to the $(i+j)$-th coefficient of the product polynomial.

Suppose we represent a polynomial of degree n by a vector of size $n+1$.

That is, $v[0..n]$ represents the polynomial $v[n] x^n + v[n-1] x^{n-1} + \ldots + v[1] x + v[0]$

• We want to make sure that $v[v.size()-1] \neq 0$ so that $\text{degree}(v) = v.size() - 1$

• The only exception is the constant-0 polynomial. We’ll represent it by a vector of size 0.
Product of polynomials

```cpp
typedef vector<double> Polynomial;

// Pre: --
// Returns p*q
Polynomial product(const Polynomial& p, const Polynomial& q);
```

Introduction to Programming © Dept. CS, UPC

Product of polynomials

```cpp
Polynomial product(const Polynomial& p, const Polynomial& q) {
    // Special case for a polynomial of size 0
    if (p.size() == 0 or q.size() == 0) return Polynomial(0);
    else {
        int deg = p.size() - 1 + q.size() - 1; // degree of p*q
        Polynomial r(deg + 1, 0);
        for (int i = 0; i < p.size(); ++i) {
            for (int j = 0; j < q.size(); ++j) {
                r[i + j] = r[i + j] + p[i]*q[j];
            }
        }
        return r;
    }
}
```

// Invariant (of the outer loop): r = product p[0..i-1]*q // (we have used the coefficients p[0] … p[i-1])

Sum of polynomials

- Note that over the real numbers,

 \[\text{degree}(p\times q) = \text{degree}(p) + \text{degree}(q)\]

 (except if \(p = 0\) or \(q = 0\)).

 So we know the size of the result vector from the start.

- This is not true for the polynomial sum, e.g.

 \[\text{degree}((x + 5) + (-x - 1)) = 0\]
• In some cases, problems must deal with sparse vectors or matrices (most of the elements are zero).

• Sparse vectors and matrices can be represented more efficiently by only storing the non-zero elements. For example, a vector can be represented as a vector of pairs (index, value), sorted in ascending order of the indices.

• Example:

\[
[0,0,1,0,-3,0,0,2,0,0,4,0,0,0]
\]
can be represented as

\[
[(2,1),(4,-3),(8,2),(11,4)]
\]

Introduction to Programming
© Dept. CS, UPC
9

Sum of sparse vectors

Design a function that calculates the sum of two sparse vectors, where each non-zero value is represented by a pair (index, value):

```
struct Pair {
    int index;
    int value;
}
```

```
typedef vector<Pair> SparseVector;
```

Introduction to Programming
© Dept. CS, UPC
10

```
// Pre: --
// Returns v1+v2
SparseVector sparse_sum(const SparseVector& v1, const SparseVector& v2) {
    SparseVector vsum;
    int p1 = 0, p2 = 0;

    while (p1 < v1.size() and p2 < v2.size()) {
        if (v1[p1].index < v2[p2].index) {
            // Element only in v1
            vsum.push_back(v1[p1]);
            ++p1;
        } else if (v1[p1].index > v2[p2].index) {
            // Element only in v2
            vsum.push_back(v2[p2]);
            ++p2;
        } else {
            // Element in both
            Pair p;
            p.index = v1[p1].index;
            p.value = v1[p1].value + v2[p2].value;
            if (p.value != 0) vsum.push_back(p);
            ++p1; ++p2;
        }
    }
}
```

Introduction to Programming
© Dept. CS, UPC
12
Sum of sparse vectors

```cpp
// Copy the remaining elements of v1
while (p1 < v1.size()) {
    vsum.push_back(v1[p1]);
    ++p1;
}

// Copy the remaining elements of v2
while (p2 < v2.size()) {
    vsum.push_back(v2[p2]);
    ++p2;
}
return vsum;
```

Root of a continuous function

Bolzano’s theorem:
Let f be a real-valued continuous function. Let a and b be two values such that $a < b$ and $f(a) \cdot f(b) < 0$. Then, there is a value $c \in [a, b]$ such that $f(c)=0$.

Design a function that finds a root of a continuous function f in the interval $[a, b]$ assuming the conditions of Bolzano’s theorem are fulfilled. Given a precision (ε), the function must return a value c such that the root of f is in the interval $[c, c+\varepsilon]$.

Strategy: narrow the interval $[a, b]$ by half, checking whether the value of f in the middle of the interval is positive or negative. Iterate until the width of the interval is smaller ε.
Root of a continuous function

// Pre: \(f \) is continuous, \(a < b \) and \(f(a) \cdot f(b) < 0 \).
// Returns \(c \in [a,b] \) such that a root exists in the
// interval \([c,c+\varepsilon]\).

// Inv: a root of \(f \) exists in the interval \([a,b]\)

// A recursive version

double root(double a, double b, double epsilon) {
 if (b - a <= epsilon) return a;
 double c = (a + b)/2;
 if (f(a)*f(c) <= 0) return root(a,c,epsilon);
 else return root(c,b,epsilon);
}

Introduction to Programming

Barcode

• A barcode is an optical machine-readable representation of data. One of the most popular encoding systems is the UPC (Universal Product Code).

• A UPC code has 12 digits. Optionally, a check digit can be added.
• The check digit is calculated as follows:
 1. Add the digits in odd-numbered positions (first, third, fifth, etc.) and multiply by 3.
 2. Add the digits in the even-numbered positions (second, fourth, sixth, etc.) to the result.
 3. Calculate the result modulo 10.
 4. If the result is not zero, subtract the result from 10.

• Example: 380006571113

- (3+0+0+5+1+1)*3 = 30
- 8+0+6+7+1+3 = 25
- (30+25) mod 10 = 5
- 10 – 5 = 5

• Design a program that reads a sequence of 12-digit numbers that represent UPCs without check digits and writes the same UPCs with the check digit.

• Question: do we need a data structure to store the UPCs?

• Answer: no, we only need a few auxiliary variables.

• The program might have a loop treating a UPC at each iteration. The invariant could be as follows:

// Inv: all the UPCs of the treated codes have been written.

• At each iteration, the program could read the UPC digits and, at the same time, write the UPC and calculate the check digit. The invariant could be:

// Inv: all the treated digits have been written. The partial calculation of the check digit has been performed based on the treated digits.

```cpp
int main() {
  char c;
  while (cin >> c) {
    cout << c;
    int d = 3*(int(c) - int('0')); // first digit in an odd location
    for (int i = 2; i <= 12; ++i) {
      cin >> c;
      cout << c;
      if (i%2 == 0) d = d + int(c) - int('0');
      else d = d + 3*(int(c) - int('0'));
    }
    d = d%10;
    if (d > 0) d = 10 - d;
    cout << d << endl;
  }
}
```