Let `elem` be a type with a \(\leq \) operation, which is a total order.

A vector\(<\text{elem}>\ v\) is (increasingly) sorted if for all \(i \) with \(0 \leq i < v\text{.size}()-1 \), \(v[i] \leq v[i+1] \).

Equivalently:
\[
\text{if } i < j \text{ then } v[i] \leq v[j]
\]

A fundamental, very common problem: sort \(v \)
Order the elements in \(v \) and leave the result in \(v \)

We will look at four sorting algorithms:
- Selection Sort
- Insertion Sort
- Bubble Sort
- Merge Sort

Let us consider a vector \(v \) of \(n \) elems (\(n = v\text{.size}() \))
- Insertion, Selection and Bubble Sort make a number of operations on elems proportional to \(n^2 \)
- Merge Sort is proportional to \(n\cdot\log_2 n \): faster except for very small vectors
Selection Sort

- Observation: in the sorted vector, v[0] is the smallest element in v
- The second smallest element in v must go to v[1]...
- ... and so on
- At the i-th iteration, select the i-th smallest element and place it in v[i]

Selection sort keeps this invariant:

```cpp
// Pre: --
// Post: v is now increasingly sorted
void selection_sort(vector<elem>& v) {
    int last = v.size() - 1;
    for (int i = 0; i < last; ++i) {
        int k = pos_min(v, i, last);
        swap(v[k], v[i]);
    }
}
```

// Invariant: v[0..i-1] is sorted and
// if a < i <= b then v[a] <= v[b]

Note: when i=v.size()-1, v[i] is necessarily the largest element. Nothing to do.
Selection Sort

```cpp
int pos_min(const vector<elem>& v, int left, int right) {
    int pos = left;
    for (int i = left + 1; i <= right; ++i) {
        if (v[i] < v[pos]) pos = i;
    }
    return pos;
}
```

Selection Sort

- At the i-th iteration, Selection Sort makes
 - up to v.size()-i comparisons among elems
 - 1 swap (=3 elem assignments) per iteration

• The total number of comparisons for a vector of size n is:
 \[(n-1)+(n-2)+...+1= n(n-1)/2 \approx n^2/2\]

• The total number of assignments is 3(n-1).

Insertion Sort

- Let us use induction:
 - If we know how to sort arrays of size n-1,
 - do we know how to sort arrays of size n?

- Insert \(x=v[n-1]\) in the right place in \(v[0..n-1]\)
- Two ways:
 - Find the right place, then shift the elements
 - Shift the elements to the right until one \(\leq x\) is found

![Insertion Sort Example]

- Use induction:
 - If we know how to sort arrays of size \(n-1\),
 - do we know how to sort arrays of size \(n\)?

- Insert \(x=v[n-1]\) in the right place in \(v[0..n-1]\)
- Two ways:
 - Find the right place, then shift the elements
 - Shift the elements to the right until one \(\leq x\) is found

![Insertion Sort Example]
• Insertion sort keeps this invariant:

\[-7 \ -3 \ 0 \ 1 \ 4 \ 9 \ ? \ ? \ ? \ ? \ ? \ ? \]

This is sorted
This may not be sorted and we have no idea of what may be here

// Pre: --
// Post: v is now increasingly sorted
void insertion_sort(vector<elem>& v) {
 for (int i = 1; i < v.size(); ++i) {
 elem x = v[i];
 int j = i;
 while (j > 0 and v[j - 1] > x) {
 v[j] = v[j - 1];
 --j;
 }
 v[j] = x;
 }
}

// Invariant: v[0..i-1] is sorted in ascending order

• At the i-th iteration, Insertion Sort makes up to i comparisons and up to i+2 assignments of type elem

• The total number of comparisons for a vector of size n is, at most:

\[1 + 2 + \ldots + (n-1) = \frac{n(n-1)}{2} \approx \frac{n^2}{2}\]

• At the most, \(\frac{n^2}{2}\) assignments

• But about \(\frac{n^2}{4}\) in typical cases
Evaluation of complex conditions

```cpp
void insertion_sort(vector<elem>& v) {
  for (int i = 1; i < v.size(); ++i) {
    elem x = v[i];
    int j = i;
    while (j > 0 and v[j - 1] > x) {
      v[j] = v[j - 1];
      --j;
    }
    v[j] = x;
  }
}
```

• How about: `while (v[j - 1] > x and j > 0)`?

• Consider the case for `j = 0` → evaluation of `v[-1]` (error!)

• How are complex conditions really evaluated?

Many languages (C, C++, Java, PHP, Python) use the short-circuit evaluation (also called minimal or lazy evaluation) for Boolean operators.

For the evaluation of the Boolean expression

```
expr1 op expr2
```

`expr2` is only evaluated if `expr1` does not suffice to determine the value of the expression.

• Example: `(j > 0 and v[j-1] > x)`

`v[j-1]` is only evaluated when `j>0`
Evaluation of complex conditions

- In the following examples:
 \[n \neq 0 \text{ and } \frac{\text{sum}}{n} > \text{avg} \]
 \[n == 0 \text{ or } \frac{\text{sum}}{n} > \text{avg} \]

 \(\frac{\text{sum}}{n} \) will never execute a division by zero.

- Not all languages have short-circuit evaluation. Some of them have **eager evaluation** (all the operands are evaluated) and some of them have both.

- The previous examples could potentially generate a runtime error (division by zero) when eager evaluation is used.

- Tip: short-circuit evaluation helps us to write more efficient programs, but cannot be used in all programming languages.

Bubble Sort

- A simple idea: traverse the vector many times, swapping adjacent elements when they are in the wrong order.

- The algorithm terminates when no changes occur in one of the traversals.

The largest element is well-positioned after the first iteration.

The second largest element is well-positioned after the second iteration.

The vector is sorted when no changes occur during one of the iterations.

From http://en.wikipedia.org/wiki/Bubble_sort
void bubble_sort(vector<elem>& v) {
 bool sorted = false;
 int last = v.size() - 1;
 while (not sorted) { // Stop when no changes
 sorted = true;
 for (int i = 0; i < last; ++i) {
 if (v[i] > v[i + 1]) {
 swap(v[i], v[i + 1]);
 sorted = false;
 }
 }
 last = last_swap; // Skip the sorted tail
 }
 // The largest element falls to the bottom
}

Observation: at each pass of the algorithm, all elements after the last swap are sorted.

• Worst-case analysis:
 – The first pass makes n-1 swaps
 – The second pass makes n-2 swaps
 – ...
 – The last pass makes 1 swap

• The worst number of swaps:
 \[1 + 2 + \ldots + (n-1) = n(n-1)/2 = \frac{n^2}{2} \]

• It may be efficient for nearly-sorted vectors.

• In general, bubble sort is one of the least efficient algorithms. It is not practical when the vector is large.

void bubble_sort(vector<elem>& v) {
 int last = v.size() - 1;
 while (last > 0) {
 int last_swap = 0; // Last swap at each iteration
 for (int i = 0; i < last; ++i) {
 if (v[i] > v[i + 1]) {
 swap(v[i], v[i + 1]);
 last_swap = i;
 }
 }
 last = last_swap; // Skip the sorted tail
 }
}

Recall our induction for Insertion Sort:
 – suppose we can sort vectors of size \(n-1 \),
 – can we now sort vectors of size \(n \)?

• What about the following:
 – suppose we can sort vectors of size \(n/2 \),
 – can we now sort vectors of size \(n \)?
Merge Sort

• We have seen almost what we need!

```cpp
#include <vector>

std::vector<int> merge_sorted(const std::vector<int>& A, const std::vector<int>& B) {
    std::vector<int> result;
    int i = 0, j = 0;
    while (i < A.size() && j < B.size()) {
        if (A[i] < B[j]) {
            result.push_back(A[i++]);
        } else {
            result.push_back(B[j++]);
        }
    }
    while (i < A.size()) {
        result.push_back(A[i++]);
    }
    while (j < B.size()) {
        result.push_back(B[j++]);
    }
    return result;
}
```

• Now, v[0..n/2-1] and v[n/2..n-1] are sorted in ascending order.

• Merge them into an auxiliary vector of size n, then copy back to v.

From http://en.wikipedia.org/wiki/Merge_sort

Induction!

How do we do this?
Merge Sort

```c
void merge_sort(vector<elem>& v, int left, int right) {
    if (left < right) {
        int m = (left + right)/2;
        merge_sort(v, left, m);
        merge_sort(v, m + 1, right);
        merge(v, left, m, right);
    }
}
```

Introduction to Programming © Dept. CS, UPC

Merge Sort – merge procedure

```c
void merge(vector<elem>& v, int left, int mid, int right) {
    int n = right - left + 1;
    vector<elem> aux(n);
    int i = left;
    int j = mid + 1;
    int k = 0;
    while (i <= mid and j <= right) {
        if (v[i] <= v[j]) { aux[k] = v[i]; ++i; }
        else { aux[k] = v[j]; ++j; }
        ++k;
    }
    while (i <= mid) { aux[k] = v[i]; ++k; ++i; }
    while (j <= right) { aux[k] = v[j]; ++k; ++j; }
    for (k = 0; k < n; ++k) v[left+k] = aux[k];
}
```

Introduction to Programming © Dept. CS, UPC

• How many elem comparisons does Merge Sort do?
 – Say v.size() is n, a power of 2
 – merge(v,L,M,R) makes k comparisons if k=R-L+1
 – We call merge \(\frac{n}{2^i} \) times with R-L=2^i
 – The total number of comparisons is

\[
\sum_{i=1}^{\log_2 n} \frac{n}{2^i} \cdot 2^i = n \cdot \log_2 n
\]

The total number of elem assignments is 2n \cdot \log_2 n
Comparison of sorting algorithms

• Approximate number of comparisons:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion, Selection and Bubble Sort ((\approx n^2/2))</td>
<td>50</td>
<td>5,000</td>
<td>500,000</td>
<td>50,000,000</td>
<td>5,000,000,000</td>
</tr>
<tr>
<td>Merge Sort ((\approx n \cdot \log_2 n))</td>
<td>67</td>
<td>1,350</td>
<td>20,000</td>
<td>266,000</td>
<td>3,322,000</td>
</tr>
</tbody>
</table>

• Note: it is known that every general sorting algorithm must do at least \(n \cdot \log_2 n\) comparisons.

Comparison of sorting algorithms

For small vectors

![Graph showing comparison of sorting algorithms for small vectors](image1)

For medium vectors

![Graph showing comparison of sorting algorithms for medium vectors](image2)
Comparison of sorting algorithms

Other sorting algorithms

- There are many other sorting algorithms.
- The most efficient algorithm for general sorting is *quick sort* (C.A.R. Hoare).
 - The worst case is proportional to n^2
 - The average case is proportional to $n \cdot \log_2 n$, but it usually runs faster than all the other algorithms
 - It does not use any auxiliary vectors
- Quick sort will not be covered in this course.

Sorting with the C++ library

- A sorting procedure is available in the C++ library
- It probably uses a quicksort algorithm
- To use it, include:
  ```cpp
  #include <algorithm>
  ```
- To increasingly sort a vector `v` (of int’s, double’s, string’s, etc.), call:
  ```cpp
  sort(v.begin(), v.end());
  ```
- To sort with a different comparison criteria, call
  ```cpp
  sort(v.begin(), v.end(), comp);
  ```
- For example, to sort int’s *decreasingly*, define:
  ```cpp
  bool comp(int a, int b) {
    return a > b;
  }
  ```
- To sort people by age, then by name:
  ```cpp
  bool comp(const Person& a, const Person& b) {
    if (a.age == b.age) return a.name < b.name;
    else return a.age < b.age;
  }
  ```
Sorting is not always a good idea...

• **Example:** to find the min value of a vector

```
min = v[0];
for (int i=1; i < v.size(); ++i)    (1)
    if (v[i] < min) min = v[i];

sort(v);
min = v[0];                      (2)
```

• **Efficiency analysis:**
 - **Option (1):** n iterations (visit all elements).
 - **Option (2):** $2n \cdot \log_2 n$ moves with a good sorting algorithm (e.g., merge sort)