Loops

Example

• Assume the following specification:

Input: read a number N > 0

Output: write the sequence 1 2 3 ... N
(one number per line)

• This specification suggests some algorithm with a repetitive procedure.

The **while** statement

• Syntax:

```
while (condition) statement;
```

(the condition must return a Boolean value)

• Semantics:
 – Similar to the repetition of an *if* statement
 – The condition is evaluated:
 • If *true*, the statement is executed and the control returns to the while statement again.
 • If *false*, the while statement terminates.

Write the numbers 1...N

```
// Input: read a number N > 0
// Output: write the numbers 1...N
(one per line)

int main() {
    int N;
    cin >> N;
    int i = 1;
    while (i <= N) {
        // The numbers 1..i-1 have been written
        cout << i << endl;
        i = i + 1;
    }
}
```
Product of two numbers

//Input: read two non-negative numbers x and y
//Output: write the product x*y

// Constraint: do not use the * operator

// The algorithm calculates the sum x+x+x+...+x (y times)

int main() {
 int x, y;
 cin >> x >> y; // Let x=A, y=B
 int p = 0;
 // Invariant: A*B = p + x*y
 while (y > 0) {
 p = p + x;
 y = y - 1;
 }
 cout << p << endl;
}

Introduction to Programming

Why is the quick product interesting?

• Most computers have a multiply instruction in their machine language.

• The operations x*2 and y/2 can be implemented as 1-bit left and right shifts, respectively. So, the multiplication can be implemented with shift and add operations.

• The quick product algorithm is the basis for hardware implementations of multipliers and mimics the paper-and-pencil method learned at school (but using base 2).

A quick algorithm for the product

• Let p be the product x*y

• Observation

– If y is even, p = (x*2) * (y/2)

– If y is odd, p = x * (y-1) + x and (y-1) becomes even

• Example: 17 * 38 = 646

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Δp</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>68</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>68</td>
<td>8</td>
<td>102</td>
</tr>
<tr>
<td>136</td>
<td>4</td>
<td>102</td>
</tr>
<tr>
<td>272</td>
<td>2</td>
<td>102</td>
</tr>
<tr>
<td>544</td>
<td>1</td>
<td>102</td>
</tr>
<tr>
<td>544</td>
<td>0</td>
<td>646</td>
</tr>
</tbody>
</table>
Quick product in binary: example

\[77 \times 41 = 3157 \]

```
1001101
\times 0101001
\underline{\hspace{10em}}
1001101
1001101
1001101
\underline{\hspace{10em}}
110001010101
```

Counting a’s

- We want to read a text represented as a sequence of characters that ends with ‘.’
- We want to calculate the number of occurrences of the letter ‘a’
- We can assume that the text always has at least one character (the last ‘.’)
- Example: the text

 Programming in C++ is amazingly easy!

 has 4 a’s

```c
int main() {
    char c;
    cin >> c;
    int count = 0;
    // Inv: count is the number of a's in the visited
    //      prefix of the sequence. c contains the next
    //      non-visited character
    while (c != '.') {
        if (c == 'a') count = count + 1;
        cin >> c;
    }
    cout << count << endl;
}
```

Counting digits

- We want to read a non-negative integer and count the number of digits (in radix 10) in its textual representation.
- Examples

 8713105 \rightarrow 7 digits

 156 \rightarrow 3 digits

 8 \rightarrow 1 digit

 0 \rightarrow 1 digit (note this special case)
Counting digits

// Input: a non-negative number N
// Output: number of digits in N (0 has 1 digit)

int main() {
 int N;
 cin >> N;
 int ndigits = 0;
 // Inv: ndigits contains the number of digits in the
 // tail of the number, N contains the remaining
 // part (head) of the number
 while (N > 9) {
 ndigits = ndigits + 1;
 N = N/10; // extracts one digit
 }
 cout << ndigits + 1 << endl;
}

Introduction to Programming

Euclid’s algorithm for gcd

• Properties
 – gcd(a,a)=a
 – If a > b, then gcd(a,b) = gcd(a-b,b)

• Example

Faster Euclid’s algorithm for gcd

• Properties
 – gcd(a, 0)=a
 – If b > 0 then gcd(a, b) = gcd(b, a mod b)

• Example
Faster Euclid’s algorithm for gcd

// Input: read two positive numbers (a and b)
// Output: write gcd(a,b)

```c
int main() {
    int a, b;
    cin >> a >> b; // Let a=A, b=B
    // gcd(A,B) = gcd(a,b)
    while (b != 0) {
        int r = a%b;
        a = b;
        b = r; // Guarantees b < a (loop termination)
    }
    cout << a << endl;
}
```

Efficiency of Euclid’s algorithm

- How many iterations will Euclid’s algorithm need to calculate gcd(a,b) in the worst case (assume a > b)?
 - Subtraction version: \(a \) iterations (consider gcd(1000,1))
 - Modulo version: \(\leq 5 \times d(b) \) iterations, where \(d(b) \) is the number of digits of \(b \) represented in base 10 (proof by Gabriel Lamé, 1844)

Solving a problem several times

- In many cases, we might be interested in solving the same problem for several input data.
- Example: calculate the gcd of several pairs of natural numbers.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 56</td>
<td>4</td>
</tr>
<tr>
<td>30 30</td>
<td>30</td>
</tr>
<tr>
<td>1024 896</td>
<td>128</td>
</tr>
<tr>
<td>100 99</td>
<td>1</td>
</tr>
<tr>
<td>17 51</td>
<td>17</td>
</tr>
</tbody>
</table>

Calculate gcd(a,b) and write the result into cout
Solving a problem several times

// Input: several pairs of natural numbers at the input
// Output: the gcd of each pair of numbers written at the output

int main() {
 int a, b;
 // Inv: the gcd of all previous pairs have been calculated and written at the output
 while (cin >> a >> b) {
 // A new pair of numbers from the input
 while (b != 0) {
 int r = a % b;
 a = b;
 b = r;
 }
 cout << a << endl;
 }
}

Prime number

• A prime number is a natural number that has exactly two distinct divisors: 1 and itself. (Comment: 1 is not prime)

• Write a program that reads a natural number (N) and tells whether it is prime or not.

• Algorithm: try all potential divisors from 2 to N-1 and check whether the remainder is zero.

Prime number

• Observation: as soon as a divisor is found, there is no need to check divisibility with the rest of the divisors.

• However, the algorithm tries all potential divisors from 2 to N-1.

• Improvement: stop the iteration when a divisor is found.
Prime number: doing it faster

- If N is not prime, we can find two numbers, a and b, such that:
 \[N = a \times b, \quad \text{with } 1 < a \leq b < N \]
 and with the following property: \(a \leq \sqrt{N} \)

- There is no need to find divisors up to N-1. We can stop much earlier.

- Note: \(a \leq \sqrt{N} \) is equivalent to \(a^2 \leq N \)

Prime number

// Input: read a natural number N>0
// Output: write “is prime” or “is not prime” depending on
// the primality of the number

int main() {
 int N;
 cin >> N;

 int divisor = 2;
 bool is_prime = (N != 1);

 while (is_prime and divisor < N) {
 is_prime = N%divisor != 0;
 divisor = divisor + 1;
 }

 if (is_prime) cout << "is prime" << endl;
 else cout << "is not prime" << endl;
}

Is there any real difference?
The *for* statement

- Very often we encounter loops of the form:

  ```
  i = N;
  while (i <= M) {
    do_something;
    i = i + 1;
  }
  ```

- This can be rewritten as:

  ```
  for (i = N; i <= M; i = i + 1) {
    do_something;
  }
  ```

Writing the numbers in an interval

```cpp
int main() {
  int N, M;
  cin >> N >> M;
  for (int i = N; i <= M; ++i) cout << i << endl;
}
```

- Variable declared within the scope of the loop
- Autoincrement operator

The *for* statement

- In general

  ```
  for (<S_init>; <condition>; <S_iter>) <S_body>;
  ```

 is equivalent to:

  ```
  S_init;
  while (<condition>) {
    <S_body>
    <S_iter>
  }
  ```

In real time (N= 2110454939)

```bash
> time prime_slow < number
is prime
10.984u 0.004s 0:11.10 98.9%

> time prime_fast < number
is prime
0.004u 0.000s 0:00.00 0.0%
```
Calculate x^y

// Input: read two integer numbers, x and y, such that $y \geq 0$
// Output: write x^y

```cpp
int main() {
    int x, y;
    cin >> x >> y;
    int p = 1;
    for (int i = 0; i < y; ++i) p = p*x;
    cout << p << endl;
}
```

Drawing a triangle

// Input: read a number $n > 0$
// Output: write a triangle of size n

```cpp
int main() {
    int n;
    cin >> n;
    // Inv: the rows 1..i-1 have been written
    for (int i = 1; i <= n; ++i) {
        // Inv: ‘*’ written j-1 times in row i
        for (int j = 1; j <= i; ++j) cout << ‘*’;
        cout << endl;
    }
}
```

Perfect numbers

• A number $n > 0$ is perfect if it is equal to the sum of all its divisors except itself.

• Examples
 – 6 is a perfect number ($1+2+3 = 6$)
 – 12 is not a perfect number ($1+2+3+4+6 \neq 12$)

• Strategy
 – Keep adding divisors until the sum exceeds the number or there are no more divisors.
Perfect numbers

// Input: read a number n > 0
// Output: write a message indicating whether it is perfect or not

int main() {
 int n;
 cin >> n;

 int sum = 0, d = 1;
 // Inv: sum is the sum of all divisors until d-1
 while (d <= n/2 and sum <= n) {
 if (n%d == 0) sum += d;
 d = d + 1;
 }

 if (sum == n) cout << “is perfect” << endl;
 else cout << “is not perfect” << endl;
}

• Would the program work using the following loop condition?

 while (d <= n/2 and sum < n)

• Can we design a more efficient version without checking all the divisors until n/2?
 – Clue: consider the most efficient version of the program to check whether a number is prime.