Introduction to Programming
(in C++)

Numerical algorithms

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas
Dept. of Computer Science, UPC
Product of polynomials

• Given two polynomials on one variable and real coefficients, compute their product

(we will decide later how we represent polynomials)

• Example: given $x^2 + 3x - 1$ and $2x - 5$, obtain

$$2x^3 - 5x^2 + 6x^2 - 15x - 2x + 5 = 2x^3 + x^2 - 17x + 5$$
Product of polynomials

• Key point:

 Given \(p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 \)
 and \(q(x) = b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0 \),

 what is the coefficient \(c_i \) of \(x^i \) in \((p*q)(x)\)?

• We obtain \(x^{i+j} \) whenever we multiply \(a_i x^i \cdot b_j x^j \)

• Idea: for every \(i \) and \(j \), add \(a_i \cdot b_j \) to the \((i+j)\)-th coefficient of the product polynomial.
Product of polynomials

• Suppose we represent a polynomial of degree n by a vector of size $n+1$.

That is, $v[0..n]$ represents the polynomial

$$v[n] x^n + v[n-1] x^{n-1} + ... + v[1] x + v[0]$$

• We want to make sure that $v[v.size() - 1] \neq 0$ so that $\text{degree}(v) = v.size() - 1$

• The only exception is the constant-0 polynomial. We’ll represent it by a vector of size 0.
typedef vector<double> Polynomial;

// Pre: --
// Returns p*q
Polynomial product(const Polynomial& p,
 const Polynomial& q);
Product of polynomials

Polynomial product(const Polynomial& p, const Polynomial& q) {

 // Special case for a polynomial of size 0
 if (p.size() == 0 or q.size() == 0) return Polynomial(0);
 else {
 int deg = p.size() - 1 + q.size() - 1; // degree of p*q
 Polynomial r(deg + 1, 0);
 for (int i = 0; i < p.size(); ++i) {
 for (int j = 0; j < q.size(); ++j) {
 r[i + j] = r[i + j] + p[i]*q[j];
 }
 }
 return r;
 }
}

 // Invariant (of the outer loop): r = product p[0..i-1]*q
 // (we have used the coefficients p[0] ... p[i-1])
Sum of polynomials

• Note that over the real numbers,

\[
\text{degree}(p \times q) = \text{degree}(p) + \text{degree}(q)
\]
(except if \(p = 0 \) or \(q = 0 \)).

So we know the size of the result vector from the start.

• This is not true for the polynomial sum, e.g.

\[
\text{degree}((x + 5) + (-x - 1)) = 0
\]
Sum of polynomials

// Pre: --
// Returns p+q
Polynomial sum(const Polynomial& p, const Polynomial& q);

int maxdeg = max(p.size(), q.size()) - 1;
int deg = -1;
Polynomial r(maxdeg + 1, 0);

// Inv r[0..i-1] = (p+q)[0..i-1] and
// deg = largest j s.t. r[j] != 0 (or -1 if none exists)
for (int i = 0; i <= maxdeg; ++i) {
 if (i >= p.size()) r[i] = q[i];
 else if (i >= q.size()) r[i] = p[i];
 else r[i] = p[i] + q[i];
 if (r[i] != 0) deg = i;
}

Polynomial rr(deg + 1);
for (int i = 0; i <= deg; ++i) rr[i] = r[i];
return rr;
Sum of sparse vectors

• In some cases, problems must deal with sparse vectors or matrices (most of the elements are zero).

• Sparse vectors and matrices can be represented more efficiently by only storing the non-zero elements. For example, a vector can be represented as a vector of pairs (index, value), sorted in ascending order of the indices.

• Example:

 \[[0,0,1,0,-3,0,0,0,2,0,0,4,0,0,0,0] \]

 can be represented as

 \[[(2,1),(4,-3),(8,2),(11,4)] \]
Sum of sparse vectors

• Design a function that calculates the sum of two sparse vectors, where each non-zero value is represented by a pair (index, value):

```cpp
struct Pair {
    int index;
    int value;
}

typedef vector<Pair> SparseVector;
```
Sum of sparse vectors

// Pre: --
// Returns v1+v2

SparseVector sparse_sum(const SparseVector& v1, const SparseVector& v2);

// Inv: p1 and p2 will point to the first
// non-treated elements of v1 and v2.
// vsum contains the elements of v1+v2 treated so far.
// psum points to the first free location in vsum.

• Strategy:
 – Calculate the sum on a sufficiently large vector.
 – Copy the result on another vector of appropriate size.
Sum of sparse vectors

```cpp
SparseVector sparse_sum(const SparseVector& v1, const SparseVector& v2) {
    SparseVector vsum;
    int p1 = 0, p2 = 0;

    while (p1 < v1.size() and p2 < v2.size()) {
        if (v1[p1].index < v2[p2].index) { // Element only in v1
            vsum.push_back(v1[p1]);
            ++p1;
        }
        else if (v1[p1].index > v2[p2].index) { // Element only in v2
            vsum.push_back(v2[p2]);
            ++p2;
        }
        else { // Element in both
            Pair p;
            p.index = v1[p1].index;
            p.value = v1[p1].value + v2[p2].value;
            if (p.value != 0) vsum.push_back(p);
            ++p1; ++p2;
        }
    }
}
```
// Copy the remaining elements of v1
while (p1 < v1.size()) {
 vsum.push_back(v1[p1]);
 ++p1;
}

// Copy the remaining elements of v2
while (p2 < v2.size()) {
 vsum.push_back(v2[p2]);
 ++p2;
}

return vsum;
Bolzano’s theorem:
Let \(f \) be a real-valued continuous function. Let \(a \) and \(b \) be two values such that \(a < b \) and \(f(a) \cdot f(b) < 0 \). Then, there is a value \(c \in [a, b] \) such that \(f(c) = 0 \).
Design a function that finds a root of a continuous function f in the interval $[a, b]$ assuming the conditions of Bolzano’s theorem are fulfilled. Given a precision (ε), the function must return a value c such that the root of f is in the interval $[c, c+\varepsilon]$.
Strategy: narrow the interval \([a, b]\) by half, checking whether the value of \(f\) in the middle of the interval is positive or negative. Iterate until the width of the interval is smaller \(\varepsilon\).
// Pre: f is continuous, $a < b$ and $f(a) * f(b) < 0$.
// Returns $c \in [a, b]$ such that a root exists in the
// interval $[c, c + \varepsilon]$.

// Inv: a root of f exists in the interval $[a, b]$
double root(double a, double b, double epsilon) {
 while (b - a > epsilon) {
 double c = (a + b)/2;
 if (f(a)*f(c) <= 0) b = c;
 else a = c;
 }
 return a;
}
// A recursive version

double root(double a, double b, double epsilon) {
 if (b - a <= epsilon) return a;
 double c = (a + b)/2;
 if (f(a)*f(c) <= 0) return root(a,c,epsilon);
 else return root(c,b,epsilon);
}
Barcode

• A barcode is an optical machine-readable representation of data. One of the most popular encoding systems is the UPC (Universal Product Code).

• A UPC code has 12 digits. Optionally, a check digit can be added.
The check digit is calculated as follows:

1. Add the digits in odd-numbered positions (first, third, fifth, etc.) and multiply by 3.
2. Add the digits in the even-numbered positions (second, fourth, sixth, etc.) to the result.
3. Calculate the result modulo 10.
4. If the result is not zero, subtract the result from 10.

Example: 380006571113

- (3+0+0+5+1+1)*3 = 30
- 8+0+6+7+1+3 = 25
- (30+25) mod 10 = 5
- 10 - 5 = 5
• Design a program that reads a sequence of 12-digit numbers that represent UPCs without check digits and writes the same UPCs with the check digit.

• Question: do we need a data structure to store the UPCs?

• Answer: no, we only need a few auxiliary variables.
The program might have a loop treating a UPC at each iteration. The invariant could be as follows:

```
// Inv: all the UPCs of the treated codes have been written.
```

At each iteration, the program could read the UPC digits and, at the same time, write the UPC and calculate the check digit. The invariant could be:

```
// Inv: all the treated digits have been written. The partial calculation of the check digit has been performed based on the treated digits.
```
Barcode

// Pre: the input contains a sequence of UPCs without check digits.
// Post: the UPCs at the input have been written with their check digits.

int main() {
 char c;
 while (cin >> c) {
 cout << c;
 int d = 3*(int(c) - int('0')); // first digit in an odd location
 for (int i = 2; i <= 12; ++i) {
 cin >> c;
 cout << c;
 if (i%2 == 0) d = d + int(c) - int('0');
 else d = d + 3*(int(c) - int('0'));
 }
 d = d%10;
 if (d > 0) d = 10 - d;
 cout << d << endl;
 }
}