Graphs: Minimum Spanning Trees

Jordi Cortadella and Jordi Petit Department of Computer Science

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Laying a communication network

Minimum Spanning Trees

© Dept. CS, UPC

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree
© Dept. CS, UPC

- Nodes are computers
- Edges are links
- Weights are maintenance cost
- Goal: pick a subset of edges such that
 - the nodes are connected
 - the maintenance cost is minimum

The solution is not unique. Find another one !

Property:

F

An optimal solution cannot contain a cycle.

3

А

В

Graphs: MST

2

Minimum Spanning Tree

• Given un undirected graph G = (V, E) with edge weights w_e , find a tree T = (V, E'), with $E' \subseteq E$, that minimizes

weight(
$$T$$
) = $\sum_{e \in E'} w_e$

• Greedy algorithm: repeatedly add the next lightest edge that does not produce a cycle.

Note: We will now see that this strategy guarantees an MST.

Graphs: MST

© Dept. CS, UPC

The cut property

Suppose edges X are part of an MST of G = (V, E). Pick any subset of nodes S for which X does not cross between S and V - S, and let e be the lightest edge across this partition. Then $X \cup \{e\}$ is part of some MST.

Proof (sketch): Let T be an MST and assume e is not in T. If we add e to T, a cycle will be created with another edge e' across the cut (S, V - S). We can now remove e' and obtain another tree T' with weight $(T') \le \text{weight}(T)$. Since T is an MST, then the weights must be equal.

Properties of trees

- Definition: A tree is an undirected graph that is connected and acyclic.
- **Property:** Any connected, undirected graph G = (V, E) has $|E| \ge |V| 1$ edges.
- **Property:** A tree on n nodes has n 1 edges.
 - Start from an empty graph. Add one edge at a time making sure that it connects two disconnected components. After having added n-1 edges, a tree has been formed.
- **Property:** Any connected, undirected graph G = (V, E) with |E| = |V| 1 is a tree.
 - It is sufficient to prove that *G* is acyclic. If not, we can always remove edges from cycles until the graph becomes acyclic.
- **Property:** Any undirected graph is a tree iff there is a unique path between any pair of nodes.
 - If there would be two paths between two nodes, the union of the paths would contain a cycle.

Graphs: MST

© Dept. CS, UPC

The cut property: example

Any scheme like this works (because of the properties of trees): Invariant: • A set of nodes (*S*) is in the tree. # The set of edges of the MST $X = \{ \}$ Progress: **repeat** |V| - 1 times: The lightest edge with exactly pick a set $S \subset V$ for which **X** has no edges between S and V - Sone endpoint in S is added. let $e \in E$ be the minimum-weight edge between S and V - S $X = X \cup \{e\}$ **Prim's algorithm** -SInvariant: • A set of trees (forest) has been constructed. **Progress:** The lightest edge between two trees is added. Kruskal's algorithm © Dept. CS, UPC © Dept. CS, UPC 10 Graphs: MST Graphs: MST Prim's algorithm Prim's algorithm **def** Prim(G, w) \rightarrow prev: 5 Е """Input: A connected undirected Graph G(V, E)with edge weights w(e). Output: An MST defined by the vector prev.""" 5 for all $u \in V$: visited[u] = FalseВ В D F D prev[u] = nilpick any initial node u_0 visited[u_0] = True n = 1**Q**: (AD,4) (AB,5) (AC,6) # Q: priority queue of edges using w(e) as priority (DB,2) (DC,2) (DF,4) (AB,5) (AC,6) Q = makequeue()for each $(u_0, v) \in E$: Q.insert (u_0, v) (BC,1) (DC,2) (DF,4) (AB,5) (AC,6) while n < |V|: (DC,2) (CF,3) (DF,4) (AB,5) (CE,5) (AC,6) (u, v) = deletemin(Q) # Edge with smallest weight if not visited[v]: (CF,3) (DF,4) (AB,5) (CE,5) (AC,6) visited[v] = True Complexity: $O(|E| \log |V|)$ prev[v] = u(DF,4) (FE,4) (AB,5) (CE,5) (AC,6) n = n + 1for each $(v, x) \in E$: (FE,4) (AB,5) (CE,5) (AC,6) if not visited[x]: Q.insert(v,x)

Kruskal's algorithm

Informal algorithm:

- Sort edges by weight.
- Visit edges in ascending order of weight and add them as long as they do not create a cycle.

How do we know whether a new edge will create a cycle?

```
def Kruskal(G, w) → MST:
    """Input: A connected undirected Graph G(V,E)
    with edge weights w<sub>e</sub>.
    Output: An MST defined by the edges in MST."""
    MST = {}
    sort the edges in E by weight
```

```
for all (u, v) \in E, in ascending order of weight:
if (MST has no path connecting u and v):
```

```
\mathsf{MST} = \mathsf{MST} \cup \{(u, v)\}
```

```
Disjoint sets
```

• A data structure to store a collection of disjoint sets.

- Operations:
 makeset(x): creates a singleton set containing just x.
 - find(x): returns the identifier of the set containing x.
 - union(x, y): merges the sets containing x and y.
- Kruskal's algorithm uses disjoint sets and calls
 - makeset: |V| times
 - find: $2 \cdot |E|$ times
 - union: |V| 1 times

Graphs: MST

© Dept. CS, UPC

13

Graphs: MST

Kruskal's algorithm

Disjoint sets

© Dept. CS, UPC

def Kruskal(G, w) → MST: """Input: A connected undirected Graph G(V, E)with edge weights w_e . Output: An MST defined by the edges in MST.""" for all $u \in V$: makeset(u)

```
 \begin{array}{l} \mathsf{MST} = \{\} \\ \mathsf{sort} \ \mathsf{the} \ \mathsf{edges} \ \mathsf{in} \ E \ \mathsf{by} \ \mathsf{weight} \\ \mathsf{for} \ \mathsf{all} \ (u,v) \in E, \ \mathsf{in} \ \mathsf{ascending} \ \mathsf{order} \ \mathsf{of} \ \mathsf{weight}: \\ \mathsf{if} \ (\mathsf{find}(u) \ \neq \ \mathsf{find}(v)): \\ \mathsf{MST} \ = \ \mathsf{MST} \ \cup \{(u,v)\} \\ \mathsf{union}(u,v) \end{array}
```

- The nodes are organized as a set of trees. Each tree represents a set.
- Each node has two attributes:
 - parent (π): ancestor in the tree
 - rank: height of the subtree
- The root element is the representative for the set: its parent pointer is itself (self-loop).
- The efficiency of the operations depends on the height of the trees.


```
def makeset(x):\pi(x) = xrank(x) = 0
```

```
def find(x):
while x \neq \pi(x): x = \pi(x)
return x
```

14

Disjoint sets

Disjoint sets: path compression

- Complexity of Kruskal's algorithm: $O(|E| \log |V|)$.
 - Sorting edges: $O(|E|\log|E|) = O(|E|\log|V|)$.
 - Find + union $(2 \cdot |E| \text{ times})$: $O(|E| \log |V|)$.
- How about if the edges are already sorted or sorting can be done in linear time (weights are integer and small)?
- Path compression: ٠

Disjoint sets

Property 1: Any root node of rank k has at least 2^k nodes in its tree.

Property 2: If there are *n* elements overall, there can be at most $n/2^k$ nodes of rank k. Therefore, all trees have height $\leq \log n$.

Graphs: MST

18

Disjoint sets: path compression

© Dept. CS, UPC

Minimum Spanning Trees

- Calculate the shortest path tree from node A using Dijkstra's algorithm.
- Calculate the MST using Prim's algorithm. Indicate the sequence of edges added to the tree and the evolution of the priority queue.
- Calculate the MST using Kruskal's algorithm. Indicate the sequence of edges added to the tree and the evolution of the disjoint sets. In case of a tie between two edges, try to select the one that is not in Prim's tree.