## Graphs: <br> Minimum Spanning Trees



Jordi Cortadella and Jordi Petit
Department of Computer Science


Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree
Laying a communication network
Minimum Spanning Trees


- Nodes are computers
- Edges are links
- Weights are maintenance cost
- Goal: pick a subset of edges such that
- the nodes are connected
- the maintenance cost is minimum

> The solution is not unique.
> Find another one!


## Property:

An optimal solution cannot contain a cycle.

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

## Properties of trees

- Given un undirected graph $G=(V, E)$ with edge weights $w_{e}$, find a tree $T=\left(V, E^{\prime}\right)$, with $E^{\prime} \subseteq E$, that minimizes

$$
\operatorname{weight}(T)=\sum_{e \in E^{\prime}} w_{e}
$$

- Greedy algorithm: repeatedly add the next lightest edge that does not produce a cycle.


Note: We will now see that this strategy guarantees an MST.

- Definition: A tree is an undirected graph that is connected and acyclic.
- Property: Any connected, undirected graph $G=(V, E)$ has $|E| \geq|V|-1$ edges.
- Property: A tree on $n$ nodes has $n-1$ edges.
- Start from an empty graph. Add one edge at a time making sure that it connects two disconnected components. After having added $n-1$ edges, a tree has been formed.
- Property: Any connected, undirected graph $G=(V, E)$ with $|E|=|V|-1$ is a tree.
- It is sufficient to prove that $G$ is acyclic. If not, we can always remove edges from cycles until the graph becomes acyclic.
- Property: Any undirected graph is a tree iff there is a unique path between any pair of nodes.
- If there would be two paths between two nodes, the union of the paths would contain a cycle.


Suppose edges $X$ are part of an MST of $G=(V, E)$. Pick any subset of nodes $S$ for which $X$ does not cross between $S$ and $V-S$, and let $e$ be the lightest edge across this partition. Then $X \cup\{e\}$ is part of some MST.

Proof (sketch): Let $T$ be an MST and assume $e$ is not in $T$. If we add $e$ to $T$, a cycle will be created with another edge $e^{\prime}$ across the cut $(S, V-S)$. We can now remove $e^{\prime}$ and obtain another tree $T^{\prime}$ with weight $\left(T^{\prime}\right) \leq$ weight $(T)$. Since $T$ is an MST, then the weights must be equal.


Any scheme like this works (because of the properties of trees):

```
X={} # The set of edges of the MST
repeat |V|-1 times:
    pick a set S\subsetV for which X has no edges between S and V-S
    let e\inE be the minimum-weight edge between S and V-S
    X=X}\cup{\boldsymbol{e}
```



Kruskal's algorithm

## Invariant:

- A set of nodes $(S)$ is in the tree.

Progress:

- The lightest edge with exactly one endpoint in $S$ is added.


## Invariant:

- A set of trees (forest) has been constructed.


## Progress:

- The lightest edge between two trees is added.


## Prim's algorithm



Q:

| $(\mathrm{AD}, 4)(\mathrm{AB}, 5)(\mathrm{AC}, 6)$ |
| :--- |
| $(\mathrm{DB}, 2)(\mathrm{DC}, 2)(\mathrm{DF}, 4)(\mathrm{AB}, 5)(\mathrm{AC}, 6)$ |
| $(\mathrm{BC}, 1)(\mathrm{DC}, 2)(\mathrm{DF}, 4)(\mathrm{AB}, 5)(\mathrm{AC}, 6)$ |
| $(\mathrm{DC}, 2)(\mathrm{CF}, 3)(\mathrm{DF}, 4)(\mathrm{AB}, 5)(\mathrm{CE}, 5)(\mathrm{AC}, 6)$ |
| $(\mathrm{CF}, 3)(\mathrm{DF}, 4)(\mathrm{AB}, 5)(\mathrm{CE}, 5)(\mathrm{AC}, 6)$ |
| $(\mathrm{DF}, 4)(\mathrm{FE}, 4)(\mathrm{AB}, 5)(\mathrm{CE}, 5)(\mathrm{AC}, 6)$ |
| $(\mathrm{FE}, 4)(\mathrm{AB}, 5)(\mathrm{CE}, 5)(\mathrm{AC}, 6)$ |

Informal algorithm:

- Sort edges by weight.
- Visit edges in ascending order of weight and add them as long as they do not create a cycle.


## How do we know whether a new edge will create a cycle?

```
```

def Kruskal(G, w) -> MST:

```
```

def Kruskal(G, w) -> MST:
"""Input: A connected undirected Graph G(V,E)
"""Input: A connected undirected Graph G(V,E)
with edge weights w
with edge weights w
Output: An MST defined by the edges in MST."""
Output: An MST defined by the edges in MST."""
MST = {}
MST = {}
sort the edges in E by weight
sort the edges in E by weight
for all (u,v) \inE, in ascending order of weight:
for all (u,v) \inE, in ascending order of weight:
if (MST has no path connecting u}\mathrm{ and v):
if (MST has no path connecting u}\mathrm{ and v):
MST = MST U {(u,v)}

```
```

            MST = MST U {(u,v)}
    ```
```

- A data structure to store a collection of disjoint sets.
- Operations:
- makeset $(x)$ : creates a singleton set containing just $x$.
$-\operatorname{find}(x)$ : returns the identifier of the set containing $x$.
- union $(x, y)$ : merges the sets containing $x$ and $y$.
- Kruskal's algorithm uses disjoint sets and calls
- makeset: $|V|$ times
- find: $2 \cdot|E|$ times
- union: $|V|-1$ times


## Kruskal's algorithm

```
```

def Kruskal(G, w) -> MST:

```
```

def Kruskal(G, w) -> MST:
"""Input: A connected undirected Graph G(V,E)
"""Input: A connected undirected Graph G(V,E)
with edge weights w
with edge weights w
Output: An MST defined by the edges in MST."""
Output: An MST defined by the edges in MST."""
for all u\inV: makeset(u)
for all u\inV: makeset(u)
MST = {}
MST = {}
sort the edges in E by weight
sort the edges in E by weight
for all (u,v) \inE, in ascending order of weight:
for all (u,v) \inE, in ascending order of weight:
if (find(u) \# find(v)):
if (find(u) \# find(v)):
MST = MST U {(u,v)}
MST = MST U {(u,v)}
union(u,v)

```
```

            union(u,v)
    ```
```

- The nodes are organized as a set of trees. Each tree represents a set.
- Each node has two attributes:
- parent $(\pi)$ : ancestor in the tree

- The root element is the representative for the set: its parent pointer is itself (self-loop).
- The efficiency of the operations depends on the height of the trees.

```
def makeset(x):
    \pi(x)=x
    rank}(x)=
def find(x):
```



```
    return x
```

After union $(A, D)$, union $(B, E)$, union $(C, F)$ :


$$
\begin{aligned}
& \text { def makeset }(x) \text { : } \\
& \quad \pi(x)=x \\
& \quad \operatorname{rank}(x)=0 \\
& \text { def find }(x): \\
& \quad \text { while } x \neq \pi(x): x=\pi(x) \\
& \quad \text { return } x
\end{aligned}
$$



Property: Any root node of rank $k$ has at least $2^{k}$ nodes in its tree.
Property: If there are $n$ elements overall, there can be at most $n / 2^{k}$ nodes of rank $k$. Therefore, all trees have height $\leq \log n$.
Graphs: MST

## Disjoint sets

Property 1: proof by induction


Property 2:


Property 1: Any root node of rank $k$ has at least $2^{k}$ nodes in its tree.
Property 2: If there are $n$ elements overall, there can be at most $n / 2^{k}$ nodes of rank $k$.
Therefore, all trees have height $\leq \log n$.

Disjoint sets: path compression


# EXERCISES 

