
Graphs: A* search

Jordi Cortadella and Jordi Petit
Department of Computer Science

Shortest path between two nodes

2

How to find the shortest path
from Barcelona to Girona?

Girona

Lleida

Barcelona

Dijkstra will find ALL shortest paths from Barcelona

Do we really need to waste computations exploring
roads that go to Lleida, Amposta or Vielha?

Easy: run Dijkstra from Barcelona

Graphs: A* search © Dept. CS, UPC

A* search algorithm

• Original paper:

P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis
for the Heuristic Determination of Minimum Cost Paths,"
in IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100-107, July 1968.

• A* is a class of graph searching strategies using ad hoc
heuristic information. A* guarantees optimal solutions
when the heuristic information meets certain properties.

Graphs: A* search © Dept. CS, UPC 3

A* search: heuristic guidance

Graphs: A* search © Dept. CS, UPC 4

Girona

?

?

?

?

?

?

Barcelona

What is the most promising node to explore?

Heuristic: select nodes that reduce the straight-line distance to the target

A* search: intuition

Graphs: A* search © Dept. CS, UPC 5

source
goal

𝑛𝑛

𝑔𝑔(𝑛𝑛)
ℎ(𝑛𝑛)

How to extend the path and find the next node 𝑛𝑛?

For each node 𝑛𝑛 calculate 𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)
• 𝑔𝑔(𝑛𝑛) is the cost of the path from the source to 𝑛𝑛
• ℎ(𝑛𝑛) is the estimated cost of the cheapest path from 𝑛𝑛 to the goal

Select the node with minimum 𝑓𝑓(𝑛𝑛)

Example: train network

Graphs: A* search © Dept. CS, UPC 6

Finding the optimum path from Washington, D.C. and Los Angeles

ℎ(𝑥𝑥) is the great-circle distance (the shortest possible distance on a sphere) to the target

Source: https://en.wikipedia.org/wiki/A*_search_algorithm

A* algorithm for shortest paths
def Astar_search(𝑮𝑮, 𝒔𝒔, 𝒕𝒕, 𝒄𝒄, 𝒉𝒉) → pred:
"""Input: Graph 𝑮𝑮(𝑽𝑽, 𝑬𝑬), source node 𝒔𝒔, target node 𝒕𝒕,

positive edge costs {𝒄𝒄 𝒆𝒆 : 𝒆𝒆 ∈ 𝑬𝑬},
function to estimate the cost to the target {𝒉𝒉 𝒗𝒗 : 𝒗𝒗 ∈ 𝑽𝑽}

Output: pred[𝒖𝒖] has the predecessor in the shortest path from 𝒔𝒔 to 𝒕𝒕,
if 𝒕𝒕 ∉ pred, no path exists from 𝒔𝒔 to 𝒕𝒕

"""
f = {} # dictionary for the f value (∞ if not present)
g = {} # dictionary for the g value (∞ if not present)
pred = {} # dictionary of predecessors

g[𝒔𝒔] = 0
f[𝒔𝒔] = 𝒉𝒉(𝒔𝒔)
Q = {𝒔𝒔} # open nodes: priority queue sorted by f

while not Q.empty():
𝒖𝒖 = Q.deletemin() # get open node with min cost
if 𝒖𝒖 == 𝒕𝒕: return
for all 𝒖𝒖, 𝒗𝒗 ∈ 𝑬𝑬:
gv = g[𝒖𝒖] + 𝒄𝒄(𝒖𝒖, 𝒗𝒗)
if gv < g[𝒗𝒗]: # g[𝒗𝒗]=∞ if 𝒗𝒗 ∉ g
g[𝒗𝒗] = gv
f[𝒗𝒗] = gv + 𝒉𝒉(𝒗𝒗)
pred[𝒗𝒗] = 𝒖𝒖
Q.add(𝒗𝒗) # new open node (or update if already in Q)

Graphs: Shortest paths © Dept. CS, UPC 7

𝑠𝑠 𝑢𝑢 𝑡𝑡𝑣𝑣
𝑐𝑐(𝑢𝑢, 𝑣𝑣)g[𝑢𝑢] ℎ(𝑣𝑣)

Running A*: example

Graphs: A* search © Dept. CS, UPC 8

A H

B C D

E F G

3

4

3 3

5

5

35

1

9 6 4

7 5 4

11 0

ℎ

Q = {A(11)}

0
𝑔𝑔

A 11

Running A*: example

Graphs: A* search © Dept. CS, UPC 9

A H

B C D

E F G

3

4

3 3

5

5

35

1

9 6 4

7 5 4

11 0

ℎ

Q = {E(11), B(12)}

0
𝑔𝑔

3

4 A 11

EB12 11

Running A*: example

Graphs: A* search © Dept. CS, UPC 10

A H

B C D

E F G

3

4

3 3

5

5

35

1

9 6 4

7 5 4

11 0

ℎ

Q = {C(11), B(12), F(14)}

0
𝑔𝑔

3

4

5

9 A 11

EB

C F

12 11

11 14

Running A*: example

Graphs: A* search © Dept. CS, UPC 11

A H

B C D

E F G

3

4

3 3

5

5

35

1

9 6 4

7 5 4

11 0

ℎ

Q = {B(12), D(12), F(14)}

0
𝑔𝑔

3

4

5

9

8

A 11

EB

C F

D

12 11

11 14

12

Running A*: example

Graphs: A* search © Dept. CS, UPC 12

A H

B C D

E F G

3

4

3 3

5

5

35

1

9 6 4

7 5 4

11 0

ℎ

Q = {D(12), F(14)}

0
𝑔𝑔

3

4

5

9

8

A 11

EB

C F

D

C

12

12

11

11 14

12

Running A*: example

Graphs: A* search © Dept. CS, UPC 13

A H

B C D

E F G

3

4

3 3

5

5

35

1

9 6 4

7 5 4

11 0

ℎ

Q = {H(13), F(14)}

0
𝑔𝑔

3

4

5

9

8

Finally, H is selected and the algorithm terminates

Backtrack from H to find the selected path

A 11

EB

C F

D

H

C

12

12

11

11 14

12

13

Avoiding obstacles

Graphs: A* search © Dept. CS, UPC 14

Source: https://github.com/vittin/A-Star/

The heuristic function: ℎ(𝑥𝑥)
• A* relies on a good heuristic to estimate the

cost to reach the goal

• How about using a "bad" heuristic function?
– Does the algorithm find the optimum path?
– Does it run efficiently?

• Let us study the concepts of admissible and
consistent heuristic function

Graphs: A* search © Dept. CS, UPC 15

Admissibility

• A heuristic function is
said to be admissible if it
never overestimates the
cost of reaching the goal

• Example: the straight-line
distance in a map is an
admissible function
(no path can be shorter
than the straight line)

Graphs: A* search © Dept. CS, UPC 16

101 km

85 km

Admissibility

• Important result:
– If ℎ(𝑥𝑥) is admissible, A* will find the optimum path

• Proof (informal):
– A* will never overlook a path with lower cost, since

a node 𝑣𝑣 with lower 𝑓𝑓(𝑣𝑣) than the goal will exist in
the set of open nodes before the goal is reached.

Graphs: A* search © Dept. CS, UPC 17

Consistency
• A heuristic function ℎ(𝑥𝑥) is said to be consistent

(or monotone) if

ℎ 𝑢𝑢 ≤ 𝑐𝑐 𝑢𝑢, 𝑣𝑣 + ℎ 𝑣𝑣

for every edge (𝑢𝑢, 𝑣𝑣) with cost 𝑐𝑐(𝑢𝑢, 𝑣𝑣)

• Important result:
– If ℎ(𝑥𝑥) is consistent, A* is guaranteed to find an

optimal path without processing any node more than
once

Graphs: A* search © Dept. CS, UPC 18

𝑢𝑢𝑠𝑠 𝑣𝑣

𝑡𝑡ℎ(𝑢𝑢)

ℎ(𝑣𝑣)𝑐𝑐(𝑢𝑢, 𝑣𝑣)

𝑔𝑔(𝑢𝑢)

Consistency
If ℎ(𝑥𝑥) is consistent then 𝑓𝑓(𝑥𝑥) is an increasing function

Graphs: A* search © Dept. CS, UPC 19

source goal

𝑓𝑓

𝑢𝑢 𝑣𝑣

𝑓𝑓(𝑢𝑢)

ℎ 𝑢𝑢 ≤ 𝑐𝑐 𝑢𝑢, 𝑣𝑣 + ℎ 𝑣𝑣

𝑓𝑓 𝑣𝑣 = 𝑓𝑓 𝑢𝑢 − ℎ 𝑢𝑢 + 𝑐𝑐 𝑢𝑢, 𝑣𝑣 + ℎ 𝑣𝑣 ≥ 𝑓𝑓(𝑢𝑢)

𝑢𝑢𝑠𝑠 𝑣𝑣

𝑡𝑡ℎ(𝑢𝑢)

ℎ(𝑣𝑣)𝑐𝑐(𝑢𝑢, 𝑣𝑣)

𝑔𝑔(𝑢𝑢)

Example
Goal: find the shortest path from A to H
• The ℎ function is not admissible (it overestimates the cost to the goal)
• Example: ℎ C = 12. The solution may not be optimal

Graphs: A* search © Dept. CS, UPC 20

Visited nodes during the A* search: A B E F G H

A H

B C D

E F G

3

4

3 3

7

5

35

1

7 12 6

8 4 2

9 0

ℎ

Example
Goal: find the shortest path from A to H.
• The ℎ function is admissible (it does not overestimate the cost to the goal)
• The ℎ function is not consistent, e.g., ℎ E > 𝑑𝑑 E, C + ℎ(C)
• The solution will be optimal. Some nodes may be visited more than once

Graphs: A* search © Dept. CS, UPC 21

Visited nodes during the A* search: A B C D E C D F G H

A H

B C D

E F G

3

4

3 3

7

5

35

1

7 5 2

8 4 2

9 0

ℎ

Example
Goal: find the shortest path from A to H.
• The ℎ function is admissible (it does not overestimate the cost to the goal)
• The ℎ function is consistent
• The solution will be optimal and the nodes will be visited once at most

Graphs: A* search © Dept. CS, UPC 22

Visited nodes during the A* search: A E B C D F G H

A H

B C D

E F G

3

4

3 3

7

5

35

1

7 5 2

5 4 2

9 0

ℎ

Complexity
• The time complexity of A* highly depends on the heuristic

function. The worst-case complexity is O(𝑏𝑏𝑑𝑑), where
– 𝑑𝑑 is the depth of the shortest path
– 𝑏𝑏 is the average branching factor

(number of successor nodes of each node)

• Each heuristic has an effective branching factor 𝑏𝑏∗, and the
number of visited nodes is:

1 + 𝑏𝑏∗ + 𝑏𝑏∗ 2 + ⋯+ 𝑏𝑏∗ 𝑑𝑑

• Good heuristics have small values for 𝑏𝑏∗
(the optimal heuristic has 𝑏𝑏∗ = 1)

Graphs: A* search © Dept. CS, UPC 23

Complexity
• A* may not terminate if the graph is infinite and no

path exists to the target

• A* keeps all generated nodes in memory. There are
memory-bounded heuristic searches:
– Iterative deepening A*: guided DFS, no priority

queue, nodes may be visited multiple times
– Simplified Memory-Bounded A* (SMA*):

nodes with highest f-cost pruned from the queue
– and others ...

Graphs: A* search © Dept. CS, UPC 24

EXERCISES

Shortest path

Graphs: A* search © Dept. CS, UPC 26

A

B

C

D

E

J

F

G
H

I

3
7

1

3
2

5

5 3

6
2

3
1

8

5

10

8

5

7

3

1

5

6

3

Find the shortest path from A to J using the A* algorithm.
The red numbers next to the nodes represent the heuristic value.
Questions:

• Is the heuristic admissible?
• Is the heuristic consistent?
• Report the visited node at each step of the algorithm

8-puzzle problem

• Use the A* algorithm to find the smallest sequence of shifts
to reach the goal. Depict the search tree

• Consider:
– 𝑔𝑔(𝑛𝑛) = depth of the node (number of shifts)
– ℎ(𝑛𝑛) = number of misplaced tiles

Graphs: A* search © Dept. CS, UPC 27

2 8 3
1 6 4
7 5

1 2 3
8 4
7 6 5

Initial state Goal

Pancake sorting
• You have a disordered stack

of pancakes of different sizes.
You want to sort this pile
(smallest pancake on top,
largest one at the bottom)
using a spatula by flipping
parts of the stack

• Describe how you would use A* to find the shortest
sequence of flips that sort the pile
– Define the initial state, successor states, and the functions
𝑔𝑔(𝑛𝑛) and ℎ(𝑛𝑛). Make sure ℎ(𝑛𝑛) is admissible

Graphs: A* search © Dept. CS, UPC 28

