Graphs: Shortest paths

Jordi Cortadella and Jordi Petit Department of Computer Science

Distance in a graph

Depth-first search finds vertices reachable from another given vertex. The paths are not the shortest ones.

Distance between two nodes: length of the shortest path between them

Graphs: Shortest paths © Dept. CS, UPC

Breadth-first search

Similar to a wave propagation

Breadth-first search

Graphs: Shortest paths © Dept. CS, UPC 3 Graphs: Shortest paths © Dept. CS, UPC

Breadth-first search

BFS algorithm

- BFS visits vertices layer by layer: 0,1,2,...,d.
- Once the vertices at layer d have been visited, start visiting vertices at layer d+1.
- Algorithm with two active layers:
 - Vertices at layer *d* (currently being visited).
 - Vertices at layer d + 1 (to be visited next).
- Central data structure: a queue.

Graphs: Shortest paths

© Dept. CS, UPC

Graphs: Shortest paths

© Dept. CS, UPC

BFS queue

BFS algorithm: simulation

 S_0

- $A_1 C_1 D_1 E_1 \qquad \boxed{\mathbf{0} \mid \mathbf{1} \mid \infty \mid \mathbf{1} \mid \mathbf{1} \mid \infty}$
- $A_1 \qquad \boxed{C_1 \ D_1 \ E_1 \ B_2} \qquad \boxed{\mathbf{0} \ | \ \mathbf{1} \ | \ \mathbf{2} \ | \ \mathbf{1} \ | \ \mathbf{1} \ | \ \mathbf{1}} \ |_{\infty}$
- C_1 $D_1 E_1 B_2$ $0 1 2 1 1 1 \infty$
- D_1 $E_1 B_2$ $0 1 2 1 1 1 \infty$
- E_1 B_2 $\boxed{ 0 | 1 | 2 | 1 | 1 | 1 | \infty }$
- B_2 F_3 0 1 2 1 1 3
- F₃ 0 1 2 1 1 1 :

BFS algorithm

Runtime O(|V| + |E|): Each vertex is visited once, each edge is visited once (for directed graphs) or twice (for undirected graphs).

Graphs: Shortest paths

© Dept. CS, UPC

Reachability: BFS vs. DFS

```
B C G
```

DFS order: A B C E F G H D

BFS order: A B D C F E G H Distance: 0 1 1 2 2 3 3 3

Reachability: BFS vs. DFS

Input: A graph G and a source node s. **Output:** $\forall u \in V$: visited $[u] \Leftrightarrow u$ is reachable from s. The function processes the nodes in BFS/DFS order

```
def DFS(G, s) \rightarrow visited:
    for all u \in V:
       visited[u] = False

S = \square  # Empty stack
S.push(s)
while not S.empty():
    u = S.pop()
    process(u)
    if not visited[u]:
    visited[u] = True
    for all (u,v) \in E:
       S.push(v)
```

12

Graphs: Shortest paths © Dept. CS, UPC

Weights on edges

Image credits: https://thegadgetflow.com/blog/google-maps-vs-google-earth/

Reusing BFS

Dijkstra's algorithm: invariant

Shortest paths already computed (completed vertices)

Shortest paths already computed structure:

The set of non-completed vertices with their shortest distance from S using only

Inefficient: many cycles without any interesting progress. How about real numbers?

Graphs: Shortest paths © Dept. CS, UPC 13 Graphs: Shortest paths © Dept. CS, UPC 14

Example

Example

the completed vertices.

A	2 B
2	3 2 10 2 E
C) 2 3 5 8	1 4 6 3
F	1 G 5 = 1

4 0	1	3 2		_
© 2 3 5	8 1 1	4	6	E) 3
9	t =	2		

Done	Queue
	A:0
	B: ∞
	E:∞
	D: ∞
	C:∞
	F:∞
	G:∞

Done	Queue
A:0	B:2
D:1	E:3
	C:3
	G:5
	F:9

Queue
E:3
C:3
G:5
F:9

16

Example

4 0 1	2 B 2 10
C 2 5 8	D 2 E 3
(F)←	$\frac{1}{3}$ $= 3$

C 3 5	2	3 2 2 4 6 5 5	10 E 3
	Done	Queue	

A 0 1	2 B 2 10
3 5 8	1 4 6 3
F ← t	= 6

Done	Queue
A:0	C:3
D:1	G:5
B:2	F:9
E:3	

Done	Queue
A:0	G:5
D:1	F:8
B:2	
E:3	
C:3	

Done	Queue
A:0	F:6
D:1	
B:2	
E:3	
C:3	
G:5	

Done	Queue
A:0	
D:1	
B:2	
E:3	
C:3	
G:5	
F:6	
	1

Graphs: Shortest paths

© Dept. CS, UPC

Graphs: Shortest paths

© Dept. CS, UPC

Example

Dijkstra's algorithm for shortest paths

We need to:

- keep a list non-completed vertices and their expected distances.
- select the non-completed vertex with shortest distance.
- update the distances of the neighbouring vertices.

```
def ShortestPaths(G, s, len) \rightarrow dist, prev:
    """Input: Graph G(V,E), source vertex s,
               positive edge lengths \{len(e): e \in E\}
       Output: dist[u] has the distance from s,
                prev[u] has the predecessor in the tree
    .....
    for all u \in V:
        dist[u] = \infty
        prev[u] = nil
    dist[s] = 0
    Q = makequeue(V) # priority queue (dist as value)
    while not Q.empty():
        u = Q.deletemin()
        for all (u,v) \in E:
            if dist[v] > dist[u] + len(u, v):
                 dist[v] = dist[u] + len(u, v)
                 prev[v] = u
                 Q.decreasekey(v)
```

Dijkstra's algorithm: complexity

```
 \begin{array}{l} {\tt Q = makequeue}(V) \\ {\tt while \ not \ Q.empty():} \\ {\tt u = Q.deletemin()} \\ {\tt for \ all \ } (u,v) \in E: \\ {\tt if \ dist}[v] > {\tt dist}[u] + {\tt len}(u,v): \\ {\tt dist}[v] = {\tt dist}[u] + {\tt len}(u,v) \\ {\tt prev}[v] = u \\ {\tt Q.decreasekey}(v) \\ \hline \end{array} \qquad \begin{array}{l} |V| \ {\tt times} \\ \\ |E| \ {\tt times} \\ \end{array}
```

- The skeleton of Dijkstra's algorithm is based on BFS, which is O(|V| + |E|)
- We need to account for the cost of:

Graphs: Shortest paths

- makequeue: insert |V| vertices to a list.
- deletemin: find the vertex with min dist in the list (|V| times)
- decreasekey: update dist for a vertex (|E| times)
- Let us consider two implementations for the list: vector and binary heap

· ·

Why Dijkstra's works

© Dept. CS, UPC

- A tree of open paths with distances is maintained at each iteration.
- The shortest paths for the internal nodes have already been calculated.
- The node in the frontier with shortest distance is "frozen" and expanded. Why? Because no other shorter path can reach the node.

Disclaimer: this is only true if the **distances are non-negative!**

Dijkstra's algorithm: complexity

Implementation	deletemin	insert/ decreasekey	Dijkstra's complexity	
Vector	O(V)	0(1)	$O(V ^2)$	
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$	

Binary heap:

- The elements are stored in a complete (balanced) binary tree.
- **Insertion:** place element at the bottom and let it *bubble up* swapping the location with the parent (at most $log_2 |V|$ levels).
- **Deletemin:** Remove element from the root, take the last node in the tree, place it at the root and let it *bubble down* (at most $\log_2 |V|$ levels).
- **Decreasekey:** decrease the key in the tree and let it *bubble up* (same as insertion). A data structure might be required to known the location of each vertex in the heap (table of pointers).

For connected graphs:
$$O((|V| + |E|) \log |V|) = O(|E| \log |V|)$$
Graphs: Shortest paths

© Dept. CS, UPC

Graphs with negative edges

• Dijkstra's algorithm does not work:

Dijkstra would say that the shortest path S→A has length=3.

22

 Dijkstra is based on a safe update each time an edge (u, v) is treated:

$$dist(v) = \min\{dist(v), dist(u) + l(u, v)\}\$$

- Problem: shortest paths are consolidated too early.
- Possible solution: add a constant weight to all edges, make them positive, and apply Dijkstra.
 - It does not work, prove it!

Graphs: Shortest paths © Dept. CS, UPC 23 Graphs: Shortest paths © Dept. CS, UPC

Graphs with negative edges

• The shortest path from s to t can have at most |V| - 1 edges:

• If the sequence of updates includes

$$(s, u_1), (u_1, u_2), (u_2, u_3), ..., (u_k, t),$$

in that order, the shortest distance from s to t will be computed correctly (updates are always safe). Note that the sequence of updates does not need to be consecutive.

© Dept. CS, UPC

- Solution: update all edges |V| 1 times!
- Complexity: $O(|V| \cdot |E|)$.

Graphs: Shortest paths

Bellman-Ford: example

	Iteration							
Node	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
A	8	10	10	5	5	5	5	5
В	8	8	8	10	6	5	5	5
С	8	8	8	8	11	7	6	6
D	8	8	8	8	8	14	10	9
E	8	8	12	8	7	7	7	7
F	8	8	9	9	9	9	9	9
G	8	8	8	8	8	8	8	8

Bellman-Ford algorithm

```
def ShortestPaths(G, s, len) \rightarrow dist, prev:

"""Input: Graph G(V, E), source vertex s,

edge lengths \{len(e): e \in E\}, no negative cycles

Output: dist[u] has the distance from s,

prev[u] has the predecessor in the tree

"""

for all u \in V:

dist[u] = \infty

prev[u] = nil

dist[s] = 0

repeat |V| - 1 times:

for all (u, v) \in E:

if dist[v] > dist[v] + len(v):

dist[v] = dist[v] + len(v)

prev[v] = v
```

Negative cycles

© Dept. CS, UPC

What is the shortest distance between S and A?

Graphs: Shortest paths

Bellman-Ford does not work as it assumes that the shortest path will not have more than |V|-1 edges.

26

28

- A negative cycle produces $-\infty$ distances by endlessly applying rounds to the cycle.
- How to detect negative cycles?
 - Apply Bellman-Ford (update edges |V| 1 times)
 - Perform an extra round and check whether some distance decreases.

Graphs: Shortest paths © Dept. CS, UPC 27 Graphs: Shortest paths © Dept. CS, UPC

Shortest paths in DAGs

• DAG's property:

In any path of a DAG, the vertices appear in increasing topological order.

- Any sequence of updates that preserves the topological order will compute distances correctly.
- Only one round visiting the edges in topological order is sufficient: O(|V| + |E|).
- How to calculate the longest paths?
 - Negate the edge lengths and compute the shortest paths.
 - Alternative: update with max (instead of min).

Graphs: Shortest paths

© Dept. CS, UPC

C

Graphs: Shortest paths

© Dept. CS, UPC

dist[v] = dist[u] + len(u,v)

if dist[v] > dist[u] + len(u, v):

20

DAG shortest/longest paths: example

Linearization: S A B C D E F G H

DAG shortest paths algorithm

def DagShortestPaths(G, s, len) \rightarrow dist, prev: """Input: DAG G(V, E), source vertex s,

for all $u \in V$ in linearized order:

prev[v] = u

for all $(u,v) \in E$:

Shortest paths: summary

Single-source shortest paths

Graph	Algorithm	Complexity
Unit edge-length	BFS	O(V + E)
Non-negative edges	Dijkstra	$O((V + E)\log V)$
Negative edges	Bellman-Ford	$O(V \cdot E)$
DAG	Topological sort	O(V + E)

A related problem: All-pairs shortest paths

- Floyd-Warshall algorithm $(O(|V|^3))$, based on dynamic programming.
- Other algorithms exist.

Graphs: Shortest paths © Dept. CS, UPC 31 Graphs: Shortest paths © Dept. CS, UPC

Dijkstra (from [DPV2008])

EXERCISES

Run Dijkstra's algorithm starting at node A:

- Draw a table showing the intermediate distance values of all the nodes at each iteration
- Show the final shortest-path tree

Graphs: Shortest paths © Dept. CS, UPC 33 Graphs: Shortest paths © Dept. CS, UPC 34

Bellman-Ford (from [DPV2008])

Run Bellman-Ford algorithm starting at node S:

- Draw a table showing the intermediate distance values of all the nodes at each iteration
- Show the final shortest-path tree

Graphs: Shortest paths © Dept. CS, UPC 35