Distance in a graph

Depth-first search finds vertices reachable from another given vertex. The paths are not the shortest ones.

Graphs:

Shortest paths

Jordi Cortadella and Jordi Petit
Department of Computer Science

Distance between two nodes: length of the shortest path between them

Breadth-first search

- BFS visits vertices layer by layer: $0,1,2, \ldots, d$.

- Once the vertices at layer d have been visited, start visiting vertices at layer $d+1$.
- Algorithm with two active layers:
- Vertices at layer d (currently being visited).
- Vertices at layer $d+1$ (to be visited next).
- Central data structure: a queue.

BFS algorithm: simulation
BFS queue

BFS algorithm

Reachability: BFS vs. DFS

def $\operatorname{BFS}(G, s) \rightarrow$ dist:
"""Input: Graph $G(V, E)$, source vertex s.
Output: For each vertex u, dist $[u$] is the distance from s to u."" "
for all $u \in V: \operatorname{dist}[u]=\infty$
$\operatorname{dist}[s]=0$
$Q=\{s\}$ \# Queue containing just s
while not Q.empty():
$u=$ Q.pop_front()
for all $(u, v) \in E$:
if dist[v] == ∞ :
$\operatorname{dist}[v]=\operatorname{dist}[u]+1$
Q.push_back(v)

Runtime $0(|V|+|E|)$: Each vertex is visited once, each edge is visited once (for directed graphs) or twice (for undirected graphs).

Input: A graph G and a source node s
Output: $\forall u \in V$: visited $[u] \Leftrightarrow u$ is reachable from s.
The function processes the nodes in BFS/DFS order
Q = F \# Empty queue
Q.push_back(s)
visited[s] = True
while not Q.empty():
u = Q.pop_front()
process(u)
for all (u,v) \inE:
if not visited[v]:
visited[v] = True
Q.push_back(v)

```
```

```
def BFS(G, s) }->\mathrm{ visited:
```

```
def BFS(G, s) }->\mathrm{ visited:
    for all u\inV:
    for all u\inV:
        visited[u] = False
```

 visited[u] = False
    ```
paths
```

def DFS(G, s) }->\mathrm{ visited:
for all u\inV:
visited[u] = False
s= U \# Empty stack
S.push(s)
while not S.empty():
u = S.pop()
process(u)
if not visited[u]:
visited[u] = True
for all (u,v) \inE:
S.push(v)

``` Graphs: Shortest paths

\section*{Weights on edges}


DFS order: A B C E F G H D
BFS order: A B D C F E G H
Distance: \(0 \begin{array}{llllllll} & 1 & 1 & 2 & 2 & 3 & 3 & 3\end{array}\)


Image credits: https://thegadgetflow.com/blog/google-maps-vs-google-earth/

\section*{Reusing BFS}

Dijkstra's algorithm: invariant


Inefficient: many cycles without any interesting progress. How about real numbers?

\section*{Example}

\section*{Example}

\begin{tabular}{|c|c|}
\hline \multicolumn{1}{|c|}{ Done } & \multicolumn{1}{|c|}{ Queue } \\
\hline & \(\mathbf{A}: \mathbf{0}\) \\
\hline & \(\mathrm{B}: \infty\) \\
\hline & \(\mathrm{E}: \infty\) \\
\hline & \(\mathrm{D}: \infty\) \\
\hline & \(\mathrm{C}: \infty\) \\
\hline & \(\mathrm{F}: \infty\) \\
\hline & \(\mathbf{G}: \infty\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Done & Queue \\
\hline \(\mathbf{A}: \mathbf{0}\) & \(\mathrm{D}: \mathbf{1}\) \\
\hline & \(\mathrm{B}: \mathbf{2}\) \\
\hline & \(\mathrm{E}: \infty\) \\
\hline & \(\mathrm{C}: \infty\) \\
\hline & \(\mathrm{F}: \infty\) \\
\hline & \(\mathrm{G}: \infty\) \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Done & Queue \\
\hline \(\mathrm{A}: \mathbf{0}\) & \(\mathrm{B}: 2\) \\
\hline \(\mathrm{D}: \mathbf{1}\) & \(\mathrm{E}: 3\) \\
\hline & \(\mathrm{C}: 3\) \\
\hline & \(\mathrm{G}: 5\) \\
\hline & \(\mathrm{~F}: 9\) \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{1}{|c|}{ Done } & Queue \\
\hline \(\mathrm{A}: 0\) & \(\mathrm{E}: 3\) \\
\hline \(\mathrm{D}: 1\) & \(\mathrm{C}: 3\) \\
\hline \(\mathrm{~B}: 2\) & \(\mathrm{G}: 5\) \\
\hline & \(\mathrm{~F}: 9\) \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Done & Queue \\
\hline A:0 & C:3 \\
\hline D:1 & G:5 \\
\hline B:2 & F:9 \\
\hline E:3 & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{1}{|c|}{ Done } & Queue \\
\hline A:0 & G:5 \\
\hline D:1 & F:8 \\
\hline B:2 & \\
\hline E:3 & \\
\hline C:3 & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Example}

Dijkstra's algorithm for shortest paths

Shortest-path tree


We need to:
- keep a list non-completed vertices and their expected distances.
- select the non-completed vertex with shortest distance.
- update the distances of the neighbouring vertices.
```

def ShortestPaths(G, S, len) }->\mathrm{ dist, prev:

```
def ShortestPaths(G, S, len) }->\mathrm{ dist, prev:
    def ShortestPaths(G, S, len) -> dist, prev:
    def ShortestPaths(G, S, len) -> dist, prev:
            positive edge lengths {len(e):e\inE}
            positive edge lengths {len(e):e\inE}
        Output: dist[u] has the distance from s,
        Output: dist[u] has the distance from s,
            prev[u] has the predecessor in the tree
            prev[u] has the predecessor in the tree
    """
    """
    for all u\inV:
    for all u\inV:
    dist[u] = \infty
    dist[u] = \infty
    prev[u] = nil
    prev[u] = nil
    dist[s] = 0
    dist[s] = 0
    Q = makequeue(V) # priority queue (dist as value)
    Q = makequeue(V) # priority queue (dist as value)
    while not Q.empty():
    while not Q.empty():
    u = Q.deletemin()
    u = Q.deletemin()
    for all (u,v) \inE:
    for all (u,v) \inE:
        if dist[v] > dist[u] + len(u,v):
        if dist[v] > dist[u] + len(u,v):
        dist[v] = dist[u] + len(u,v)
        dist[v] = dist[u] + len(u,v)
        prev[v] = u
        prev[v] = u
        Q.decreasekey(v)
```

 Q.decreasekey(v)
    ```

- The skeleton of Dijkstra's algorithm is based on BFS, which is \(\mathrm{O}(|V|+|E|)\)
- We need to account for the cost of:
- makequeue: insert \(|V|\) vertices to a list.
- deletemin: find the vertex with min dist in the list ( \(|V|\) times)
- decreasekey: update dist for a vertex (|E| times)
- Let us consider two implementations for the list: vector and binary heap

\section*{Why Dijkstra's works}

- A tree of open paths with distances is maintained at each iteration.
- The shortest paths for the internal nodes have already been calculated.
- The node in the frontier with shortest distance is "frozen" and expanded. Why? Because no other shorter path can reach the node.

Disclaimer: this is only true if the distances are non-negative!
\begin{tabular}{lccc|}
\hline Implementation & deletemin & \begin{tabular}{c} 
insert/ \\
decreasekey
\end{tabular} & \begin{tabular}{c} 
Dijkstra's \\
complexity
\end{tabular} \\
\hline Vector & \(\mathrm{O}(|V|)\) & \(\mathrm{O}(1)\) & \(\mathrm{O}\left(|V|^{2}\right)\) \\
Binary heap & \(\mathrm{O}(\log |V|)\) & \(\mathrm{O}(\log |V|)\) & \(\mathrm{O}((|V|+|E|) \log |V|)\) \\
\hline
\end{tabular}

\section*{Binary heap:}
- The elements are stored in a complete (balanced) binary tree.
- Insertion: place element at the bottom and let it bubble up swapping the location with the parent (at most \(\log _{2}|V|\) levels).
- Deletemin: Remove element from the root, take the last node in the tree, place it at the root and let it bubble down (at most \(\log _{2}|V|\) levels).
- Decreasekey: decrease the key in the tree and let it bubble up (same as insertion). A data structure might be required to known the location of each vertex in the heap (table of pointers).

For connected graphs: \(\mathrm{O}((|V|+|E|) \log |V|)=\mathrm{O}(|E| \log |V|)\)
Graphs: Shortest paths
© Dept. CS, UPC

\section*{Graphs with negative edges}
- Dijkstra's algorithm does not work:


Dijkstra would say that the shortest path \(S \rightarrow A\) has length \(=3\).
- Dijkstra is based on a safe update each time an edge ( \(u, v\) ) is treated:
\[
\operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\]
- Problem: shortest paths are consolidated too early.
- Possible solution: add a constant weight to all edges, make them positive, and apply Dijkstra.
- It does not work, prove it!

\section*{Graphs with negative edges}

\section*{Bellman-Ford algorithm}
- The shortest path from \(s\) to \(t\) can have at most \(|V|-1\) edges:

- If the sequence of updates includes
\[
\left(s, u_{1}\right),\left(u_{1}, u_{2}\right),\left(u_{2}, u_{3}\right), \ldots,\left(u_{k}, t\right),
\]
in that order, the shortest distance from \(s\) to \(t\) will be computed correctly (updates are always safe). Note that the sequence of updates does not need to be consecutive.
- Solution: update all edges \(|V|-1\) times !
- Complexity: \(\mathrm{O}(|V| \cdot|E|)\).
```

def ShortestPaths(G, s, len) }->\mathrm{ dist, prev:
"""Input: Graph G(V,E), source vertex s,
edge lengths {len(e):e\inE}, no negative cycles
Output: dist[u] has the distance from }s\mathrm{ ,
prev[u] has the predecessor in the tree
for all u\inV :
dist[u] = \infty
prev[u] = nil
dist[s] = 0
repeat |V|-1 times:
for all (u,v) \inE:
if dist[v] > dist[u] + len(u,v):
dist[v] = dist[u] + len(u,v)
prev[v] = u

```

\section*{Negative cycles}
- What is the shortest distance between S and A ?


Bellman-Ford does not work as it assumes that the shortest path will not have more than \(|V|-1\) edges.
- A negative cycle produces \(-\infty\) distances by endlessly applying rounds to the cycle.
- How to detect negative cycles?
- Apply Bellman-Ford (update edges \(|V|-1\) times)
- Perform an extra round and check whether some distance decreases.

\section*{DAG shortest paths algorithm}
- DAG's property:

In any path of a DAG, the vertices appear in increasing topological order.
- Any sequence of updates that preserves the topological order will compute distances correctly.
- Only one round visiting the edges in topological order is sufficient: \(O(|V|+|E|)\).
- How to calculate the longest paths?
- Negate the edge lengths and compute the shortest paths.
- Alternative: update with max (instead of min ).
```

def DagShortestPaths(G, s, len) }->\mathrm{ dist, prev:

```
def DagShortestPaths(G, s, len) }->\mathrm{ dist, prev:
    """Input: DAG G(V,E), source vertex s,
    """Input: DAG G(V,E), source vertex s,
                        edge lengths {len(e):e\inE}
                        edge lengths {len(e):e\inE}
        Output: dist[u] has the distance from s,
        Output: dist[u] has the distance from s,
                prev[u] has the predecessor in the tree
                prev[u] has the predecessor in the tree
    """
    """
    for all u\inV:
    for all u\inV:
        dist[u] = \infty
        dist[u] = \infty
        prev[u] = nil
        prev[u] = nil
    dist[s] = 0
    dist[s] = 0
    Linearize G
    Linearize G
    for all u\inV in linearized order:
    for all u\inV in linearized order:
        for all (u,v) \inE:
        for all (u,v) \inE:
        if dist[v] > dist[u] + len(u,v):
        if dist[v] > dist[u] + len(u,v):
                dist[v] = dist[u] + len(u,v)
                dist[v] = dist[u] + len(u,v)
                prev[v] = u
```

 prev[v] = u
    ```

\section*{DAG shortest/longest paths: example}

\section*{Shortest paths: summary}

Shortest paths


Longest paths


\section*{Single-source shortest paths}
\begin{tabular}{|lll|}
\hline \multicolumn{1}{c}{ Graph } & Algorithm & Complexity \\
\hline Unit edge-length & BFS & \(\mathrm{O}(|V|+|E|)\) \\
\hline Non-negative edges & Dijkstra & \(\mathrm{O}((|V|+|E|) \log |V|)\) \\
\hline Negative edges & Bellman-Ford & \(\mathrm{O}(|V| \cdot|E|)\) \\
\hline DAG & Topological sort & \(\mathrm{O}(|V|+|E|)\) \\
\hline
\end{tabular}

A related problem: All-pairs shortest paths
- Floyd-Warshall algorithm \(\left(\mathrm{O}\left(|V|^{3}\right)\right)\), based on dynamic programming.
- Other algorithms exist.


\section*{EXERCISES}

Run Dijkstra's algorithm starting at node A:
- Draw a table showing the intermediate distance values of all the nodes at each iteration
- Show the final shortest-path tree

\section*{Bellman-Ford (from [DPV2008])}


Run Bellman-Ford algorithm starting at node S :
- Draw a table showing the intermediate distance values of all the nodes at each iteration
- Show the final shortest-path tree```

