
Divide & Conquer (II)

Jordi Cortadella and Jordi Petit
Department of Computer Science

Examples

• Quick sort

• The selection problem

• The closest-points problem

Divide & Conquer © Dept. CS, UPC 2

Quick sort (Tony Hoare, 1959)
• Suppose that we know a number 𝑥𝑥 such that one-half

of the elements of a vector are greater than or equal to
𝑥𝑥 and one-half of the elements are smaller than 𝑥𝑥.
– Partition the vector into two equal parts

(𝑛𝑛 − 1 comparisons)
– Sort each part recursively

• Problem: we do not know 𝑥𝑥.

• The algorithm also works no matter which 𝑥𝑥 we pick
for the partition. We call this number the pivot.

• Observation: the partition may be unbalanced.

Divide & Conquer © Dept. CS, UPC 3

Quick sort: example

2 8 1 5 6 9 12 6 10 7 3 13 4 11 15 14

Divide & Conquer © Dept. CS, UPC 4

pivot

2 4 1 5 3 6 12 9 10 7 6 13 8 11 15 14

partition

1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15

qsort qsort

≤ pivot ≥ pivot

The key step of quick sort is the partitioning algorithm.

Question: how to find a good pivot?

Quick sort partition: example

6 8 1 5 6 9 12 2 10 7 3 13 4 11 15 14

Divide & Conquer © Dept. CS, UPC 5

i j

4 8 1 5 6 9 12 2 10 7 3 13 6 11 15 14

i j

4 3 1 5 6 9 12 2 10 7 8 13 6 11 15 14

i j

4 3 1 5 2 9 12 6 10 7 8 13 6 11 15 14

i j

≤ 6 ≥ 6

Quick sort: Hoare's partition
def partition(a: list[T], left: int, right: int) -> int:

"""a[left..right]: segment to be sorted.
Output: The left part has elements ≤ than the pivot.
The right part has elements ≥ than the pivot.
Returns the index of the last element of the left part

"""
pivot = a[left]
i, j = left-1, right+1
while True:

while True: # find a[i] ≥ pivot
i += 1
if a[i] >= pivot: break

while True: # find a[j] ≤ pivot
j -= 1
if a[j] <= pivot: break

if i >= j:
return j

a[i], a[j] = a[j], a[i] # swap a[i], a[j]
Divide & Conquer © Dept. CS, UPC 6

The first swap locates the sentinels of
the two innermost loops.
No need to check for indices out-of-bounds.

Quick sort: algorithm

def quick_sort(a: list[T],
left: int = 0, right: int = -1) -> None:

"""sorts a[left..right].
If right < 0, it sorts the whole list.
The initial call can be invoked as quick_sort(a)

"""

if right < 0: # initial call (sort the whole list)
right = len(a)-1

if left < right:
mid = partition(a, left, right)
quick_sort(a, left, mid)
quick_sort(a, mid+1, right)

Divide & Conquer © Dept. CS, UPC 7

Quick sort: hybrid approach
def quick_sort(a: list[T],

left: int = 0, right: int = -1) -> None:
"""sorts a[left..right] partially, leaving unsorted

chunks of size K (some break-even constant when
compared to insertion sort).
If right < 0, it sorts the whole list.

"""
if right < 0: # initial call (sort the whole list)

right = len(a)-1

if left <= right - K: # K: size of the unsorted chunks
mid = partition(a, left, right)
quick_sort(a, left, mid)
quick_sort(a, mid+1, right)

def sort(a: list[T]) -> None:
"""Sorts a"""
quick_sort(a)
insertion_sort(a)

Divide & Conquer © Dept. CS, UPC 8

unsortedafter quick_sort:
K

Observation: during insertion_sort, elements will never be shifted by more than K locations

Quick sort: complexity analysis
• The partition algorithm is O(𝑛𝑛).

• Assume that the partition is balanced:

𝑇𝑇 𝑛𝑛 = 2 ⋅ 𝑇𝑇(⁄𝑛𝑛 2) + O 𝑛𝑛 = O(𝑛𝑛 log 𝑛𝑛)

• Worst case runtime: the pivot is always the smallest
element in the vector O(𝑛𝑛2)

• Selecting a good pivot is essential. There are different
strategies, e.g.,
– Take the median of the first, last and middle elements
– Take the pivot at random

Divide & Conquer © Dept. CS, UPC 9

Quick sort: complexity analysis
• Let us assume that 𝑥𝑥𝑖𝑖 is the 𝑖𝑖-th smallest element

in the vector.

• Let us assume that each element has the same
probability of being selected as pivot.

• The runtime if 𝑥𝑥𝑖𝑖 is selected as pivot is:

𝑇𝑇 𝑛𝑛 = 𝑛𝑛 + 𝑇𝑇 𝑖𝑖 + 𝑇𝑇(𝑛𝑛 − 𝑖𝑖)

Divide & Conquer © Dept. CS, UPC 10

0 𝑛𝑛 − 1𝑖𝑖

𝑖𝑖 elements 𝑛𝑛 − 𝑖𝑖 elements

partition qsort qsort

Possible values for 𝑖𝑖: 1 …𝑛𝑛 − 1. Assumption: all values are equiprobable (random pivots)

Quick sort: complexity analysis

𝐻𝐻 𝑛𝑛 = 1 + ⁄1 2 + ⁄1 3 + ⋯+ ⁄1 𝑛𝑛 is the Harmonic series, that
has a simple approximation: 𝐻𝐻 𝑛𝑛 = ln𝑛𝑛 + 𝛾𝛾 + O ⁄1 𝑛𝑛 .
𝛾𝛾 = 0.577 … is Euler’s constant. [see the appendix]

Divide & Conquer © Dept. CS, UPC 11

𝑇𝑇 𝑛𝑛 = 𝑛𝑛 +
1

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛−1

𝑇𝑇 𝑖𝑖 + 𝑇𝑇(𝑛𝑛 − 𝑖𝑖)

𝑇𝑇 𝑛𝑛 = 𝑛𝑛 +
1

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛−1

𝑇𝑇 𝑖𝑖 +
1

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛−1

𝑇𝑇(𝑛𝑛 − 𝑖𝑖)

𝑇𝑇 𝑛𝑛 = 𝑛𝑛 +
2

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛−1

𝑇𝑇 𝑖𝑖 = 2𝑛𝑛 ⋅ 𝐻𝐻(𝑛𝑛)

𝑇𝑇 𝑛𝑛 = 2𝑛𝑛 ln𝑛𝑛 + 𝛾𝛾 + O(⁄1 𝑛𝑛) ∈ O(𝑛𝑛 log𝑛𝑛)

Quick sort: complexity analysis summary
• Runtime of quicksort:

𝑇𝑇 𝑛𝑛 = O 𝑛𝑛2
𝑇𝑇 𝑛𝑛 = Ω(𝑛𝑛 log𝑛𝑛)
𝑇𝑇avg 𝑛𝑛 = O(𝑛𝑛 log𝑛𝑛)

• Be careful: some malicious patterns may increase
the probability of the worst case runtime, e.g.,
when the vector is sorted or almost sorted.

• Possible solution: use random pivots.

Divide & Conquer © Dept. CS, UPC 12

The selection problem
• Given a collection of 𝑁𝑁 elements, find the 𝑘𝑘-th

smallest element.

• Options:
– Sort a vector and select the 𝑘𝑘-th location: O(𝑁𝑁 log𝑁𝑁)
– Read 𝑘𝑘 elements into a vector and sort them. The

remaining elements are processed one by one and
placed in the correct location (similar to insertion
sort). Only 𝑘𝑘 elements are maintained in the vector.
Complexity: O 𝑘𝑘𝑁𝑁 . Why?

Divide & Conquer © Dept. CS, UPC 13

Quick sort

def quick_sort(a: list[T],
left: int = 0, right: int = -1) -> None:

"""sorts a[left..right].
If right < 0, it sorts the whole list.
The initial call can be invoked as quick_sort(a)

"""

if right < 0: # initial call (sort the whole list)
right = len(a)-1

if left < right:
mid = partition(a, left, right)
quick_sort(a, left, mid)
quick_sort(a, mid+1, right)

Divide & Conquer © Dept. CS, UPC 14

Quick select
def quick_select(a: list[T], k: int,

left: int = 0, right: int = -1) -> T:
"""Returns the element at location k assuming

a[left..right] would be sorted.
Pre: left ≤ k ≤ right.
Post: the elements of a have changed their locations.
The initial call can be invoked as quick_select(a, k)

"""
if right < 0: # initial call (use the whole list)

right = len(a)-1

if left == right:
return a[left]

mid = partition(a, left, right)
if k <= mid:

return quick_select(a, k, left, mid)
return quick_select(a, k, mid+1, right)

Divide & Conquer © Dept. CS, UPC 15

Quick Select: complexity
• Master theorem:

𝑇𝑇 𝑛𝑛 = �
O 𝑛𝑛𝑐𝑐 if 𝑐𝑐 > log𝑏𝑏 𝑎𝑎 (𝑎𝑎 < 𝑏𝑏𝑐𝑐)
O 𝑛𝑛𝑐𝑐 log𝑛𝑛 if 𝑐𝑐 = log𝑏𝑏 𝑎𝑎 (𝑎𝑎 = 𝑏𝑏𝑐𝑐)
O 𝑛𝑛log𝑏𝑏 𝑎𝑎 if 𝑐𝑐 < log𝑏𝑏 𝑎𝑎 (𝑎𝑎 > 𝑏𝑏𝑐𝑐)

• Assume that the partition is balanced:
– Quick sort: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇(⁄𝑛𝑛 2) + O 𝑛𝑛 = O(𝑛𝑛 log𝑛𝑛)
– Quick select: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇(⁄𝑛𝑛 2) + O 𝑛𝑛 = O(𝑛𝑛)

• The average linear time complexity can be achieved by
choosing good pivots (similar strategy and complexity
computation to quick_sort).

Divide & Conquer © Dept. CS, UPC 16

The Closest-Points problem
• Input: A list of 𝑛𝑛 points in the plane

𝑥𝑥1,𝑦𝑦1 , 𝑥𝑥2,𝑦𝑦2 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛
• Output: The pair of closest points
• Simple approach: check all pairs O(𝑛𝑛2)
• We want an O(𝑛𝑛 log𝑛𝑛) solution !

Divide & Conquer © Dept. CS, UPC 17

The Closest-Points problem
• We can assume that the points are sorted by the 𝑥𝑥-coordinate. Sorting the

points is free from the complexity standpoint (O(𝑛𝑛 log𝑛𝑛)).

• Split the list into two halves. The closest points can be both at the left, both at
the right or one at the left and the other at the right (center).

• The left and right pairs are easy to find (recursively).
How about the pairs in the center?

Divide & Conquer © Dept. CS, UPC 18

𝛿𝛿𝐿𝐿

𝛿𝛿𝑅𝑅

𝛿𝛿𝐶𝐶

The Closest-Points problem
• Let 𝛿𝛿 = 𝑚𝑚𝑖𝑖𝑛𝑛 𝛿𝛿𝐿𝐿, 𝛿𝛿𝑅𝑅 . We only need to compute 𝛿𝛿𝐶𝐶 if it improves 𝛿𝛿.

• We can define a strip around de center with distance 𝛿𝛿 at the left and right. If
𝛿𝛿𝐶𝐶 improves 𝛿𝛿, then the points must be within the strip.

• In the worst case, all points can still reside in the strip.

• But how many points do we really have to consider?

Divide & Conquer © Dept. CS, UPC 19

𝛿𝛿𝐿𝐿

𝛿𝛿𝑅𝑅

𝜹𝜹𝜹𝜹

The Closest-Points problem

for i in range(NumPointsInStrip):
for j in range(i+1, NumPointsInStrip):

if (𝒑𝒑𝒊𝒊 and 𝒑𝒑𝒋𝒋’s 𝒚𝒚-coordinate differ by
more than 𝜹𝜹): break // Go to next 𝒑𝒑𝒊𝒊

if 𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅 𝒑𝒑𝒊𝒊,𝒑𝒑𝒋𝒋 < 𝜹𝜹: 𝜹𝜹 = 𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅 𝒑𝒑𝒊𝒊,𝒑𝒑𝒋𝒋 ;

Divide & Conquer © Dept. CS, UPC 20

Let us take all points in the strip and sort them by the 𝑦𝑦-coordinate.
We only need to consider pairs of points with distance smaller than 𝛿𝛿.

Once we find a pair (𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑗𝑗) with 𝑦𝑦-coordinates that differ by more
than 𝛿𝛿, we can move to the next 𝑝𝑝𝑖𝑖.

But, how many pairs 𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑗𝑗 do we need to consider?

The Closest-Points problem

• For every point 𝑝𝑝𝑖𝑖 at one
side of the strip, we only
need to consider points
from 𝑝𝑝𝑖𝑖+1.

• The relevant points only reside in the 2𝛿𝛿 × 𝛿𝛿 rectangle
below point 𝑝𝑝𝑖𝑖. There can only be 8 points at most in
this rectangle (4 at the left and 4 at the right). Some
points may have the same coordinates.

Divide & Conquer © Dept. CS, UPC 21

𝛿𝛿

𝛿𝛿

𝛿𝛿

The Closest-Points problem: algorithm
• Sort the points according to their 𝑥𝑥-coordinates.

• Divide the set into two equal-sized parts.

• Compute the min distance at each part (recursively).
Let 𝛿𝛿 be the minimal of the two minimal distances.

• Eliminate points that are farther than 𝛿𝛿 from the separation line.

• Sort the remaining points according to their 𝑦𝑦-coordinates.

• Scan the remaining points in the 𝑦𝑦 order and compute the
distances of each point to its 7 neighbors.

Divide & Conquer © Dept. CS, UPC 22

The Closest-Points problem: complexity
• Initial sort using 𝑥𝑥-coordinates: O(𝑛𝑛 log𝑛𝑛).

It comes for free.

• Divide and conquer:
– Solve for each part recursively: 2𝑇𝑇 ⁄𝑛𝑛 2
– Eliminate points farther than 𝛿𝛿: O 𝑛𝑛
– Sort remaining points using 𝑦𝑦-coordinates: O 𝑛𝑛 log𝑛𝑛
– Scan the remaining points in 𝑦𝑦 order: O 𝑛𝑛

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 ⁄𝑛𝑛 2 + O 𝑛𝑛 + O 𝑛𝑛 log𝑛𝑛 = O(𝑛𝑛 log2 𝑛𝑛)

• Can we do it in O(𝑛𝑛 log𝑛𝑛)? Yes, we need to sort by 𝑦𝑦
in a smart way.

Divide & Conquer © Dept. CS, UPC 23

Partitioning and sorting the points (visually)

Divide & Conquer © Dept. CS, UPC 24
sorted 𝑥𝑥-coordinates

𝑥𝑥 𝑦𝑦Points sorted
by 𝑦𝑦-coordinate

𝒀𝒀

𝒀𝒀𝑳𝑳 𝒀𝒀𝑹𝑹

The Closest-Points problem: complexity
• Let 𝑌𝑌 a vector with the points sorted by the
𝑦𝑦-coordinates. This can be done initially for free.

• Each time we partition the set of points by the 𝑥𝑥-coordinate,
we also partition 𝑌𝑌 into two sorted vectors
(using an “unmerging” procedure with linear complexity)

• Now, sorting the points by the 𝑦𝑦-coordinate at each iteration
can be done in linear time, and the problem can be solved in
O(𝑛𝑛 log𝑛𝑛)

Divide & Conquer © Dept. CS, UPC 25

𝒀𝒀𝑳𝑳 = 𝒀𝒀𝑹𝑹 = ∅ // Initial lists of points
for each 𝒑𝒑𝒊𝒊 ∈ 𝒀𝒀 in ascending order of 𝒚𝒚:

if 𝒑𝒑𝒊𝒊 is at the left part: 𝒀𝒀𝑳𝑳.push_back(𝒑𝒑𝒊𝒊)
else: 𝒀𝒀𝑹𝑹.push_back(𝒑𝒑𝒊𝒊)

Subtract and Conquer
• Sometimes we may find recurrences with the following

structure:

𝑇𝑇 𝑛𝑛 = 𝑎𝑎 � 𝑇𝑇 𝑛𝑛 − 𝑏𝑏 + O(𝑛𝑛𝑐𝑐)

• Examples:

Hanoi 𝑛𝑛 = 2 ⋅ Hanoi 𝑛𝑛 − 1 + O 1

Sort 𝑛𝑛 = Sort 𝑛𝑛 − 1 + O 𝑛𝑛

• Muster theorem:

𝑇𝑇 𝑛𝑛 = �
O 𝑛𝑛𝑐𝑐 if 𝑎𝑎 < 1 (never occurs)
O 𝑛𝑛𝑐𝑐+1 if 𝑎𝑎 = 1
O 𝑛𝑛𝑐𝑐𝑎𝑎 ⁄𝑛𝑛 𝑏𝑏 if 𝑎𝑎 > 1

Divide & Conquer © Dept. CS, UPC 26

Muster theorem: recursion tree

Divide & Conquer © Dept. CS, UPC 27

…

…
…

.

Size 𝒏𝒏

Size 𝒏𝒏 − 𝒃𝒃

Size 𝒏𝒏 − 𝟐𝟐𝒃𝒃

Size 𝟏𝟏

Depth
⁄𝒏𝒏 𝒃𝒃

Branching factor 𝑎𝑎

Width 𝒂𝒂 ⁄𝒏𝒏 𝒃𝒃

Muster theorem: examples

• Hanoi: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛 − 1 + O(1)

We have 𝑎𝑎 = 2 and 𝑐𝑐 = 0, thus 𝑇𝑇 𝑛𝑛 = O(2𝑛𝑛).

• Selection sort (recursive version):
– Select the min element and move it to the first location
– Sort the remaining elements

𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + O 𝑛𝑛 (𝑎𝑎 = 𝑐𝑐 = 1)

Thus, 𝑇𝑇 𝑛𝑛 = O(𝑛𝑛2)

Divide & Conquer © Dept. CS, UPC 28

Muster theorem: examples
Fibonacci: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑇𝑇 𝑛𝑛 − 2 + O 1

We can compute bounds:

2𝑇𝑇 𝑛𝑛 − 2 + O 1 ≤ 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛 − 1 + O 1

Thus, O 2 ⁄𝑛𝑛 2 ≤ 𝑇𝑇 𝑛𝑛 ≤ O(2𝑛𝑛)

Divide & Conquer © Dept. CS, UPC 29

2𝑛𝑛 2 ⁄𝑛𝑛 21.6𝑛𝑛 EXERCICES

Divide & Conquer © Dept. CS, UPC 30

The skyline problem
Given the exact locations and shapes of several rectangular buildings in a city,
draw the skyline (in two dimensions) of these buildings, eliminating hidden lines
(source: Udi Manber, Introduction to Algorithms, Addison-Wesley, 1989).

Divide & Conquer © Dept. CS, UPC 31

1 5 10 15 20 25 30 1 5 10 15 20 25 30

Input:
(1,11,5) (2,6,7) (3,13,9) (12,7,16) (14,3,25)
(19,18,22) (23,13,29) (24,4,28)

Output:
(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29,0)
(numbers in boldface represent heights)

Describe (in natural language) two different algorithms to solve the skyline problem:
• By induction: assume that you know how to solve it for 𝑛𝑛 − 1 buildings.
• Using Divide&Conquer: solve the problem for 𝑛𝑛/2 buildings and combine.

Analyze the cost of each solution.

A, B or C?
Suppose you are choosing between the following three algorithms:

• Algorithm A solves problems by dividing them into five subproblems of
half the size, recursively solving each subproblem, and then combining
the solutions in linear time.

• Algorithm B solves problems of size 𝑛𝑛 by recursively solving two
subproblems of size 𝑛𝑛 − 1 and them combining the solutions in
constant time.

• Algorithm C solves problems of size 𝑛𝑛 by dividing them into nine
subproblems of size ⁄𝑛𝑛 3, recursively solving each subproblem, and then
combining the solutions in O(𝑛𝑛2) time.

What are the running times of each of these algorithms (in big-O notation),
and which one would you choose?

Source: Dasgupta, Papadimitriou and Vazirani, Algorithms, McGraw-Hill, 2008.
Divide & Conquer © Dept. CS, UPC 32

Crazy sorting
Let 𝑇𝑇[𝑖𝑖. . 𝑗𝑗] be a vector with 𝑛𝑛 = 𝑗𝑗 − 𝑖𝑖 + 1 elements. Consider
the following sorting algorithm:

a) If 𝑛𝑛 ≤ 2 the vector is easily sorted (constant time).

b) If 𝑛𝑛 ≥ 3, divide the vector into three intervals 𝑇𝑇[𝑖𝑖. .𝑘𝑘 − 1],
𝑇𝑇[𝑘𝑘. . 𝑙𝑙] and 𝑇𝑇[𝑙𝑙 + 1. . 𝑗𝑗], where 𝑘𝑘 = 𝑖𝑖 + ⌊ ⁄𝑛𝑛 3⌋ and
𝑙𝑙 = 𝑗𝑗 − ⌊ ⁄𝑛𝑛 3⌋. The algorithm recursively sorts 𝑇𝑇[𝑖𝑖. . 𝑙𝑙],
then it sorts 𝑇𝑇[𝑘𝑘. . 𝑗𝑗], and finally sorts 𝑇𝑇[𝑖𝑖. . 𝑙𝑙].

• Prove the correctness of the algorithm.
• Analyze the asymptotic complexity of the algorithm

(give a recurrence of the runtime and solve it).
Divide & Conquer © Dept. CS, UPC 33

VLSI chip testing
Professor Diogenes has 𝑛𝑛 supposedly identical VLSI (Very-Large-Scale Integration) chips that
in principle are capable of testing each other. The professor's test jig accommodates two
chips at a time. When the jig is loaded, each chip tests the other and reports whether it is
good or bad, but the answer of a bad chip cannot be trusted. Thus, the four possible
outcomes of a test are as follows:

a. Show that if more than 𝑛𝑛/2 chips are bad, the professor cannot necessarily determine
which chips are good using any strategy based on this kind of pairwise test. Assume
that the bad chips can conspire to fool the professor.

b. Consider the problem of finding a single good chip among 𝑛𝑛 chips, assuming that more
than 𝑛𝑛/2 of the chips are good. Show that 𝑛𝑛/2 pairwise tests are sufficient to reduce
the problem to one of nearly half the size.

c. Show that the good chips can be identified with Θ(𝑛𝑛) pairwise tests, assuming that
more than 𝑛𝑛/2 of the chips are good. Give and solve the recurrence that describes the
number of tests.

Source: Cormen, Leiserson and Rivest, Introduction to Algorithms, The MIT Press, 1989
Divide & Conquer © Dept. CS, UPC 34

Chip A says Chip B says Conclusion

B is good A is good Both are good, or both are bad

B is good A is bad At least one is bad

B is bad A is good At least one is bad

B is bad A is bad At least one is bad

Breaking into pieces

def a(v: list[float], i: int, j: int) -> float:
if i < j:

x = f(v, i, j)
m = (i+j)//2
return a(v, i, m-1) + a(v, m, j) + a(v, i+1, m) + x

else:
return v[i]

def b(v: list[float], i: int, j: int) -> float:
if i < j:

x = g(v, i, j)
m1 = i + (j-i+1)//3
m2 = i + (j-i+1)∗2//3
return b(v, i, m1-1) + b(v, m1, m2-1) + b(v, m2, j) + x

else:
return v[i]

Divide & Conquer © Dept. CS, UPC 35

Let us assume that f is Θ(1) and g has a runtime proportional to the size of the vector it
has to process, i.e., Θ(𝑗𝑗 − 𝑖𝑖 + 1). What is the asymptotic cost of A and B as a function of 𝑛𝑛?
(𝑛𝑛 is the size of the vector).

If both functions do the same, which one would you choose?

APPENDIX

Divide & Conquer © Dept. CS, UPC 36

Logarithmic identities

Divide & Conquer © Dept. CS, UPC 37

𝑏𝑏log𝑏𝑏 𝑎𝑎 = log𝑏𝑏 𝑏𝑏𝑎𝑎 = 𝑎𝑎
log𝑏𝑏(𝑥𝑥𝑦𝑦) = log𝑏𝑏 𝑥𝑥 + log𝑏𝑏 𝑦𝑦

log𝑏𝑏
𝑥𝑥
𝑦𝑦

= log𝑏𝑏 𝑥𝑥 − log𝑏𝑏 𝑦𝑦

log𝑏𝑏 𝑥𝑥𝑐𝑐 = 𝑐𝑐 log𝑏𝑏 𝑥𝑥

log𝑏𝑏 𝑥𝑥 =
log𝑐𝑐 𝑥𝑥
log𝑐𝑐 𝑏𝑏

𝑥𝑥log𝑏𝑏 𝑦𝑦 = 𝑦𝑦log𝑏𝑏 𝑥𝑥

𝛾𝛾 = lim
𝑛𝑛→∞

− ln𝑛𝑛 + �
𝑘𝑘=1

𝑛𝑛
1
𝑘𝑘

𝛾𝛾 = 0.5772 … (Euler-Mascheroni constant)

�
𝑘𝑘=1

𝑛𝑛
1
𝑘𝑘
∈ Θ(log𝑛𝑛)

(Harmonic series)

𝐻𝐻 𝑛𝑛 = 1 +
1
2

+
1
3

+
1
4

+ ⋯+
1
𝑛𝑛

Full-history recurrence relation

Divide & Conquer © Dept. CS, UPC 38

(𝑛𝑛 − 1)𝑇𝑇 𝑛𝑛 = 𝑛𝑛(𝑛𝑛 − 1) + 2 �
𝑖𝑖=1

𝑛𝑛−1

𝑇𝑇 𝑖𝑖 , 𝑛𝑛𝑇𝑇 𝑛𝑛 + 1 = 𝑛𝑛 + 1 𝑛𝑛 + 2�
𝑖𝑖=1

𝑛𝑛

𝑇𝑇(𝑖𝑖)

𝑛𝑛𝑇𝑇 𝑛𝑛 + 1 − 𝑛𝑛 − 1 𝑇𝑇 𝑛𝑛 = 𝑛𝑛 + 1 𝑛𝑛 − 𝑛𝑛(𝑛𝑛 − 1) + 2𝑇𝑇 𝑛𝑛 = 2𝑛𝑛 + 2𝑇𝑇(𝑛𝑛)

𝑇𝑇 𝑛𝑛 + 1 =
𝑛𝑛 + 1
𝑛𝑛 𝑇𝑇 𝑛𝑛 + 2 ⇒ 𝑇𝑇 𝑛𝑛 =

𝑛𝑛
𝑛𝑛 − 1𝑇𝑇 𝑛𝑛 − 1 + 2

𝑇𝑇 𝑛𝑛 = 𝑛𝑛 +
2

𝑛𝑛 − 1 �
𝑖𝑖=1

𝑛𝑛−1

𝑇𝑇 𝑖𝑖

𝑇𝑇 𝑛𝑛 = 2 +
𝑛𝑛

𝑛𝑛 − 1 2 +
𝑛𝑛 − 1
𝑛𝑛 − 2 2 +

𝑛𝑛 − 2
𝑛𝑛 − 3 ⋯

2
1

𝑇𝑇 𝑛𝑛 = 2 1 +
𝑛𝑛

𝑛𝑛 − 1 +
𝑛𝑛

𝑛𝑛 − 1
𝑛𝑛 − 1
𝑛𝑛 − 2 +

𝑛𝑛
𝑛𝑛 − 1

𝑛𝑛 − 1
𝑛𝑛 − 2

𝑛𝑛 − 2
𝑛𝑛 − 3 + ⋯+

𝑛𝑛
𝑛𝑛 − 1

𝑛𝑛 − 1
𝑛𝑛 − 2

𝑛𝑛 − 2
𝑛𝑛 − 3⋯

2
1

𝑇𝑇 𝑛𝑛 = 2 1 +
𝑛𝑛

𝑛𝑛 − 1 +
𝑛𝑛

𝑛𝑛 − 2 +
𝑛𝑛

𝑛𝑛 − 3 + ⋯+
𝑛𝑛
1 = 2𝑛𝑛

1
𝑛𝑛 +

1
𝑛𝑛 − 1 +

1
𝑛𝑛 − 2 + ⋯+ 1

𝑇𝑇 𝑛𝑛 = 2𝑛𝑛 ⋅ 𝐻𝐻(𝑛𝑛) ∈ Θ(𝑛𝑛 log𝑛𝑛)

A recurrence that depends on all the previous
values of the function.

Muster theorem: proof
• Expanding the recursion (assume that 𝑓𝑓(𝑛𝑛) is O(𝑛𝑛𝑐𝑐))

𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑇𝑇 𝑛𝑛 − 𝑏𝑏 + 𝑓𝑓 𝑛𝑛

= 𝑎𝑎 𝑎𝑎𝑇𝑇 𝑛𝑛 − 2𝑏𝑏 + 𝑓𝑓 𝑛𝑛 − 𝑏𝑏 + 𝑓𝑓 𝑛𝑛

= 𝑎𝑎2𝑇𝑇 𝑛𝑛 − 2𝑏𝑏 + 𝑎𝑎𝑓𝑓 𝑛𝑛 − 𝑏𝑏 + 𝑓𝑓 𝑛𝑛

= 𝑎𝑎3𝑇𝑇 𝑛𝑛 − 3𝑏𝑏 + 𝑎𝑎2𝑓𝑓 𝑛𝑛 − 2𝑏𝑏 + 𝑎𝑎𝑓𝑓 𝑛𝑛 − 𝑏𝑏 + 𝑓𝑓(𝑛𝑛)
• Hence:

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

⁄𝑛𝑛 𝑏𝑏

𝑎𝑎𝑖𝑖 ⋅ 𝑓𝑓(𝑛𝑛 − 𝑖𝑖𝑏𝑏)

• Since 𝑓𝑓(𝑛𝑛 − 𝑖𝑖𝑏𝑏) is in O 𝑛𝑛 − 𝑖𝑖𝑏𝑏 𝑐𝑐 , which is in O(𝑛𝑛𝑐𝑐), then

𝑇𝑇 𝑛𝑛 = O 𝑛𝑛𝑐𝑐�
𝑖𝑖=0

⁄𝑛𝑛 𝑏𝑏

𝑎𝑎𝑖𝑖

• The proof is completed by this property:

�
𝑖𝑖=0

⁄𝑛𝑛 𝑏𝑏

𝑎𝑎𝑖𝑖 = �
O 1 , if 𝑎𝑎 < 1
O 𝑛𝑛 , if 𝑎𝑎 = 1
O 𝑎𝑎 ⁄𝑛𝑛 𝑏𝑏 , if 𝑎𝑎 > 1

Divide & Conquer © Dept. CS, UPC 39

