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Divide-and-conquer algorithms
• Strategy:

– Divide the problem into smaller subproblems of the 
same type of problem

– Solve the subproblems recursively
– Combine the answers to solve the original problem

• The work is done in three places:
– In partitioning the problem into subproblems
– In solving the basic cases at the tail of the recursion
– In merging the answers of the subproblems to obtain 

the solution of the original problem 
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Conventional product of polynomials

Example:
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Conventional product of polynomials
Polynomial = list[float]

def mul(p: Polynomial, q: Polynomial) -> Polynomial:
"""Returns p×q (product of polynomials)"""

# degree(p) = len(p)-1, degree(q) = len(q)-1
# degree(r) = degree(p)+degree(q)
r: Polynomial = [0]*(len(p) + len(q) - 1)
for i, pi in enumerate(p):

for j, qj in enumerate(q):
r[i+j] += pi*qj

return r
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Complexity analysis:
• Multiplication of polynomials of degree 𝑛𝑛:  O 𝑛𝑛2
• Addition of polynomials of degree 𝑛𝑛:  O(𝑛𝑛)



Product of polynomials: Divide&Conquer
Assume that we have two polynomials with 𝑛𝑛 coefficients 
(degree 𝑛𝑛 − 1)
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𝑷𝑷𝑳𝑳 𝑷𝑷𝑹𝑹
𝑸𝑸𝑳𝑳 𝑸𝑸𝑹𝑹

𝑷𝑷:

𝑸𝑸:

0𝑛𝑛/2𝑛𝑛 − 1

 Shown later

Product of complex numbers
• The product of two complex numbers requires 

four multiplications:

𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝑐𝑐 + 𝑑𝑑𝑏𝑏 = 𝑎𝑎𝑐𝑐 − 𝑏𝑏𝑑𝑑 + 𝑏𝑏𝑐𝑐 + 𝑎𝑎𝑑𝑑 𝑏𝑏

• Carl Friedrich Gauss (1777-1855) noticed that it 
can be done with just three: 𝑎𝑎𝑐𝑐, 𝑏𝑏𝑑𝑑 and 
𝑎𝑎 + 𝑏𝑏 𝑐𝑐 + 𝑑𝑑

𝑏𝑏𝑐𝑐 + 𝑎𝑎𝑑𝑑 = 𝑎𝑎 + 𝑏𝑏 𝑐𝑐 + 𝑑𝑑 − 𝑎𝑎𝑐𝑐 − 𝑏𝑏𝑑𝑑

• A similar observation applies for polynomial 
multiplication.
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Product of polynomials with Gauss’s trick
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Polynomial multiplication: recursive step
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Pattern of recursive calls
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Type equation here.𝒏𝒏

𝒏𝒏/𝟐𝟐 𝒏𝒏/𝟐𝟐 𝒏𝒏/𝟐𝟐

𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒 𝒏𝒏/𝟒𝟒

2

1 1 1

2

1 1 1

2

1 1 1

2

1 1 1
… … …

…
 …

 … 𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝒏𝒏 levels

Branching factor: 3

Useful reminders
• Sum of geometric series with ratio 𝑟𝑟:

𝑆𝑆 = 𝑘𝑘 + 𝑘𝑘𝑟𝑟 + 𝑘𝑘𝑟𝑟2 + 𝑘𝑘𝑟𝑟3 + ⋯+ 𝑘𝑘𝑟𝑟𝑛𝑛−1 = 𝑘𝑘
1 − 𝑟𝑟𝑛𝑛

1 − 𝑟𝑟

For a decreasing series (𝑟𝑟 < 1):   𝑆𝑆 ≤ 𝑘𝑘
1−𝑟𝑟

• Logarithms:
log𝑏𝑏 𝑛𝑛 = log𝑏𝑏 𝑎𝑎 ⋅ log𝑎𝑎 𝑛𝑛

𝑎𝑎log𝑏𝑏 𝑛𝑛 = 𝑎𝑎(log𝑎𝑎 𝑛𝑛)( log𝑏𝑏 𝑎𝑎) = 𝑛𝑛log𝑏𝑏 𝑎𝑎
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Complexity analysis
• The time spent at level 𝑘𝑘 is

3𝑘𝑘 � O
𝑛𝑛

2𝑘𝑘
=

3
2

𝑘𝑘

� O(𝑛𝑛)

• For 𝑘𝑘 = 0, runtime is O 𝑛𝑛 .
• For 𝑘𝑘 = log2 𝑛𝑛, runtime is O 3log2 𝑛𝑛 , which is equal 

to O 𝑛𝑛log2 3 .
• The runtime per level increases geometrically by a 

factor of 3/2 per level. The sum of any increasing 
geometric series is, within a constant factor, simply 
the last term of the series.

• Therefore, the complexity is O 𝑛𝑛1.59 .
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A popular recursion tree
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𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝒏𝒏 levels
Branching factor: 2

Example: efficient sorting algorithms.

𝑇𝑇 𝑛𝑛 = 2 � 𝑇𝑇
𝑛𝑛
2

+ O 𝑛𝑛
Algorithms may differ on the amount of
work done at each level: O 𝑛𝑛𝑐𝑐



Examples

Algorithm Branch c Runtime equation
Power (𝑥𝑥𝑦𝑦) 1 0 𝑇𝑇 𝑦𝑦 = 𝑇𝑇 ⁄𝑦𝑦 2 + O(1)
Binary search 1 0 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 ⁄𝑛𝑛 2 + O(1)
Merge sort 2 1 𝑇𝑇 𝑛𝑛 = 2 � 𝑇𝑇 ⁄𝑛𝑛 2 + O(𝑛𝑛)
Polynomial product 4 1 𝑇𝑇 𝑛𝑛 = 4 � 𝑇𝑇 ⁄𝑛𝑛 2 + O(𝑛𝑛)
Polynomial product (Gauss) 3 1 𝑇𝑇 𝑛𝑛 = 3 � 𝑇𝑇 ⁄𝑛𝑛 2 + O(𝑛𝑛)
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Master theorem
• Typical pattern for Divide&Conquer algorithms:

– Split the problem into 𝑎𝑎 subproblems of size 𝑛𝑛/𝑏𝑏
– Solve each subproblem recursively
– Combine the answers in O(𝑛𝑛𝑐𝑐) time

• Running time:      𝑇𝑇 𝑛𝑛 = 𝑎𝑎 � 𝑇𝑇 ⁄𝑛𝑛 𝑏𝑏 + O(𝑛𝑛𝑐𝑐)

• Master theorem:

𝑇𝑇 𝑛𝑛 = �
O 𝑛𝑛𝑐𝑐 if 𝑎𝑎 < 𝑏𝑏𝑐𝑐
O 𝑛𝑛𝑐𝑐 log𝑛𝑛 if 𝑎𝑎 = 𝑏𝑏𝑐𝑐

O 𝑛𝑛log𝑏𝑏 𝑎𝑎 if 𝑎𝑎 > 𝑏𝑏𝑐𝑐
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Master theorem: recursion tree
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…

…
…
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Size 𝒏𝒏

Size 𝒏𝒏/𝒃𝒃

Size 𝒏𝒏/𝒃𝒃𝟐𝟐

Size 𝟏𝟏

Depth
𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃 𝒏𝒏

Branching factor 𝑎𝑎

Width 𝒂𝒂𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃 𝒏𝒏 = 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃 𝒂𝒂

Master theorem: proof
• For simplicity, assume 𝑛𝑛 is a power of 𝑏𝑏.
• The base case is reached after log𝑏𝑏 𝑛𝑛 levels.
• The 𝑘𝑘th level of the tree has 𝑎𝑎𝑘𝑘 subproblems of size ⁄𝑛𝑛 𝑏𝑏𝑘𝑘.
• The total work done at level 𝑘𝑘 is:

𝑎𝑎𝑘𝑘 × O
𝑛𝑛
𝑏𝑏𝑘𝑘

𝑐𝑐
= O 𝑛𝑛𝑐𝑐 ×

𝑎𝑎
𝑏𝑏𝑐𝑐

𝑘𝑘

• As 𝑘𝑘 goes from 0 (the root) to log𝑏𝑏 𝑛𝑛 (the leaves), these 
numbers form a geometric series with ratio ⁄𝑎𝑎 𝑏𝑏𝑐𝑐. We need 
to find the sum of such a series.

𝑇𝑇 𝑛𝑛 = O 𝑛𝑛𝑐𝑐 ⋅ 1 +
𝑎𝑎
𝑏𝑏𝑐𝑐

+
𝑎𝑎2

𝑏𝑏2𝑐𝑐
+
𝑎𝑎3

𝑏𝑏3𝑐𝑐
+ ⋯+

𝑎𝑎log𝑏𝑏 𝑛𝑛

𝑏𝑏(log𝑏𝑏 𝑛𝑛)𝑐𝑐
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log𝑏𝑏 𝑛𝑛 terms



Master theorem: proof

• Case ⁄𝑎𝑎 𝑏𝑏𝑐𝑐 < 1. Decreasing series. The sum is dominated by 
the first term (𝑘𝑘 = 0): O(𝑛𝑛𝑐𝑐).

• Case ⁄𝑎𝑎 𝑏𝑏𝑐𝑐 > 1. Increasing series. The sum is dominated by the 
last term (𝑘𝑘 = log𝑏𝑏 𝑛𝑛):

𝑛𝑛𝑐𝑐
𝑎𝑎
𝑏𝑏𝑐𝑐

log𝑏𝑏 𝑛𝑛
= 𝑛𝑛𝑐𝑐

𝑎𝑎log𝑏𝑏 𝑛𝑛

𝑏𝑏log𝑏𝑏 𝑛𝑛 𝑐𝑐 = 𝑎𝑎log𝑏𝑏 𝑛𝑛 = 𝑛𝑛log𝑏𝑏 𝑎𝑎

• Case ⁄𝑎𝑎 𝑏𝑏𝑐𝑐 = 1. We have O log𝑛𝑛 terms all equal to O(𝑛𝑛𝑐𝑐).
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Master theorem: visual proof
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𝑛𝑛𝑐𝑐

𝑎𝑎log𝑏𝑏 𝑛𝑛

𝑛𝑛𝑐𝑐

𝑛𝑛𝑐𝑐

→ 0

log𝑏𝑏 𝑛𝑛 levels
𝒂𝒂 > 𝒃𝒃𝒄𝒄

𝒂𝒂 < 𝒃𝒃𝒄𝒄

𝑛𝑛𝑐𝑐

𝑛𝑛𝑐𝑐

𝒂𝒂 = 𝒃𝒃𝒄𝒄log𝑏𝑏 𝑛𝑛 levels𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑛𝑛𝑐𝑐

𝑛𝑛𝑐𝑐 log𝑛𝑛

𝑛𝑛𝑐𝑐 𝑛𝑛𝑐𝑐 •••𝑛𝑛𝑐𝑐 𝑛𝑛𝑐𝑐

Master theorem: examples
Running time:      𝑇𝑇 𝑛𝑛 = 𝑎𝑎 � 𝑇𝑇 ⁄𝑛𝑛 𝑏𝑏 + O 𝑛𝑛𝑐𝑐

𝑇𝑇 𝑛𝑛 = �
O 𝑛𝑛𝑐𝑐 if 𝑎𝑎 < 𝑏𝑏𝑐𝑐
O 𝑛𝑛𝑐𝑐 log𝑛𝑛 if 𝑎𝑎 = 𝑏𝑏𝑐𝑐

O 𝑛𝑛log𝑏𝑏 𝑎𝑎 if 𝑎𝑎 > 𝑏𝑏𝑐𝑐
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Algorithm a c Runtime equation Complexity
Power (𝑥𝑥𝑦𝑦) 1 0 𝑇𝑇 𝑦𝑦 = 𝑇𝑇 ⁄𝑦𝑦 2 + O(1) O(log𝑦𝑦)
Binary search 1 0 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 ⁄𝑛𝑛 2 + O(1) O(log𝑛𝑛)
Merge sort 2 1 𝑇𝑇 𝑛𝑛 = 2 � 𝑇𝑇 ⁄𝑛𝑛 2 + O(𝑛𝑛) O(𝑛𝑛 log𝑛𝑛)
Polynomial product 4 1 𝑇𝑇 𝑛𝑛 = 4 � 𝑇𝑇 ⁄𝑛𝑛 2 + O(𝑛𝑛) O(𝑛𝑛2)
Polynomial product (Gauss) 3 1 𝑇𝑇 𝑛𝑛 = 3 � 𝑇𝑇 ⁄𝑛𝑛 2 + O(𝑛𝑛) O(𝑛𝑛log2 3)

𝑏𝑏 = 2 for all the examples

Product multiplication
• Fundamental question:

Can polynomials be multiplied efficiently 
when the degree is large?

• Answer: yes (FFT: Fast Fourier Transform)

• FFT is an essential algorithm for efficient signal 
analysis. The algorithm will not be explained 
in this course.
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Polynomials: point-value representation
• Fundamental Theorem (Gauss): A degree-𝑛𝑛 polynomial 

with complex coefficients has exactly 𝑛𝑛 complex roots.

• Corollary: A degree-𝑛𝑛 polynomial 𝐴𝐴(𝑥𝑥) is uniquely 
identified by its evaluation at 𝑛𝑛 + 1 distinct values of 𝑥𝑥.
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Polynomial representation
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𝑃𝑃 𝑥𝑥 = 𝑥𝑥3 − 2𝑥𝑥2 − 3𝑥𝑥 + 1

𝑃𝑃 𝑥𝑥 = { −1,1 , 0,1 , 1,−3 , 2,−5 }

𝑃𝑃 𝑥𝑥 = (1,−2,−3,1)
Coefficient representation

Point-value representation

Evaluation Interpolation

Conversion between both representations
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representation addition multiplication evaluation

coefficient O(𝑛𝑛) O(𝑛𝑛2) O(𝑛𝑛)
point-value O(𝑛𝑛) O(𝑛𝑛) O(𝑛𝑛2)

𝑎𝑎0,𝑎𝑎1,⋯ ,𝑎𝑎𝑛𝑛−1 𝑥𝑥0,𝑦𝑦0 ,⋯ , 𝑥𝑥𝑛𝑛−1,𝑦𝑦𝑛𝑛−1

evaluation

interpolation
Coefficient representation Point-value representation

Could we have an efficient algorithm to move from coefficient
to point-value representation and vice versa?

Fast Fourier Transform (FFT): O(𝑛𝑛 log𝑛𝑛)

Fourier series

• Periodic function 𝑓𝑓(𝑡𝑡) of period 1:

𝑓𝑓 𝑡𝑡 =
𝑎𝑎0
2

+ �
𝑛𝑛=1

∞

𝑎𝑎𝑛𝑛 cos(2𝜋𝜋𝑛𝑛𝑡𝑡) + �
𝑛𝑛=1

∞

𝑏𝑏𝑛𝑛 sin(2𝜋𝜋𝑛𝑛𝑡𝑡)

• Fourier coefficients:

𝑎𝑎𝑛𝑛 = 2�
0

𝑇𝑇
𝑓𝑓(𝑡𝑡) cos(2𝜋𝜋𝑛𝑛𝑡𝑡) 𝑑𝑑𝑡𝑡, 𝑏𝑏𝑛𝑛 = 2�

0

𝑇𝑇
𝑓𝑓(𝑡𝑡) sin 2𝜋𝜋𝑛𝑛𝑡𝑡 𝑑𝑑𝑡𝑡

• Fourier series is fundamental for signal analysis (to move from 
time domain to frequency domain, and vice versa)
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Why Fourier Transform?
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