Divide & Conquer (I)

Jordi Cortadella and Jordi Petit Department of Computer Science

Divide-and-conquer algorithms

- Strategy:
 - Divide the problem into smaller subproblems of the same type of problem
 - Solve the subproblems recursively
 - Combine the answers to solve the original problem
- The work is done in three places:
 - In partitioning the problem into subproblems
 - In solving the basic cases at the tail of the recursion
 - In merging the answers of the subproblems to obtain the solution of the original problem

Conventional product of polynomials

Conventional product of polynomials

© Dept. CS, UPC

Polynomial = list[float]

Divide & Conquer

```
def mul(p: Polynomial, q: Polynomial) -> Polynomial:
    """Returns p×q (product of polynomials)"""
```

```
# degree(p) = len(p)-1, degree(q) = len(q)-1
# degree(r) = degree(p)+degree(q)
r: Polynomial = [0]*(len(p) + len(q) - 1)
for i, pi in enumerate(p):
    for j, qj in enumerate(q):
        r[i+j] += pi*qj
return r
```

Complexity analysis:

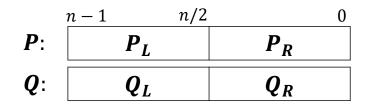
- Multiplication of polynomials of degree $n: O(n^2)$
- Addition of polynomials of degree *n*: O(n)

$$P(x) = 2x^3 + x^2 - 4$$

 $Q(x) = x^2 - 2x + 3$

$$(P \cdot Q)(x) = 2x^5 + (-4+1)x^4 + (6-2)x^3 + 8x - 12$$
$$(P \cdot Q)(x) = 2x^5 - 3x^4 + 4x^3 + 8x - 12$$

Assume that we have two polynomials with n coefficients (degree n-1)



$$P(x) \cdot Q(x) = P_L(x) \cdot Q_L(x) \cdot x^n + (P_R(x) \cdot Q_L(x) + P_L(x) \cdot Q_R(x)) \cdot x^{n/2} + P_R(x) \cdot Q_R(x)$$

 $T(n) = 4 \cdot T(n/2) + O(n) = O(n^2) \quad \leftarrow \text{Shown later}$

Product of polynomials with Gauss's trick

$$R_1 = P_L Q_L$$

$$R_2 = P_R Q_R$$

$$R_3 = (P_L + P_R)(Q_L + Q_R)$$

$$PQ = \underbrace{P_L Q_L}_{R_1} x^n + \underbrace{(P_R Q_L + P_L Q_R)}_{R_3 - R_1 - R_2} x^{n/2} + \underbrace{P_R Q_R}_{R_2}$$

$$T(n) = 3T(n/2) + O(n)$$

• The product of two complex numbers requires four multiplications:

(a+bi)(c+di) = ac - bd + (bc + ad)i

• Carl Friedrich Gauss (1777-1855) noticed that it can be done with just three: ac, bd and (a + b)(c + d)

bc + ad = (a + b)(c + d) - ac - bd

© Dept. CS, UPC

Polynomial multiplication: recursive step

• A similar observation applies for polynomial multiplication.

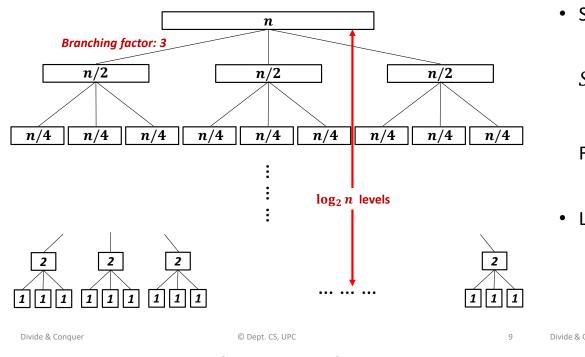
Divide & Conquer

Divide & Conquer

5

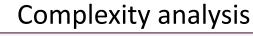
6

Pattern of recursive calls



Useful reminders

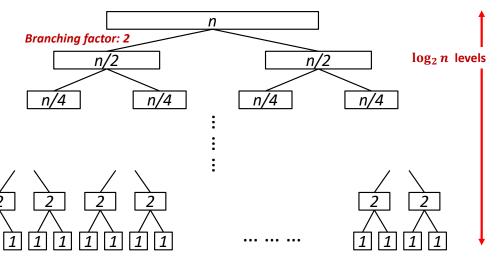
• Sum of geometric series with ratio r: $S = k + kr + kr^{2} + kr^{3} + \dots + kr^{n-1} = k\left(\frac{1-r^{n}}{1-r}\right)$ For a decreasing series (r < 1): $S \le \frac{\kappa}{1-r}$ • Logarithms: $\log_h n = \log_h a \cdot \log_a n$ $a^{\log_b n} = a^{(\log_a n)(\log_b a)} = n^{\log_b a}$ 10 Divide & Conquer © Dept. CS, UPC A popular recursion tree n



• The time spent at level k is

$$3^k \cdot 0\left(\frac{n}{2^k}\right) = \left(\frac{3}{2}\right)^k \cdot 0(n)$$

- For k = 0, runtime is O(n).
- For $k = \log_2 n$, runtime is $O(3^{\log_2 n})$, which is equal to $O(n^{\log_2 3})$.
- The runtime per level increases geometrically by a factor of 3/2 per level. The sum of any increasing geometric series is, within a constant factor, simply the last term of the series.
- Therefore, the complexity is $O(n^{1.59})$.



Example: efficient sorting algorithms. $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 0(n)$ Algorithms may differ on the amount of work done at each level: $O(n^c)$

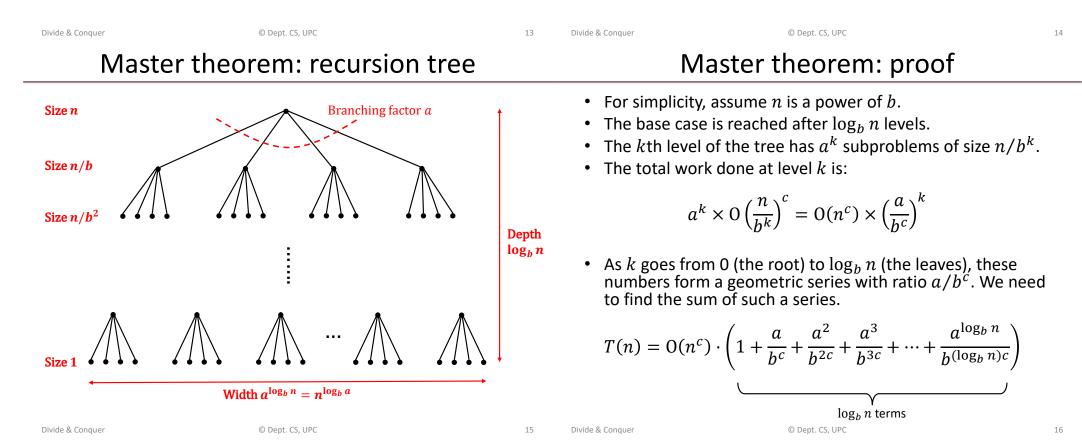
Divide & Conquer

Examples

Algorithm	Branch	с	Runtime equation
Power (x^{y})	1	0	T(y) = T(y/2) + O(1)
Binary search	1	0	T(n) = T(n/2) + O(1)
Merge sort	2	1	$T(n) = 2 \cdot T(n/2) + O(n)$
Polynomial product	4	1	$T(n) = 4 \cdot T(n/2) + O(n)$
Polynomial product (Gauss)	3	1	$T(n) = 3 \cdot T(n/2) + O(n)$

- Typical pattern for Divide&Conquer algorithms:
 - Split the problem into a subproblems of size n/b
 - Solve each subproblem recursively
 - Combine the answers in $O(n^c)$ time
- Running time: $T(n) = a \cdot T(n/b) + O(n^c)$
- Master theorem:

$$T(n) = \begin{cases} 0(n^c) & \text{if } a < b^c \\ 0(n^c \log n) & \text{if } a = b^c \\ 0(n^{\log_b a}) & \text{if } a > b^c \end{cases}$$

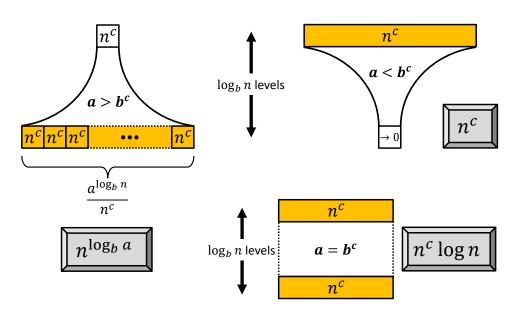


Master theorem: visual proof

- Case $a/b^c < 1$. Decreasing series. The sum is dominated by the first term (k = 0): $O(n^c)$.
- Case $a/b^c > 1$. Increasing series. The sum is dominated by the last term ($k = \log_b n$):

$$n^{c} \left(\frac{a}{b^{c}}\right)^{\log_{b} n} = n^{c} \left(\frac{a^{\log_{b} n}}{(b^{\log_{b} n})^{c}}\right) = a^{\log_{b} n} = n^{\log_{b} n}$$

• Case $a/b^c = 1$. We have $O(\log n)$ terms all equal to $O(n^c)$.



Divide & Conquer	© Dept. CS, UPC		17	Divide & Conquer	© Dept. CS, UPC	18
Ma	ster theorem: o	examples			Product multiplication	
Running time	$T(n) = a \cdot T(n)$	$(b) + 0(n^c)$		• Fundam	ental question:	
T(n)	$) = \begin{cases} 0(n^{c}) \\ 0(n^{c} \log n) \\ 0(n^{\log_{b} a}) \end{cases}$	if $a < b^c$ if $a = b^c$ if $a > b^c$			nomials be multiplied efficiently e degree is large?	

а	С	Runtime equation	Complexity
1	0	T(y) = T(y/2) + O(1)	$O(\log y)$
1	0	T(n) = T(n/2) + O(1)	$O(\log n)$
2	1	$T(n) = 2 \cdot T(n/2) + O(n)$	$O(n \log n)$
4	1	$T(n) = 4 \cdot T(n/2) + O(n)$	O(<i>n</i> ²)
3	1	$T(n) = 3 \cdot T(n/2) + O(n)$	$O(n^{\log_2 3})$
	4	1 0 2 1 4 1	1 0 $T(y) = T(y/2) + O(1)$ 1 0 $T(n) = T(n/2) + O(1)$ 2 1 $T(n) = 2 \cdot T(n/2) + O(n)$ 4 1 $T(n) = 4 \cdot T(n/2) + O(n)$

b = 2 for all the examples

in this course.

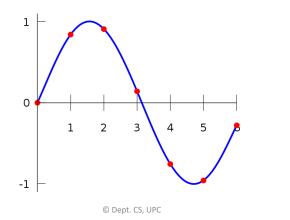
• FFT is an essential algorithm for efficient signal

analysis. The algorithm will not be explained

Answer: yes (FFT: Fast Fourier Transform)

Polynomials: point-value representation

- Fundamental Theorem (Gauss): A degree-*n* polynomial with complex coefficients has exactly n complex roots.
- **Corollary**: A degree-*n* polynomial A(x) is uniquely ٠ identified by its evaluation at n + 1 distinct values of x.



 $P(x) = x^3 - 2x^2 - 3x + 1$ P(x) = (1, -2, -3, 1)Coefficient representation **Evaluation** Interpolation Point-value representation $P(x) = \{(-1,1), (0,1), (1,-3), (2,-5)\}$ Fast Fourier Transform © Dept. CS, UPC

Fourier series

representation	addition	multiplication	evaluation
coefficient	0(<i>n</i>)	$0(n^2)$	0(<i>n</i>)
point-value	0(<i>n</i>)	0(<i>n</i>)	$0(n^2)$

Conversion between both representations

evaluation $(x_0, y_0), \cdots, (x_{n-1}, y_{n-1})$ $a_0, a_1, \cdots, a_{n-1}$ interpolation Coefficient representation Point-value representation Could we have an *efficient* algorithm to move from coefficient to point-value representation and vice versa?

> Fast Fourier Transform (FFT): $O(n \log n)$ © Dept. CS, UPC

• Periodic function f(t) of period 1:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi nt) + \sum_{n=1}^{\infty} b_n \sin(2\pi nt)$$

Fourier coefficients:

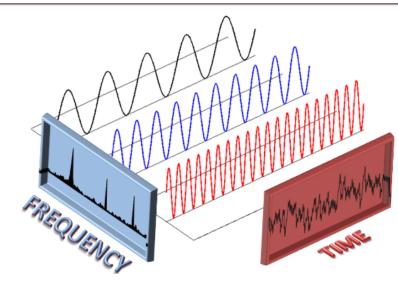
$$a_n = 2 \int_0^T f(t) \cos(2\pi nt) dt, \qquad b_n = 2 \int_0^T f(t) \sin(2\pi nt) dt$$

 Fourier series is fundamental for signal analysis (to move from time domain to frequency domain, and vice versa)

21

Fast Fourier Transform

Why Fourier Transform?



Fast Fourier Transform

© Dept. CS, UPC

25