Algorithm Analysis (II)

Jordi Cortadella and Jordi Petit
Department of Computer Science

- Selection sort
- Insertion sort
- The Maximum Subsequence Sum Problem
- Convex Hull

Algorithm Analysis

Selection Sort

- Selection sort uses this invariant:
i-1 i

Selection Sort

$$
\begin{aligned}
& \text { def selection_sort(v: list[T]) -> None: } \\
& \text { """Sorts v in ascending order""" } \\
& \text { for } i \text { in range(len(v)-1): } \\
& k=i \\
& \text { for } j \text { in range(i+1, len(v)): } \\
& \text { if } v[j] \text { < } v[k]: \\
& \mathrm{k}=\mathrm{j} \\
& v[k], v[i]=v[i], v[k] \\
& T(n)=\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \mathrm{O}(1)=\mathrm{O}(1) \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1=\mathrm{O}(1) \sum_{i=0}^{n-2}(n-i-1) \\
& =\mathrm{O}(1)\left(\frac{n}{2}(n-1)\right)=\mathrm{O}(1) \cdot \mathrm{O}\left(n^{2}\right)=\mathrm{O}\left(n^{2}\right)
\end{aligned}
$$

Observation: notice that $T(n) \in \Omega\left(n^{2}\right)$, also. Therefore, $T(n) \in \Theta\left(n^{2}\right)$.

- Let us use inductive reasoning:
- If we know how to sort arrays of size $n-1$,
- do we know how to sort arrays of size n ?

```
def insertion_sort(v: list[T]) -> None:
    """Sorts v in ascending order"""
    for i in range(1, len(v)): # n-1 times
        x = v[i]
        j = i
        while j > 0 and v[j - 1] > x: # 0..i times
            v[j] = v[j - 1]
            j -= 1
        v[j] = x
```

$T_{\text {worst }}(n)=\sum_{i=1}^{n-1} i \cdot \mathrm{O}(1)=\mathrm{O}\left(n^{2}\right) \quad \Rightarrow$ sorted in reverse order
$T_{\text {best }}(n)=\sum_{i=1}^{n-1} \mathrm{O}(1)=\mathrm{O}(n) \quad \Rightarrow$ already sorted

The Maximum Subsequence Sum Problem

- Given (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum value of $\sum_{k=i}^{j} A_{k}$. (the max subsequence sum is 0 if all integers are negative).
- Example:
- Input: -2, 11, -4, 13, -5, -2
- Answer: 20 (subsequence 11, -4, 13)
(extracted from M.A. Weiss, Data Structures and Algorithms in C++, Pearson, 2014, $4^{\text {th }}$ edition)

The Maximum Subsequence Sum Problem

```
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a"""
    n = len(a)
    max sum = 0
    # try all possible subsequences
    for i in range(n):
        for j in range(i, n):
            this_sum = 0
            for \overline{k}}\mathrm{ in range(i, j+1):
                this_sum += a[k]
            max_sum = max(max_sum, this_sum)
    return max_sum
```

$$
T(n)=\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1
$$

The Maximum Subsequence Sum Problem The Maximum Subsequence Sum Problem

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1 \\
& =\sum_{i=0}^{n-1} \sum_{j=i}^{n-1}(j-i+1) \\
& =\sum_{i=0}^{n-1} \frac{(n-i+1)(n-i)}{2}=\cdots \\
& =\frac{n^{3}+3 n^{2}+2 n}{6}=\Theta\left(n^{3}\right)
\end{aligned}
$$

Max Subsequence Sum: Divide\&Conquer

First half

Second half

4	-3	5	-2	-1	2	6	-2

The max sum can be in one of three places:

- $1^{\text {st }}$ half
- $2^{\text {nd }}$ half
- Spanning both halves and crossing the middle

In the $3^{\text {rd }}$ case, two max subsequences must be found starting from the center of the vector (one to the left and the other to the right)

```
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a"""
    n = len(a)
    max_sum = 0
    # try all possible subsequences
    for i in range(n):
        this_sum = 0
        for j in range(i, n):
            this_sum += a[j] # reuse computation
            max_sum = max(max_sum, this_sum)
    return max_sum
```

$$
T(n)=\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} 1=\Theta\left(n^{2}\right)
$$

Max Subsequence Sum: Divide\&Conquer

def max_sub_sum_rec(a: list[int], left: int, right: int) -> int: """Returns the sum of the maximum subsequence of a[left:right+1]"""
if left == right: \# base case
return max (a[left], 0)
\# Recursive cases: left and right halves center $=($ left + right $) / / 2$
max_left = max_sub_sum_rec(a, left, center)
max_right $=$ max_sub_sum_rec (a, center +1 , right)
\# Subsequence in a[center+1:right+1]
max_rcenter, right_sum $=0,0$
for in range(center +1 , right +1):
right_sum $+=\mathrm{a}$ [i]
max_rcenter = max (max_rcenter, right_sum)
\# Subsequence in a[left:center+1]
max_lcenter, left_sum = 0, 0
for i in range(center, left-1, -1):
left_sum += a[i]
max_Ícenter = max(max_lcenter, left_sum)
return max(max_left, max_right, max_lcenter + max_rcenter)
a:

Max Subsequence Sum: Divide\&Conquer

The Maximum Subsequence Sum Problem

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=2 T(n / 2)+\Theta(n)
\end{aligned}
$$

We will see how to solve this equation formally in the next lesson (Master Theorem). Informally:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n=2(2 T(n / 4)+n / 2)+n \\
& =4 T(n / 4)+n+n=8 T(n / 8)+n+n+n=\cdots \\
& =2^{k} T\left(n / 2^{k}\right)+\underbrace{n+n+\cdots+n}_{k}
\end{aligned}
$$

when $n=2^{k}$, we have that $k=\log _{2} n$, hence

$$
T(n)=2^{k} T(1)+k n=n+n \log _{2} n=\Theta(n \log n)
$$

But, can we still do it faster?
\qquad

The Maximum Subsequence Sum Problem

- Observations:
- If a[i] is negative, it cannot be the start of the optimal subsequence.
- Any negative subsequence cannot be the prefix of the optimal subsequence.
- Let us consider the inner loop of the $\mathrm{O}\left(n^{2}\right)$ algorithm and assume that all prefixes of a[i..j-1] are positive and $a[i . . j]$ is negative:
$a:$

- If p is an index between $i+1$ and j, then any subsequence from $a[p]$ is not larger than any subsequence from a[i] and including a[p-1].
- If a[j] makes the current subsequence negative, we can advance i to $\mathrm{j}+1$.

Representation of polygons

$$
T(n)=\Theta(n)
$$

a:	$\mathbf{4}$	-3	5	-4	-3	-1	5	-2	6	-3	2
this_sum:	4	1	6	2	0	0	5	3	9	6	8
max_sum:	4	4	6	6	6	6	6	6	9	9	9

```
def max_sub_sum(a: list[int]) -> int:
```

def max_sub_sum(a: list[int]) -> int:
"""Returns the sum of the maximum subsequence of a"""
"""Returns the sum of the maximum subsequence of a"""
max_sum, this_sum = 0, 0
max_sum, this_sum = 0, 0
for }x\mathrm{ in a:
for }x\mathrm{ in a:
this_sum += x
this_sum += x
max_sum = max(max_sum, this_sum)
max_sum = max(max_sum, this_sum)
this_sum = max(this_sum, 0)
this_sum = max(this_sum, 0)
return max_sum

```
    return max_sum
```


- A polygon can be represented by a sequence of vertices.
- Two consecutive vertices represent an edge of the polygon.
- The last edge is represented by the first and last vertices of the sequence.

Vertices: $(1,3)(4,1)(7,3)(5,4)(6,7)(2,6)$

Edges: $(1,3)-(4,1)-(7,3)-(5,4)-(6,7)-(2,6)-(1,3)$
\# A polygon (an ordered set of vertices) Polygon $=$ list[Point]

Input: $p_{1}, p_{2}, \ldots, p_{n}$ (points in the plane). Output: P (a polygon whose vertices are $p_{1}, p_{2}, \ldots, p_{n}$ in some order).

1) Select a point z with the smallest x coordinate (and smallest y in case of a tie in the x coordinate). Assume $z=p_{1}$.
2) For each $p_{i} \in\left\{p_{2}, \ldots, p_{n}\right\}$, calculate the angle α_{i} between the lines $z-p_{i}$ and the x axis.
3) Sort the points $\left\{p_{2}, \ldots, p_{n}\right\}$ according to their angles. In case of a tie, use distance to z.

Simple polygon

Implementation details:

- There is no need to calculate angles (requires arctan). It is enough to calculate slopes $(\Delta y / \Delta x)$.
- There is not need to calculate distances. It is enough to calculate the square of distances (no sqrt required).

Complexity: $O(n \log n)$.
The runtime is dominated by the sorting algorithm.

Clockwise and counter-clockwise

How to calculate whether three consecutive vertices are in a clockwise or counter-clockwise turn.

Compute the convex hull of n given points in the plane.

Algorithm Analysis © Dept. CS, UPC

Convex hull: gift wrapping algorithm

https://en.wikipedia.org/wiki/Gift wrapping algorithm

```
def gift_wrapping(pol: Polygon) -> Polygon:
    """Returns the convex-hull of a set of points"""
    hull: Polygon = []
    # Pick the leftmost point
    left = 0
    for i, p in enumerate(pol):
        if pol[i].x < pol[left].x:
            left = i
    p = left
    while True: # Add points while the polygon is not closed
        hull.append(pol[p]) # Add point to the convex hull
        q = (p+1)%len(pol) # Pick a point different from p
        for i, new_p in enumerate(pol): # Find leftmost point of p->q
            if left_of(pol[p], pol[q], new_p):
                q = i
            p = q # This is the leftmost point
            if p == left: # Stop if the point closes the polygon
            break
```


return hull

Convex hull: Graham scan

Convex hull: Graham scan

$\mathrm{P}:$	A	B	C	D	E	F	G	H

Q: $\boldsymbol{A}|\boldsymbol{B}| \boldsymbol{C} \mid \boldsymbol{D}$

$\mathbf{P}:$	A	B	C	D	E	F	G	H

Q: $\boldsymbol{A}|\boldsymbol{B}| \boldsymbol{C}|\boldsymbol{D}|$

$\mathrm{P}:$	A	B	C	D	E	F	G	H

Q: | \boldsymbol{A} | \boldsymbol{B} | \boldsymbol{C} | \boldsymbol{D} |
| :--- | :--- | :--- | :--- |

$\mathrm{P}:$	A	B	C	D	E	F	G	H

Q: | \boldsymbol{A} | \boldsymbol{B} | \boldsymbol{C} |
| :--- | :--- | :--- |

$\mathrm{P}:$	A	B	C	D	E	F	G	H

Q: $\boldsymbol{A}|\boldsymbol{B}| \boldsymbol{C} \mid \boldsymbol{F}$

$\mathrm{P}:$	A	B	C	D	E	F	G	H

$\mathrm{Q}: \boldsymbol{A} \boldsymbol{A}|\boldsymbol{B}| \boldsymbol{C}|\boldsymbol{F}| \boldsymbol{G}$

$\mathrm{P}:$	A	B	C	D	E	F	G	H

$\mathbf{Q}:$| \boldsymbol{A} | \boldsymbol{B} | \boldsymbol{C} | \boldsymbol{F} |
| :--- | :--- | :--- | :--- |

P:

| A | B | C | D | E | F | G | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Q: | \boldsymbol{A} | \boldsymbol{B} | \boldsymbol{C} | \boldsymbol{F} | \boldsymbol{H} |
| :--- | :--- | :--- | :--- | :--- |

$\mathrm{P}:$	A	B	C	D	E	F	G	H

Q: | \boldsymbol{A} | \boldsymbol{B} | \boldsymbol{C} | \boldsymbol{F} | \boldsymbol{H} |
| :--- | :--- | :--- | :--- | :--- |

EXERCISES

Observation: each point p_{k} can be included in Q and deleted at most once.
The main loop of Graham scan has linear cost.
Complexity: dominated by the creation of the simple polygon $\rightarrow \mathrm{O}(n \log n)$.

Summations

Prove the following equalities:

$$
\begin{aligned}
& \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
& \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

For loops: analyze the cost of each code

Calculate the value of variable \mathbf{s} at the end of each code

```
# Code 1
s = 0
for i in range(n):
    s += 1
# Code 2
s = 0
for i in range(0, n, 2):
    s += 1
# Code 3
s = 0
for i in range(n):
    s += 1
for j in range(n):
    s += 1
# Code 4
s = 0
for i in range(n):
# Code 5
# Code 6
s = 0
for i in range(n):
    for j in range(i, n):
        s += 1
    for j in range(n):
        j in ra
s = 0
for i in range(n):
    for j in range(i):
        s += 1
```


$0, \Omega$ or Θ ?

The following statements refer to the insertion sort algorithm and the X's hide an occurrence of $0, \Omega$ or Θ. For each statement, find which options for $X \in\{0, \Omega, \Theta\}$ make the statement true or false. Justify your answers.

1. The worst case is $X\left(n^{2}\right)$
2. The worst case is $X(n)$
3. The best case is $X\left(n^{2}\right)$
4. The best case is $X(n)$
5. For every probability distribution, the average case is $X\left(n^{2}\right)$
6. For every probability distribution, the average case is $X(n)$
7. For some probability distribution, the average case is $X(n \log n)$
```
# Code 7
s = 0
for i in range(n):
    for j in range(n):
        for k in range(n):
            s += 1
# Code 8
s = 0
for i in range(n):
    for j in range(i):
        for k in range(j):
            s += 1
# Code 9
s = 0
i = 1
i while i <= n:
        s += 1
        i *= 2
```

$\begin{array}{ll}S=0 & \text { \# Code } 11 \\ \text { for } i \text { in range }(n): & s=0\end{array}$
\# Code 10
$\mathbf{s}=0$
for $i n$ range $(n):$
$j=1$
$j=1$
while j <= n:
s += 1
j
$\mathrm{j}=$
+
s = 0
for i in range (n) :
for j in range(i*i):
for k in range(n):
$\mathrm{s}+=1$
\# Code 12
s =
$\mathbf{s}=0$
for i in range(n):
for j in range $\left(i^{*} i\right)$:
if $j \% i=0$:
for k in range(n):
s += 1

Primality

The following algorithms try to determine whether $n \geq 0$ is prime. Find which ones are correct and analyze their cost as a function of n.

```
def is_prime1(n: int) -> bool:
    if n <= 1:
    return False
    for i in range(2,n)
        if n%i == 0:
        return False
    return True
def is_prime2(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n))):
        if n%i == 0:
        n%i== 0:
    return True
def is_prime3(n: int) -> bool:
    if n <= 1:
    if n <= 1:
    for i in range(2, round(math.sqrt(n))):
    if in range(2,
        if n%i== 0:
    return True
```

def is_prime4(n: int) -> bool:
is_prime4(
if $n<=1:$
return False
return False
for i in range(2 , int(math.sqrt(n)) +1):
if $n \% i=0$:
return False
return True
def is_prime5(n: int) $->$ bool:
if $n<=1$:
return False
if $n=2$: return True
if $\mathrm{n} \% 2==0$:
return False
for i in range(3, int(math.sqrt(n))+1, 2): if ($\mathrm{n} \% \mathrm{i}==0$) : if $(\mathrm{n} \% \mathrm{i}==0)$:
return False
return True

The following program is a version of the Sieve of Eratosthenes. Analyze its complexity.

```
def primes(n: int) -> list[bool]:
    p: list[bool] = [True]*(n+1)
    p[0] = p[1] = False
    for i in range(2, int(math.sqrt(n))+1):
        if p[i]:
            for j in range(i*i, n+1, i):
            p[j] = False
    return p
```

You can use the following equality, where $p \leq x$ refers to all primes $p \leq x$:

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+0(1)
$$

