
Algorithm Analysis (II)

Jordi Cortadella and Jordi Petit
Department of Computer Science

Examples

• Selection sort

• Insertion sort

• The Maximum Subsequence Sum Problem

• Convex Hull

Algorithm Analysis © Dept. CS, UPC 2

Selection Sort

• Selection sort uses this invariant:

Algorithm Analysis © Dept. CS, UPC 3

-7 -3 0 1 4 9 ? ? ? ? ? ?
ii-1

this is sorted
and contains the i-1

smallest elements

this may not be sorted…
but all elements here are larger than or
equal to the elements in the sorted part

Selection Sort
def selection_sort(v: list[T]) -> None:

"""Sorts v in ascending order"""
for i in range(len(v)-1):

k = i
for j in range(i+1, len(v)):

if v[j] < v[k]:
k = j

v[k], v[i] = v[i], v[k]

Algorithm Analysis © Dept. CS, UPC 4

Observation: notice that 𝑇𝑇 𝑛𝑛 ∈ Ω(𝑛𝑛2), also. Therefore, 𝑇𝑇 𝑛𝑛 ∈ Θ(𝑛𝑛2).

Insertion Sort
• Let us use inductive reasoning:

– If we know how to sort arrays of size n-1,
– do we know how to sort arrays of size n?

Algorithm Analysis © Dept. CS, UPC 5

9 -7 0 1 -3 4 3 8 -6 8 6 2

-7 -6 -3 0 1 3 4 6 8 8 9 2

n-1n-20

-7 -6 -3 0 1 2 3 4 6 8 8 9

Insertion Sort
def insertion_sort(v: list[T]) -> None:

"""Sorts v in ascending order"""
for i in range(1, len(v)): # n-1 times

x = v[i]
j = i
while j > 0 and v[j - 1] > x: # 0..i times

v[j] = v[j - 1]
j -= 1

v[j] = x

Algorithm Analysis © Dept. CS, UPC 6

The Maximum Subsequence Sum Problem

• Given (possibly negative) integers 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛, find
the maximum value of ∑𝑘𝑘=𝑖𝑖

𝑗𝑗 𝐴𝐴𝑘𝑘.
(the max subsequence sum is 0 if all integers are
negative).

• Example:
– Input: -2, 11, -4, 13, -5, -2
– Answer: 20 (subsequence 11, -4, 13)

(extracted from M.A. Weiss, Data Structures and
Algorithms in C++, Pearson, 2014, 4th edition)

Algorithm Analysis © Dept. CS, UPC 7

The Maximum Subsequence Sum Problem
def max_sub_sum(a: list[int]) -> int:

"""Returns the sum of the maximum subsequence of a"""
n = len(a)
max_sum = 0
try all possible subsequences
for i in range(n):

for j in range(i, n):
this_sum = 0
for k in range(i, j+1):

this_sum += a[k]
max_sum = max(max_sum, this_sum)

return max_sum

Algorithm Analysis © Dept. CS, UPC 8

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖

𝑛𝑛−1

�
𝑘𝑘=𝑖𝑖

𝑗𝑗

1

The Maximum Subsequence Sum Problem

Algorithm Analysis © Dept. CS, UPC 9

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖

𝑛𝑛−1

�
𝑘𝑘=𝑖𝑖

𝑗𝑗

1

= �
𝑖𝑖=0

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖

𝑛𝑛−1

(𝑗𝑗 − 𝑖𝑖 + 1)

= �
𝑖𝑖=0

𝑛𝑛−1
(𝑛𝑛 − 𝑖𝑖 + 1)(𝑛𝑛 − 𝑖𝑖)

2
= ⋯

=
𝑛𝑛3 + 3𝑛𝑛2 + 2𝑛𝑛

6
= Θ(𝑛𝑛3)

The Maximum Subsequence Sum Problem
def max_sub_sum(a: list[int]) -> int:

"""Returns the sum of the maximum subsequence of a"""
n = len(a)
max_sum = 0
try all possible subsequences
for i in range(n):

this_sum = 0
for j in range(i, n):

this_sum += a[j] # reuse computation
max_sum = max(max_sum, this_sum)

return max_sum

Algorithm Analysis © Dept. CS, UPC 10

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖

𝑛𝑛−1

1 = Θ(𝑛𝑛2)

Max Subsequence Sum: Divide&Conquer
First half Second half

4 -3 5 -2 -1 2 6 -2

Algorithm Analysis © Dept. CS, UPC 11

The max sum can be in one of three places:
• 1st half
• 2nd half
• Spanning both halves and crossing the middle

In the 3rd case, two max subsequences must be found starting
from the center of the vector (one to the left and the other to
the right)

Max Subsequence Sum: Divide&Conquer
def max_sub_sum_rec(a: list[int], left: int, right: int) -> int:

"""Returns the sum of the maximum subsequence of a[left:right+1]"""
if left == right: # base case

return max(a[left], 0)

Recursive cases: left and right halves
center = (left + right)//2
max_left = max_sub_sum_rec(a, left, center)
max_right = max_sub_sum_rec(a, center+1, right)

Subsequence in a[center+1:right+1]
max_rcenter, right_sum = 0, 0
for i in range(center+1, right+1):

right_sum += a[i]
max_rcenter = max(max_rcenter, right_sum)

Subsequence in a[left:center+1]
max_lcenter, left_sum = 0, 0
for i in range(center, left-1, -1):

left_sum += a[i]
max_lcenter = max(max_lcenter, left_sum)

return max(max_left, max_right, max_lcenter + max_rcenter)

Algorithm Analysis © Dept. CS, UPC 12

a:

left rightcenter

Max Subsequence Sum: Divide&Conquer

Algorithm Analysis © Dept. CS, UPC 13

We will see how to solve this equation formally in the next lesson
(Master Theorem). Informally:

But, can we still do it faster?

𝑇𝑇 1 = 1
𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛/2 + Θ(𝑛𝑛)

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 ⁄𝑛𝑛 2 + 𝑛𝑛 = 2(2𝑇𝑇(⁄𝑛𝑛 4) + ⁄𝑛𝑛 2) + 𝑛𝑛
= 4𝑇𝑇 ⁄𝑛𝑛 4 + 𝑛𝑛 + 𝑛𝑛 = 8𝑇𝑇(⁄𝑛𝑛 8) + 𝑛𝑛 + 𝑛𝑛 + 𝑛𝑛 = ⋯
= 2𝑘𝑘𝑇𝑇 ⁄𝑛𝑛 2𝑘𝑘 + 𝑛𝑛 + 𝑛𝑛 + ⋯+ 𝑛𝑛

when 𝑛𝑛 = 2𝑘𝑘, we have that 𝑘𝑘 = log2 𝑛𝑛, hence

𝑇𝑇 𝑛𝑛 = 2𝑘𝑘𝑇𝑇 1 + 𝑘𝑘𝑛𝑛 = 𝑛𝑛 + 𝑛𝑛 log2 𝑛𝑛 = Θ(𝑛𝑛 log𝑛𝑛)

𝑘𝑘

The Maximum Subsequence Sum Problem
• Observations:

– If a[i] is negative, it cannot be the start of the optimal
subsequence.

– Any negative subsequence cannot be the prefix of the optimal
subsequence.

• Let us consider the inner loop of the O 𝑛𝑛2 algorithm and
assume that all prefixes of a[i..j-1] are positive and a[i..j] is
negative:

– If p is an index between i+1 and j, then any subsequence from a[p]
is not larger than any subsequence from a[i] and including a[p-1].

– If a[j] makes the current subsequence negative, we can advance i
to j+1.

Algorithm Analysis © Dept. CS, UPC 14

i p j

a:

The Maximum Subsequence Sum Problem
def max_sub_sum(a: list[int]) -> int:

"""Returns the sum of the maximum subsequence of a"""
max_sum, this_sum = 0, 0
for x in a:

this_sum += x
max_sum = max(max_sum, this_sum)
this_sum = max(this_sum, 0)

return max_sum

Algorithm Analysis © Dept. CS, UPC 15

4 -3 5 -4 -3 -1 5 -2 6 -3 2
4 1 6 2 0 0 5 3 9 6 8
4 4 6 6 6 6 6 6 9 9 9

a:

this_sum:

max_sum:

𝑇𝑇 𝑛𝑛 = Θ(𝑛𝑛)

Representation of polygons

Algorithm Analysis © Dept. CS, UPC 16

(1,3)

(4,1)

(7,3)

(5,4)

(6,7)

(2,6)

• A polygon can be represented by a
sequence of vertices.

• Two consecutive vertices represent
an edge of the polygon.

• The last edge is represented by the
first and last vertices of the sequence.

Vertices: (1,3) (4,1) (7,3) (5,4) (6,7) (2,6)

Edges: (1,3)-(4,1)-(7,3)-(5,4)-(6,7)-(2,6)-(1,3)

A polygon (an ordered set of vertices)
Polygon = list[Point]

Create a polygon from a set of points

Algorithm Analysis © Dept. CS, UPC 17

Given a set of 𝑛𝑛 points in the plane, connect them in a simple closed path.

Simple polygon
Input: 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 (points in the plane).
Output: P (a polygon whose vertices are
𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 in some order).

1) Select a point 𝑧𝑧 with the smallest 𝑥𝑥
coordinate (and smallest 𝑦𝑦 in case of a
tie in the 𝑥𝑥 coordinate). Assume 𝑧𝑧 = 𝑝𝑝1.

2) For each 𝑝𝑝𝑖𝑖 ∈ {𝑝𝑝2, … ,𝑝𝑝𝑛𝑛}, calculate the
angle 𝛼𝛼𝑖𝑖 between the lines 𝑧𝑧 − 𝑝𝑝𝑖𝑖 and
the 𝑥𝑥 axis.

3) Sort the points {𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} according to
their angles. In case of a tie, use
distance to 𝑧𝑧.

Algorithm Analysis © Dept. CS, UPC 18

𝑧𝑧

Simple polygon

Algorithm Analysis © Dept. CS, UPC 19

𝑧𝑧

tan(𝛼𝛼)

Simple polygon
Implementation details:

• There is no need to calculate angles
(requires arctan). It is enough to
calculate slopes (⁄Δ𝑦𝑦 Δ𝑥𝑥).

• There is not need to calculate distances.
It is enough to calculate the square of
distances (no sqrt required).

Complexity: O(𝑛𝑛 log𝑛𝑛).
The runtime is dominated by the sorting
algorithm.

Algorithm Analysis © Dept. CS, UPC 20

𝑧𝑧

Convex hull

Algorithm Analysis © Dept. CS, UPC 21

Compute the convex hull of 𝑛𝑛 given points in the plane.

𝛼𝛼
𝛽𝛽

𝛼𝛼 < 𝛽𝛽

Clockwise and counter-clockwise

Algorithm Analysis © Dept. CS, UPC 22

How to calculate whether three consecutive vertices
are in a clockwise or counter-clockwise turn.

counter-clockwise
(𝒑𝒑𝟑𝟑 at the left of 𝒑𝒑𝟏𝟏𝒑𝒑𝟐𝟐)

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝑝𝑝1

𝑝𝑝2
𝑝𝑝3

def left_of(𝒑𝒑𝟏𝟏:Point, 𝒑𝒑𝟐𝟐:Point, 𝒑𝒑𝟑𝟑:Point) -> bool:
"""Returns true if 𝒑𝒑𝟑𝟑 is at the left of 𝒑𝒑𝟏𝟏𝒑𝒑𝟐𝟐"""
return 𝒑𝒑𝟐𝟐.𝒙𝒙 − 𝒑𝒑𝟏𝟏.𝒙𝒙 ⋅ 𝒑𝒑𝟑𝟑.𝒚𝒚 − 𝒑𝒑𝟏𝟏.𝒚𝒚 > 𝒑𝒑𝟐𝟐.𝒚𝒚 − 𝒑𝒑𝟏𝟏.𝒚𝒚 ⋅ (𝒑𝒑𝟑𝟑.𝒙𝒙 − 𝒑𝒑𝟏𝟏.𝒙𝒙)

𝛽𝛽𝛼𝛼

𝛼𝛼 > 𝛽𝛽

clockwise
(𝒑𝒑𝟑𝟑 at the right of 𝒑𝒑𝟏𝟏𝒑𝒑𝟐𝟐)

Convex hull: gift wrapping algorithm

Algorithm Analysis © Dept. CS, UPC 23

https://en.wikipedia.org/wiki/Gift_wrapping_algorithm

Convex hull: gift wrapping algorithm
• Input: 𝑝𝑝1, 𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 (points in the plane).
• Output: P (the convex hull of 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛).

• Initial points:
𝑝𝑝0 with the smallest 𝑥𝑥 coordinate.

• Iteration: Assume that a partial path with 𝑘𝑘 points
has been built (𝑝𝑝𝑘𝑘 is the last point). Pick some
arbitrary 𝑝𝑝𝑘𝑘+1 ≠ 𝑝𝑝𝑘𝑘. Visit the remaining points.
If some point 𝑞𝑞 is at the left of 𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘+1 redefine
𝑝𝑝𝑘𝑘+1 = 𝑞𝑞.

• Stop when P is complete (back to point 𝑝𝑝0).

Algorithm Analysis © Dept. CS, UPC 24

Complexity: At each iteration, we calculate 𝑛𝑛 angles. 𝑇𝑇 𝑛𝑛 = O(ℎ𝑛𝑛), where ℎ is the number
of points in the convex hull. In the worst case, 𝑇𝑇 𝑛𝑛 = O 𝑛𝑛2 .

𝑝𝑝0

𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘+1

𝑝𝑝𝑘𝑘−1

Convex hull: gift wrapping algorithm
def gift_wrapping(pol: Polygon) -> Polygon:

"""Returns the convex-hull of a set of points"""
hull: Polygon = []

Pick the leftmost point
left = 0
for i, p in enumerate(pol):

if pol[i].x < pol[left].x:
left = i

p = left
while True: # Add points while the polygon is not closed

hull.append(pol[p]) # Add point to the convex hull
q = (p+1)%len(pol) # Pick a point different from p

for i, new_p in enumerate(pol): # Find leftmost point of p->q
if left_of(pol[p], pol[q], new_p):

q = i

p = q # This is the leftmost point
if p == left: # Stop if the point closes the polygon

break

return hull

Algorithm Analysis © Dept. CS, UPC 25

Convex hull: Graham Scan

Algorithm Analysis © Dept. CS, UPC 26

https://en.wikipedia.org/wiki/Graham_scan

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 27

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻 𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 28

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 29

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 30

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 31

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 32

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 33

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑭𝑭Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 34

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑭𝑭 𝑮𝑮Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 35

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑭𝑭Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 36

𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐸𝐸

𝐶𝐶

𝐹𝐹

𝐺𝐺

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑭𝑭 𝑯𝑯Q:

Convex hull: Graham scan

Graham Scan © Dept. CS, UPC 37

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝐹𝐹

𝐻𝐻

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝑬𝑬 𝑭𝑭 𝑮𝑮 𝑯𝑯P:

𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑭𝑭 𝑯𝑯Q:

Convex hull: Graham scan

Input: 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 (polygon: points in the plane).
Output: 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚 (the convex hull).

Initially:
Create a simple polygon P (complexity O(𝑛𝑛 log𝑛𝑛)).
Assume the order of the points is 𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑛𝑛.

Algorithm Analysis © Dept. CS, UPC 38

𝑞𝑞1

𝑞𝑞𝑚𝑚

𝑞𝑞𝑚𝑚−1

𝑝𝑝𝑘𝑘

Observation: each point 𝑝𝑝𝑘𝑘 can be included in 𝑄𝑄 and deleted at most once.
The main loop of Graham scan has linear cost.
Complexity: dominated by the creation of the simple polygon O(𝑛𝑛 log𝑛𝑛).

def graham_scan(pol: Polygon) -> Polygon:
"""Returns the convex hull of a non-convex polygon"""
hull = pol[0:3]
for k in range(3, len(pol)):

while left_of(hull[-2], hull[-1], pol[k]):
hull.pop()

hull.append(pol[k])
return hull

EXERCISES

Algorithm Analysis © Dept. CS, UPC 39

Summations
Prove the following equalities:

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6

�
𝑖𝑖=0

𝑛𝑛

2𝑖𝑖 = 2𝑛𝑛+1 − 1

Algorithm Analysis © Dept. CS, UPC 40

For loops: analyze the cost of each code

Code 1
s = 0
for i in range(n):

s += 1

Code 2
s = 0
for i in range(0, n, 2):

s += 1

Code 3
s = 0
for i in range(n):

s += 1
for j in range(n):

s += 1

Algorithm Analysis © Dept. CS, UPC 41

Code 4
s = 0
for i in range(n):

for j in range(n):
s += 1

Code 5
s = 0
for i in range(n):

for j in range(i):
s += 1

Code 6
s = 0
for i in range(n):

for j in range(i, n):
s += 1

Calculate the value of variable s at the end of each code

For loops: analyze the cost of each code
Code 7
s = 0
for i in range(n):

for j in range(n):
for k in range(n):

s += 1

Code 8
s = 0
for i in range(n):

for j in range(i):
for k in range(j):

s += 1

Code 9
s = 0
i = 1
while i <= n:

s += 1
i *= 2

Algorithm Analysis © Dept. CS, UPC 42

Code 10
s = 0
for i in range(n):

j = 1
while j <= n:

s += 1
j *= 2

Code 11
s = 0
for i in range(n):

for j in range(i*i):
for k in range(n):

s += 1

Code 12
s = 0
for i in range(n):

for j in range(i*i):
if j%i == 0:

for k in range(n):
s += 1

O, Ω or Θ?
The following statements refer to the insertion sort algorithm and
the X’s hide an occurrence of O, Ω or Θ. For each statement, find
which options for 𝑋𝑋 ∈ {O,Ω,Θ} make the statement true or false.
Justify your answers.

1. The worst case is 𝑋𝑋(𝑛𝑛2)
2. The worst case is 𝑋𝑋(𝑛𝑛)
3. The best case is 𝑋𝑋(𝑛𝑛2)
4. The best case is 𝑋𝑋(𝑛𝑛)
5. For every probability distribution, the average case is 𝑋𝑋(𝑛𝑛2)
6. For every probability distribution, the average case is 𝑋𝑋(𝑛𝑛)
7. For some probability distribution, the average case is 𝑋𝑋(𝑛𝑛 log𝑛𝑛)

Algorithm Analysis © Dept. CS, UPC 43

Primality
The following algorithms try to determine whether 𝑛𝑛 ≥ 0 is prime.
Find which ones are correct and analyze their cost as a function of 𝑛𝑛.

Algorithm Analysis © Dept. CS, UPC 44

def is_prime1(n: int) -> bool:
if n <= 1:

return False
for i in range(2,n):

if n%i == 0:
return False

return True

def is_prime2(n: int) -> bool:
if n <= 1:

return False
for i in range(2, int(math.sqrt(n))):

if n%i == 0:
return False

return True

def is_prime3(n: int) -> bool:
if n <= 1:

return False
for i in range(2, round(math.sqrt(n))):

if n%i == 0:
return False

return True

def is_prime4(n: int) -> bool:
if n <= 1:

return False
for i in range(2, int(math.sqrt(n))+1):

if n%i == 0:
return False

return True

def is_prime5(n: int) -> bool:
if n <= 1:

return False
if n == 2:

return True
if n%2 == 0:

return False
for i in range(3, int(math.sqrt(n))+1, 2):

if (n%i == 0):
return False

return True

The Sieve of Eratosthenes

The following program is a version of the Sieve
of Eratosthenes. Analyze its complexity.

Algorithm Analysis © Dept. CS, UPC 45

def primes(n: int) -> list[bool]:
p: list[bool] = [True]*(n+1)
p[0] = p[1] = False
for i in range(2, int(math.sqrt(n))+1):

if p[i]:
for j in range(i*i, n+1, i):

p[j] = False
return p

You can use the following equality, where 𝑝𝑝 ≤ 𝑥𝑥 refers to all primes 𝑝𝑝 ≤ 𝑥𝑥:

�
𝑝𝑝≤𝑥𝑥

1
𝑝𝑝 = log log 𝑥𝑥 + O(1)

The Cell Phone Dropping Problem
• You work for a cell phone company which has

just invented a new cell phone protector and
wants to advertise that it can be dropped
from the 𝑓𝑓th floor without breaking.

• If you are given 1 or 2 phones and an 𝑛𝑛 story
building, propose an algorithm that minimizes
the worst-case number of trial drops to know
the highest floor it won’t break.

• Assumption: a broken cell phone cannot be
used for further trials.

• How about if you have 𝑝𝑝 cell phones?

(Source: Wood & Yasskin, Texas A&M University)

Algorithm Analysis © Dept. CS, UPC 46

𝑛𝑛

