Algorithm Analysis (II)

Jordi Cortadella and Jordi Petit Department of Computer Science

- Selection sort
- Insertion sort
- The Maximum Subsequence Sum Problem

© Dept. CS, UPC

Selection Sort

Convex Hull

Algorithm Analysis

Selection Sort

• Selection sort uses this invariant:

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \mathcal{O}(1) = \mathcal{O}(1) \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \mathcal{O}(1) \sum_{i=0}^{n-2} (n-i-1)$$
$$= \mathcal{O}(1) \left(\frac{n}{2}(n-1)\right) = \mathcal{O}(1) \cdot \mathcal{O}(n^2) = \mathcal{O}(n^2)$$

Observation: notice that $T(n) \in \Omega(n^2)$, also. Therefore, $T(n) \in \Theta(n^2)$.

Insertion Sort

- Let us use inductive reasoning:
 - If we know how to sort arrays of size n-1,
 - do we know how to sort arrays of size n?

Insertion Sort

The Maximum Subsequence Sum Problem

• Given (possibly negative) integers A_1, A_2, \dots, A_n , find

- the maximum value of $\sum_{k=i}^{j} A_k$. (the max subsequence sum is 0 if all integers are negative).
- Example:
 - Input: -2, 11, -4, 13, -5, -2
 - Answer: 20 (subsequence 11, -4, 13)

(extracted from M.A. Weiss, Data Structures and Algorithms in C++, Pearson, 2014, 4th edition)

The Maximum Subsequence Sum Problem

© Dept. CS, UPC

```
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a"""
    n = len(a)
    max_sum = 0
    # try all possible subsequences
    for i in range(n):
        for j in range(i, n):
            this_sum = 0
            for k in range(i, j+1):
                this_sum += a[k]
                max_sum = max(max_sum, this_sum)
    return max_sum
```


5

Algorithm Analysis

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1$$
$$= \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j-i+1)$$
$$= \sum_{i=0}^{n-1} \frac{(n-i+1)(n-i)}{2} = \cdots$$

n = len(a)

def max_sub_sum(a: list[int]) -> int:

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} 1 = \Theta(n^2)$$

"""Returns the sum of the maximum subsequence of a"""

Algorithm Analysis

© Dept. CS, UPC

 $=\frac{n^3 + 3n^2 + 2n}{6} = \Theta(n^3)$

Algorithm Analysis

9

© Dept. CS, UPC

10

Max Subsequence Sum: Divide&Conquer

First half				Second half				
4	-3	5	-2	-1	2	6	-2	

The max sum can be in one of three places:

- 1st half
- 2nd half
- Spanning both halves and crossing the middle

In the 3rd case, two max subsequences must be found starting from the center of the vector (one to the left and the other to the right)

Max Subsequence Sum: Divide&Conquer

```
def max_sub_sum_rec(a: list[int], left: int, right: int) -> int:
    ""Returns the sum of the maximum subsequence of a[left:right+1]"""
    if left == right: # base case
       return max(a[left], 0)
    # Recursive cases: left and right halves
    center = (left + right)//2
    max_left = max_sub_sum_rec(a, left, center)
    max_right = max_sub_sum_rec(á, center+1, right)
    # Subsequence in a[center+1:right+1]
    max_rcenter, right_sum = 0, 0
   for i in range(center+1, right+1):
        right_sum += a[i]
        max_rcenter = max(max_rcenter, right_sum)
   # Subsequence in a[left:center+1]
    max_lcenter, left_sum = 0, 0
   for i in range(center, left-1, -1):
       left_sum += a[i]
        max_Icenter = max(max_lcenter, left_sum)
    return max(max_left, max_right, max_lcenter + max_rcenter)
```


11

Algorithm Analysis

$$T(1) = 1$$

$$T(n) = 2T(n/2) + \Theta(n)$$

We will see how to solve this equation formally in the next lesson (Master Theorem). Informally:

$$T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n$$

= $4T(n/4) + n + n = 8T(n/8) + n + n + n = \cdots$
= $2^k T(n/2^k) + \underbrace{n + n + \cdots + n}_k$

when $n = 2^k$, we have that $k = \log_2 n$, hence

$$T(n) = 2^k T(1) + kn = n + n \log_2 n = \Theta(n \log n)$$

But, can we still do it faster?

Algorithm Analysis

© Dept. CS, UPC

The Maximum Subsequence Sum Problem

$$T(n) = \Theta(n)$$

a:	4	-3	5	-4	-3	-1	5	-2	6	-3	2
this_sum:	4	1	6	2	0	0	5	3	9	6	8
max_sum:	4	4	6	6	6	6	6	6	9	9	9

The Maximum Subsequence Sum Problem

- Observations:
 - If a[i] is negative, it cannot be the start of the optimal subsequence.
 - Any negative subsequence cannot be the prefix of the optimal subsequence.
- Let us consider the inner loop of the O(n²) algorithm and assume that all prefixes of a[i..j-1] are positive and a[i..j] is negative:

- If p is an index between i+1 and j, then any subsequence from a[p] is not larger than any subsequence from a[i] and including a[p-1].
- If a[j] makes the current subsequence negative, we can advance i to j+1.

```
Algorithm Analysis
```

13

© Dept. CS, UPC

14

Representation of polygons

- (2,6) (2,6) (1,3) (1,3) (4,1) (4,1)
- A polygon can be represented by a sequence of vertices.
- Two consecutive vertices represent an edge of the polygon.
- The last edge is represented by the first and last vertices of the sequence.

Vertices: (1,3) (4,1) (7,3) (5,4) (6,7) (2,6)

Edges: (1,3)-(4,1)-(7,3)-(5,4)-(6,7)-(2,6)-(1,3)

A polygon (an ordered set of vertices)
Polygon = list[Point]

Create a polygon from a set of points

Given a set of *n* points in the plane, connect them in a simple closed path.

Simple polygon

Input: $p_1, p_2, ..., p_n$ (points in the plane). **Output:** P (a polygon whose vertices are $p_1, p_2, ..., p_n$ in some order).

- Select a point z with the smallest x coordinate (and smallest y in case of a tie in the x coordinate). Assume z = p₁.
- 2) For each $p_i \in \{p_2, ..., p_n\}$, calculate the angle α_i between the lines $z p_i$ and the x axis.
- Sort the points {p₂, ..., p_n} according to their angles. In case of a tie, use distance to z.

Implementation details:

- There is no need to calculate angles (requires arctan). It is enough to calculate slopes $(\Delta y / \Delta x)$.
- There is not need to calculate distances. It is enough to calculate the square of distances (no sqrt required).

Complexity: $O(n \log n)$. The runtime is dominated by the sorting algorithm.

-360 ° -270 ° -2π -3/2 π

Convex hull

Clockwise and counter-clockwise

How to calculate whether three consecutive vertices are in a **clockwise** or *counter-clockwise* turn.

 $\begin{array}{l} \texttt{def left_of}(p_1:\texttt{Point}, \ p_2:\texttt{Point}, \ p_3:\texttt{Point}) \ \textbf{-> bool:} \\ \texttt{"""Returns true if } p_3 \ \texttt{is at the left of } \overline{p_1p_2} \texttt{"""} \\ \texttt{return} \ (p_2.\ x - p_1.\ x) \cdot (p_3.\ y - p_1.\ y) > (p_2.\ y - p_1.\ y) \cdot (p_3.\ x - p_1.\ x) \end{array}$

© Dept. CS, UPC

Convex hull: gift wrapping algorithm

Compute the convex hull of *n* given points in the plane.

https://en.wikipedia.org/wiki/Gift_wrapping_algorithm

Convex hull: gift wrapping algorithm

© Dept. CS, UPC

- **Input:** p_1, p_2, \dots, p_n (points in the plane).
- **Output:** P (the convex hull of p_1, p_2, \dots, p_n).
- Initial points:
 *p*₀ with the smallest *x* coordinate.
- **Iteration:** Assume that a partial path with k points has been built (p_k is the last point). Pick some arbitrary $p_{k+1} \neq p_k$. Visit the remaining points. If some point q is at the left of $\overrightarrow{p_k p_{k+1}}$ redefine $p_{k+1} = q$.

• Stop when P is complete (back to point p_0).

Complexity: At each iteration, we calculate *n* angles. T(n) = O(hn), where *h* is the number of points in the convex hull. In the worst case, $T(n) = O(n^2)$.

 p_{k-1}

Algorithm Analysis

21

Algorithm Analysis

Summations

Prove the following equalities:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

EXERCISES

Algorithm Analysis

For loops: analyze the cost of each code

Primality

The following statements refer to the *insertion sort* algorithm and the X's hide an occurrence of $0, \Omega$ or Θ . For each statement, find which options for $X \in \{0, \Omega, \Theta\}$ make the statement true or false. Justify your answers.

- The worst case is $X(n^2)$ 1.
- The worst case is X(n)2.
- The best case is $X(n^2)$ 3.
- The best case is X(n)4.
- For every probability distribution, the average case is $X(n^2)$
- For every probability distribution, the average case is X(n)6.
- For some probability distribution, the average case is $X(n \log n)$ 7.

The following algorithms try to determine whether $n \ge 0$ is prime. Find which ones are correct and analyze their cost as a function of *n*.

```
def is prime1(n: int) -> bool:
                                              def is prime4(n: int) -> bool:
    if n <= 1:
                                                  if n <= 1:
        return False
                                                      return False
    for i in range(2,n):
                                                  for i in range(2, int(math.sqrt(n))+1):
        if n%i == 0:
                                                      if n%i == 0:
            return False
                                                          return False
    return True
                                                  return True
def is prime2(n: int) -> bool:
    if n <= 1:
                                              def is prime5(n: int) -> bool:
        return False
                                                  if n <= 1:
    for i in range(2, int(math.sqrt(n))):
                                                      return False
        if n%i == 0:
                                                  if n == 2:
            return False
                                                      return True
    return True
                                                  if n\%2 == 0:
                                                      return False
def is prime3(n: int) -> bool:
                                                  for i in range(3, int(math.sqrt(n))+1, 2):
    if n <= 1:
                                                      if (n%i == 0):
        return False
    for i in range(2, round(math.sqrt(n))):
                                                          return False
        if n%i == 0:
                                                  return True
            return False
    return True
```

Algorithm Analysis

The following program is a version of the Sieve of Eratosthenes. Analyze its complexity.

```
def primes(n: int) -> list[bool]:
    p: list[bool] = [True]*(n+1)
    p[0] = p[1] = False
    for i in range(2, int(math.sqrt(n))+1):
        if p[i]:
            for j in range(i*i, n+1, i):
                p[j] = False
    return p
```

You can use the following equality, where $p \le x$ refers to all primes $p \le x$:

$$\sum_{p \le x} \frac{1}{p} = \log \log x + O(1)$$

Algorithm Analysis

© Dept. CS, UPC

45

(Source: Wood & Yasskin, Texas A&M University)

Algorithm Analysis

© Dept. CS, UPC

46

The Cell Phone Dropping Problem