ADTs

Abstract Data Types (1)

(and Object-Oriented Programming)

Jordi Cortadella and Jordi Petit
Department of Computer Science

LIVESCINCE

Live Science > Health

Mind's Limit Found: 4 Things at
Once

By Clara Moskowitz April 27, 2008 08:00pm ET

NEWS TECH HEALTH PLANET EARTH

MORE~

| forget how | wanted to begin this story. That's probably because my
mind, just like everyone else's, can only remember a few things at a time.

Researchers have often debated the|maximum amount of items|we can
store in our conscious mind, in what's called our working memory, and a
new study puts{the limit at three or four)

Working memory is a more active version of short-term memory, which
refers to the temporary storage of information| Working memory relates
|to the information we can pay attention to and manipulate.

How many horses can you distinguish?

ADTs © Dept. CS, UPC

Two examples

Dept. CS, UPC

Main loop of binary search
while left <= right:
i = (left + right)/2
if x < A[i]: right = i-1
elif x > A[i]: left = i+1
else: return i

Main loop of insertion sort
for i in range(1, len(A)):
x = A[i]
j=1
while j > @ and A[j-1] > x:
A[3] = AL3-1]

=

J
A[3] = x

ADTs © Dept. CS, UPC

Variables used (5):
A, x, left, right, i
(only 3 modified)

Variables used (4):
AJ x.’ i) j

Hiding details: abstractions Different types of abstractions

v

Dept. CS, UPC 5

Concept maps are hierarchical: why?

© Dept. CS, UPC

The computer systems stack

ADTs ADTs

Computer scisnces[S] #
omputer sience S T

E| Anthropalogy Computational logic %

B archaeclogy ﬁ Set theory #
Animal communi jemiers [Proof theory » ; A
Infarmation theery .‘"‘. | et | Maotel theory & [Appllcatlon]
Interpersonsl Y s | =
B E— togie®)/ Recumion tnecry @ [Algorithm]
fi LogicE] # // Modsl logic =
/ | Intuitionistic logiz = [Programmlng Language]

Telecommunications /
el |\ Philasophical Logic

[El Economics
oo Coonomics

™
Ethnic Studies
—_—

-\ sciences
Ethnal h
nalegy /g \.‘
History A
oHioy) N

E - Social

1\ Philasophical Logic #
|\ Modsl logic

Logicsl ressoning #

Operating System

Instruction Set Architecture

Microarchitecture

| Statistics[S] W

1
| Systems science[S] #
\ Systems seiencel= 3,

Frofessions /
Applied snsnmEl *

Humanities and Arts[E]
__Humanities and A1S1%

Each level has few items

ADTs

© Dept. CS, UPC

sl Agera s,
ﬁ |Q."\,;':‘:.‘?'“7 \ gfl;:m:mo Register-Transfer Level
Falisasience /| \ MatnematiofEl 4}/ szemety ana Topciony Gate Level
NP (Circuits)
R [Devices]
S | Technology)

Image Credit: Christopher Batten,
Cornell University
ADTs

© Dept. CS, UPC

The computer systems stack

The computer systems stack

. . I I
AIOIO“f{atlon | How data flows |
Algorithm] through system I
Programming Language J _

Operating System
Instruction Set Architecture
Microarchitecture
Register-Transfer Level

Boolean logic gates
and functions

Gate Level Combining devices ﬁ_ﬁ n
Circuits) — to do useful work £ 4
Devices ~
Technology | Transistors and wires jEC
)) ()
Silicon process v<@)v<@>v<@>v
technology 8085808
Image Credit: Christopher Batten, () () ()
Cornell University
ADTs © Dept. CS, UPC 9

The computer systems stack

] Mac OS X, Windows, Linux
Handles low-level hardware management

\ MIPS32 Instruction Set

Application
Algorithm]
Programming Language]
Operating System
Instruction Set Architecture
Microarchitecture
Register-Transfer Level

YT Y Y Y Y Y Y

Gate Level Instructions that machine executes
Circuits] blez $a2, done
N move S$a7, S$zero
Devices] 11 std. 99
Technology) move $a4, $al

move S$vl, $zero

1i $a3, 99

1w $a5, 0($a4d)
addiu Sa4, $a4, 4
slt Sa6, $a5, $a3
movn SvO0, $vl, Sab
addiu Sv1, S$Svl, 1

Image Credit: Christopher Batten,
movn $a3, $a5, $ab

Cornell University
ADTs © Dept. CS, UPC 10

Our challenge

] — Sort an array of numbers
2,6,3,8,4,5->2.3,4,5,6,8

[Application

[Algorithm]
[Programming Language J\

Operating System
Instruction Set Architecture
Microarchitecture
Register-Transfer Level

Insertion sort algorithm

1. Find minimum number in input array

2. Move minimum number into output array
3. Repeat steps 1 and 2 until finished

C implementation of insertion sort

Gate Level void isort(int b[], int a[], int n) {
[Circuits] for (int idx, k = 0; k < n; k++) {
. int min = 100;
[Devices] for (int 1 = 0; i < n; i++) {
[Technology] if (a[i] < min) {
min = a[i];
idx = i;
}
}
blk] = min;
a[idx] = 100;
Image Credit: Christopher Batten, }
Cornell University }
ADTs © Dept. CS, UPC 11

* We need to design large systems and reason about complex
algorithms.

* Our working memory can only manipulate 4 things at once.

* We need to interact with computers using programming
languages.

* Solution: abstraction
— Abstract reasoning.
— Programming languages that support abstraction.

* We already use a certain level of abstraction: functions.
But it is not sufficient. We need much more.

ADTs © Dept. CS, UPC 12

Data types

Abstract Data Types (ADTs)

* Programming languages have a set of primitive data types
(e.g., int, bool, float, str, ...).

* Each data type has a set of associated operations:
— We can add two integers.
— We can concatenate two strings.
— We can divide two floats.
— But we cannot divide two strings!

* Programmers can add new operations to the primitive data types:
— gcd(a,b), match(stringl, string2), ...

* The programming languages provide primitives to group data items
and create structured collections of data:
— C:array, struct.
— Python: list, tuple, dictionary.

ADTs © Dept. CS, UPC

Abstract Data Types (ADTSs)

13

A set of objects and a set of operations to
manipulate them

Operations:
* Number of vertices
* Number of edges
* Shortest path
* Connected components

Data type: Graph

ADTs © Dept. CS, UPC 14

Abstract Data Types (ADTs)

A set of objects and a set of operations to
manipulate them:

Operations:
* P+Q

« PXQ
P/Q
ged(P, Q)
P(x)
degree(P)

P(x) =x3—4x*>+5

Data type: Polynomial

ADTs © Dept. CS, UPC

15

» Separate the notions of specification and
implementation:
— Specification: “what does an operation do?”
— Implementation: “how is it done?”

* Benefits:
— Simplicity: code is easier to understand
— Encapsulation: details are hidden

— Modularity: an ADT can be changed without
modifying the programs that use it

— Reuse: it can be used by other programs

ADTs © Dept. CS, UPC 16

Abstract Data Types (ADTSs) Abstract Data Types (ADTs)

* An ADT has two parts:

— Public or external: abstract view of the data and
operations (methods) that the user can use.

— Private or internal: the actual implementation of Internal : User
; Private ﬁ Interface
the data structures and operations. Data :
. Operations (API)
Representation
* Operations:
— Creation/Destruction

— Access Y

— Modification

Invisible

API: Application Programming Interface

ADTs © Dept. CS, UPC 17 ADTs Dept. CS, UPC 18

Example: a Point Example: a Point

Things that we can do with points
* A point can be represented

. pl = Point(5.0, -3.2) # Create a point (a variable)
by two coordinates (x,y). p2 = Point(2.8, @) # Create another point
[]
° # We now calculate the distance between pl and p2
* Several operations can be ; dist12 = pi.distance(p2)
envisioned: TR

Distance to the origin

— Get the x and y coordinates. . i r = pl.distance()
. r.J 1
— Calculate distance between VY
two points. 7 ! # Create another point by adding coordinates
A’ ! p3 = pl + p2
— Calculate polar coordinates. <0 !
— Move the point by (Ax, Ay). # We get the coordinates of the new point
o x = p3.x() # x=17.8
y =p3.y() #y=-3.2

ADTs © Dept. CS, UPC 19 ADTs © Dept. CS, UPC 20

ADTs and Object-Oriented Programming

Classes and Objects

OOP is a programming paradigm: a program is a set of
objects that interact with each other.

An object has:
— fields (or attributes) that contain data
— functions (or methods) that contain code

Objects (variables) are instances of classes (types).
A class is a template for all objects of a certain type.

In OOP, a class is the natural way of implementing an ADT.

ADTs © Dept. CS, UPC 21

Let us design the new type for Point

ADTs

class objects
polo
Nl A 4
p=/ car \ - _I mini
VT T TN o/ \/

© Dept. CS, UPC

Let us design the new type for Point

22

class Point:
"""A class to represent and operate with two-dimensional points"""

Declaration of attributes (recommended for type checking)
x: float # x coordinate

_y: float # y coordinate

def __init__ (self, x: float = @, y: float = 9):
"""Constructor with x and y coordinates"""
self._x, self._y = x, y

def x(self) -> float:

"""Returns the x coordinate"""
return self._x

def y(self) -> float:

"""Returns the y coordinate"""
return self._y

def distance(self, p: Optional['Point']) -> float:

"""Returns the distance to point p
(or the distance to the origin if p is None)"""

dx, dy = self.x(), self.y()
if p is not None:
dx -= p.x(
dy -= p.y(
return math.sqrt(dx*dx + dy*dy)

ADTs © Dept. CS, UPC 23

ADTs

def angle(self) -> float:
"""Returns the angle of the polar coordinate"""
if self.x() == @ and self.y() == @:
return 0
return math.atan2(self.y()/self.x())

def __add__(self, p: 'Point') -> 'Point’':

"""Returns a new point by adding the coordinates of two points.

This is a method associated to the + operator"""
return Point(self.x() + p.x(), self.y() + p.y())

def __eq__(self, p: 'Point') -> bool:
"""Checks whether two points are equal.
This is a method associated to the == operator"""
return self.x() == p.x() and self.y() == p.y()

© Dept. CS, UPC

24

How the class methods are invoked

How the class methods are invoked

Point(5.0, -3.2) # _ init_ (p1, 5.0, -3.2)
Point(2.8) # __init_ (p2, 2.8, 0)

pl
p2

dist12 = pﬁ.distance(pz) # distance(%l, p2)

self

Distance to the origin

r = pl.distance() # distance(pl, None)

Create another point by adding coordinates
p3 = pl + p2 # Equivalent to pl.__add__(p2)

We get the coordinates of the new point

x = p3.x() # x=17.8
y = p3.y() #y=-3.2
ADTs © Dept. CS, UPC

Python naming conventions

ADTs

pl = Point(5.0, -3.2)

p2 = Point(2.8)

dist12 = pl.distance(p2)

r = pl.distance() L

def

def

p3 = pl + p2 _
float:

class Point:

v

__init__ (self, x: float = @, y: float = 0):

x(self) -> float:

y(self) -> float:

distance(self, p: Optional['Point']) ->

def angle(self) -> float:
X = p3.x() def __add__(self, p: 'Point') -> 'Point':
= p3.
y P y() def __eq__ (self, p: 'Point') -> bool:
© Dept. CS, UPC 26

Magic methods

Function distance, dot_product, multiply by two
Variable X, hum, num_elements
Class Point, CityGraph, ParkinglLot

Public method distance, get_angle, shortest_path

Private method _gecd, _check, _calculate_mean

Magic method _dinit__, _add__, _eq__, __str

Constant GRAVITY, MIN_DISTANCE, MAX_NUM_PEOPLE
Module point.py, city_graph.py, parking_lot.py
Package geometry, citygraph

Recommendation:
* use short names for modules and packages
* no underscores for package names

Comment: PascalCase, camelCase and snake_case

ADTs © Dept. CS, UPC

ADTs

They are invoked internally to implement certain actions.

They are not supposed to be invoked by the user.

* Some examples:
— Arithmetic: _add_, mul__,

Relational: __eq_,
Representation: __str
Class initialization: __init__,
and others

div, truediv._, neg ..

ne,_ gt , ge ..
., _repr__, ..
__new__, del__

© Dept. CS, UPC 28

Class Point in C++

Implementation of the class Point

// The declaration of the class Point
class Point {
public:

// Constructor

Point(double x, double y);

// Constructor for (0,0)
Point();

// Gets the x coordinate
double x() const;

// Gets the y coordinate
double y() const;

// Returns the distance to point p
double distance(const Point& p) const;

// Returns the distance to the origin
double distance() const;

// Returns the angle of the polar coordinate
double angle() const;

// Creates a new point by adding the coordinates of two points
Point operator + (const Point& p) const;

private:
double _x, _y; // Coordinates of the point

aDTs 13 © Dept. CS, UPC

Implementation of the class Point

// The constructor: different implementations B

Point::Point(double x, double y) {
X=X; Yy=Y;

} > =

// or also
Point::Point(double x, double y) : _x(x), _y(y) {}_/

They are equivalent, but only one of them should be chosen.

We can have different constructors with different signatures.

// The other constructor
Point::Point() : x(@), y(@) {}

ADTs © Dept. CS, UPC

Implementation of the class Point

30

double Point::x() const {
return _Xx;

}

double Point::y() const {
return _y;

}

double Point::distance(const Point& p) const {
double dx = x() - p.x(); // Better getX() than x

double dy = y() - p.y();
return sqrt(dx*dx + dy*dy);

}

double Point::distance() const {

) return sqrt(x()*x() + y()*y());

Note: compilers are smart. Small functions are expanded inline.

ADTs © Dept. CS, UPC

double Point::angle() const {
if (x() == @ and y() == @) return 9;
return atan(y()/x());

}

Point Point::operator + (const Point& p) const {

return Point(x() + p.x(), y() + p.y());
}

ADTs © Dept. CS, UPC

32

Conclusions

* The human brain has limitations: 4 things at once.

* Modularity and abstraction are for designing
large maintainable systems.

ADTs © Dept. CS, UPC 33

