
Abstract Data Types (I)
(and Object-Oriented Programming)

Jordi Cortadella and Jordi Petit
Department of Computer Science

ADTs © Dept. CS, UPC 2

How many horses can you distinguish?

ADTs © Dept. CS, UPC 3

Two examples
Main loop of binary search
while left <= right:

i = (left + right)/2
if x < A[i]: right = i–1
elif x > A[i]: left = i+1
else: return i

Main loop of insertion sort
for i in range(1, len(A)):

x = A[i]
j = i
while j > 0 and A[j-1] > x:

A[j] = A[j-1]
j -= 1

A[j] = x

ADTs © Dept. CS, UPC 4

Variables used (5):
A, x, left, right, i
(only 3 modified)

Variables used (4):
A, x, i, j

Hiding details: abstractions

ADTs © Dept. CS, UPC 5

Different types of abstractions

ADTs © Dept. CS, UPC 6

Concept maps are hierarchical: why?

ADTs © Dept. CS, UPC 7

Each level has few items

The computer systems stack

ADTs © Dept. CS, UPC 8

Image Credit: Christopher Batten,
Cornell University

The computer systems stack

ADTs © Dept. CS, UPC 9

Image Credit: Christopher Batten,
Cornell University

The computer systems stack

ADTs © Dept. CS, UPC 10

Image Credit: Christopher Batten,
Cornell University

The computer systems stack

ADTs © Dept. CS, UPC 11

Image Credit: Christopher Batten,
Cornell University

Our challenge
• We need to design large systems and reason about complex

algorithms.

• Our working memory can only manipulate 4 things at once.

• We need to interact with computers using programming
languages.

• Solution: abstraction
– Abstract reasoning.
– Programming languages that support abstraction.

• We already use a certain level of abstraction: functions.
But it is not sufficient. We need much more.

ADTs © Dept. CS, UPC 12

Data types
• Programming languages have a set of primitive data types

(e.g., int, bool, float, str, …).

• Each data type has a set of associated operations:
– We can add two integers.
– We can concatenate two strings.
– We can divide two floats.
– But we cannot divide two strings!

• Programmers can add new operations to the primitive data types:
– gcd(a,b), match(string1, string2), …

• The programming languages provide primitives to group data items
and create structured collections of data:
– C: array, struct.
– Python: list, tuple, dictionary.

ADTs © Dept. CS, UPC 13

Abstract Data Types (ADTs)
A set of objects and a set of operations to
manipulate them

ADTs © Dept. CS, UPC 14

Data type: Graph

Operations:
• Number of vertices
• Number of edges
• Shortest path
• Connected components

Abstract Data Types (ADTs)
A set of objects and a set of operations to
manipulate them:

ADTs © Dept. CS, UPC 15

Data type: Polynomial

Operations:
• 𝑃𝑃 + 𝑄𝑄
• 𝑃𝑃 × 𝑄𝑄
• ⁄𝑃𝑃 𝑄𝑄
• gcd(𝑃𝑃,𝑄𝑄)
• 𝑃𝑃(𝑥𝑥)
• degree(𝑃𝑃)

𝑷𝑷 𝒙𝒙 = 𝒙𝒙𝟑𝟑 − 𝟒𝟒𝒙𝒙𝟐𝟐 + 𝟓𝟓

Abstract Data Types (ADTs)
• Separate the notions of specification and

implementation:
– Specification: “what does an operation do?”
– Implementation: “how is it done?”

• Benefits:
– Simplicity: code is easier to understand
– Encapsulation: details are hidden
– Modularity: an ADT can be changed without

modifying the programs that use it
– Reuse: it can be used by other programs

ADTs © Dept. CS, UPC 16

Abstract Data Types (ADTs)
• An ADT has two parts:

– Public or external: abstract view of the data and
operations (methods) that the user can use.

– Private or internal: the actual implementation of
the data structures and operations.

• Operations:
– Creation/Destruction
– Access
– Modification

ADTs © Dept. CS, UPC 17

Abstract Data Types (ADTs)

ADTs © Dept. CS, UPC 18

Internal
Data

Representation

Private
Operations

Create

Destruct

Read

Write

Modify

⋮

Invisible

User
Interface

(API)

API: Application Programming Interface

Example: a Point

• A point can be represented
by two coordinates (𝑥𝑥,𝑦𝑦).

• Several operations can be
envisioned:
– Get the 𝑥𝑥 and 𝑦𝑦 coordinates.
– Calculate distance between

two points.
– Calculate polar coordinates.
– Move the point by (Δ𝑥𝑥,Δ𝑦𝑦).

ADTs © Dept. CS, UPC 19

𝑥𝑥

𝑦𝑦𝑟𝑟

𝜃𝜃

Example: a Point
Things that we can do with points

p1 = Point(5.0, -3.2) # Create a point (a variable)
p2 = Point(2.8, 0) # Create another point

We now calculate the distance between p1 and p2
dist12 = p1.distance(p2)

Distance to the origin
r = p1.distance()

Create another point by adding coordinates
p3 = p1 + p2

We get the coordinates of the new point
x = p3.x() # x = 7.8
y = p3.y() # y = -3.2

ADTs © Dept. CS, UPC 20

ADTs and Object-Oriented Programming
• OOP is a programming paradigm: a program is a set of

objects that interact with each other.

• An object has:
– fields (or attributes) that contain data
– functions (or methods) that contain code

• Objects (variables) are instances of classes (types).
A class is a template for all objects of a certain type.

• In OOP, a class is the natural way of implementing an ADT.

ADTs © Dept. CS, UPC 21

Classes and Objects

ADTs © Dept. CS, UPC 22

Let us design the new type for Point

ADTs © Dept. CS, UPC 23

class Point:
"""A class to represent and operate with two-dimensional points"""

Declaration of attributes (recommended for type checking)
_x: float # x coordinate
_y: float # y coordinate

def __init__(self, x: float = 0, y: float = 0):
"""Constructor with x and y coordinates"""
self._x, self._y = x, y

def x(self) -> float:
"""Returns the x coordinate"""
return self._x

def y(self) -> float:
"""Returns the y coordinate"""
return self._y

def distance(self, p: Optional['Point']) -> float:
"""Returns the distance to point p

(or the distance to the origin if p is None)"""
dx, dy = self.x(), self.y()
if p is not None:

dx -= p.x()
dy –= p.y()

return math.sqrt(dx*dx + dy*dy)

Let us design the new type for Point

ADTs © Dept. CS, UPC 24

⋮
def angle(self) -> float:

"""Returns the angle of the polar coordinate"""
if self.x() == 0 and self.y() == 0:

return 0
return math.atan2(self.y()/self.x())

def __add__(self, p: 'Point') -> 'Point':
"""Returns a new point by adding the coordinates of two points.

This is a method associated to the + operator"""
return Point(self.x() + p.x(), self.y() + p.y())

def __eq__(self, p: 'Point') -> bool:
"""Checks whether two points are equal.

This is a method associated to the == operator"""
return self.x() == p.x() and self.y() == p.y()

How the class methods are invoked
p1 = Point(5.0, -3.2) # __init__(p1, 5.0, -3.2)
p2 = Point(2.8) # __init__(p2, 2.8, 0)

dist12 = p1.distance(p2) # distance(p1, p2)

Distance to the origin
r = p1.distance() # distance(p1, None)

Create another point by adding coordinates
p3 = p1 + p2 # Equivalent to p1.__add__(p2)

We get the coordinates of the new point
x = p3.x() # x = 7.8
y = p3.y() # y = -3.2

ADTs © Dept. CS, UPC 25

self

How the class methods are invoked
p1 = Point(5.0, -3.2)
p2 = Point(2.8)

dist12 = p1.distance(p2)

r = p1.distance()

p3 = p1 + p2

x = p3.x()
y = p3.y()

ADTs © Dept. CS, UPC 26

class Point:

def __init__(self, x: float = 0, y: float = 0):

def x(self) -> float:

def y(self) -> float:

def distance(self, p: Optional['Point']) ->
float:

def angle(self) -> float:

def __add__(self, p: 'Point') -> 'Point':

def __eq__(self, p: 'Point') -> bool:

Python naming conventions

ADTs © Dept. CS, UPC 27

Type Examples

Function distance, dot_product, multiply_by_two

Variable x, num, num_elements

Class Point, CityGraph, ParkingLot

Public method distance, get_angle, shortest_path

Private method _gcd, _check, _calculate_mean

Magic method __init__, __add__, __eq__, __str__

Constant GRAVITY, MIN_DISTANCE, MAX_NUM_PEOPLE

Module point.py, city_graph.py, parking_lot.py

Package geometry, citygraph

Recommendation:
• use short names for modules and packages
• no underscores for package names

Comment: PascalCase, camelCase and snake_case

Magic methods

• They are invoked internally to implement certain actions.

• They are not supposed to be invoked by the user.

• Some examples:
– Arithmetic: __add__, __mul__, __div__, __truediv__, __neg__, …
– Relational: __eq__, __ne__, __gt__, __ge__, …
– Representation: __str__, __repr__, …
– Class initialization: __init__, __new__, __del__
– and others

ADTs © Dept. CS, UPC 28

Class Point in C++

ADTs © Dept. CS, UPC 29

// The declaration of the class Point
class Point {

public:
// Constructor
Point(double x, double y);

// Constructor for (0,0)
Point();

// Gets the x coordinate
double x() const;

// Gets the y coordinate
double y() const;

// Returns the distance to point p
double distance(const Point& p) const;

// Returns the distance to the origin
double distance() const;

// Returns the angle of the polar coordinate
double angle() const;

// Creates a new point by adding the coordinates of two points
Point operator + (const Point& p) const;

private:
double _x, _y; // Coordinates of the point

};

Implementation of the class Point

// The constructor: different implementations
Point::Point(double x, double y) {

_x = x; _y = y;
}

// or also
Point::Point(double x, double y) : _x(x), _y(y) {}

// The other constructor
Point::Point() : x(0), y(0) {}

ADTs © Dept. CS, UPC 30

They are equivalent, but only one of them should be chosen.
We can have different constructors with different signatures.

Implementation of the class Point
double Point::x() const {

return _x;
}

double Point::y() const {
return _y;

}

double Point::distance(const Point& p) const {
double dx = x() – p.x(); // Better getX() than x
double dy = y() – p.y();
return sqrt(dx*dx + dy*dy);

}

double Point::distance() const {
return sqrt(x()*x() + y()*y());

}

ADTs © Dept. CS, UPC 31

Note: compilers are smart. Small functions are expanded inline.

Implementation of the class Point

double Point::angle() const {
if (x() == 0 and y() == 0) return 0;
return atan(y()/x());

}

Point Point::operator + (const Point& p) const {
return Point(x() + p.x(), y() + p.y());

}

ADTs © Dept. CS, UPC 32

Conclusions

• The human brain has limitations: 4 things at once.

• Modularity and abstraction are for designing
large maintainable systems.

ADTs © Dept. CS, UPC 33

