Graphs:
Minimum Spanning Trees

B

Jordi Cortadella and Jordi Petit
Department of Computer Science

Laying a communication network

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Graphs: MST © Dept. CS, UPC

https://www.javatpoint.com/applications-of-minimum-spanning-tree

Laying a communication network

=

‘fﬂ Eentral Office
Dil\ I:l m
= .. ﬁéf;l . |

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Graphs: MST © Dept. CS, UPC

https://www.javatpoint.com/applications-of-minimum-spanning-tree

Minimum Spanning Trees

= Nodes are computers

= Edges are links

= Weights are maintenance cost

= Goal: pick a subset of edges such that
* the nodes are connected
* the maintenance cost is minimum

The solution is not unique.
Find another one !

Property:
An optimal solution cannot contain a cycle.

Minimum Spanning Tree

* Given un undirected graph ¢ = (V, E') with edge weights
w,, findatree T = (V,E"), with E' € E, that minimizes

weight(T) = Z W, .

ecE’

* Greedy algorithm: repeatedly add the next lightest edge
that does not produce a cycle.

Note: We will now see that this strategy guarantees an MST.

Properties of trees

Definition: A tree is an undirected graph that is connected and acyclic.

Property: Any connected, undirected graph G = (V, E) has
|E| = |V| — 1 edges.

Property: A tree on n nodes has n — 1 edges.

— Start from an empty graph. Add one edge at a time making sure that it
connects two disconnected components. After having added n — 1
edges, a tree has been formed.

Property: Any connected, undirected graph G = (V/, E)
with |E| = |V| — 1 is a tree.
— It is sufficient to prove that G is acyclic. If not, we can always remove
edges from cycles until the graph becomes acyclic.

Property: Any undirected graph is a tree iff there is a unique path
between any pair of nodes.

— |If there would be two paths between two nodes, the union of the paths
would contain a cycle.

The cut property

Suppose edges X are part of an MST of G = (V, E). Pick any subset of nodes
S for which X does not cross between S and V — §, and let e be the lightest
edge across this partition. Then X U {e} is part of some MST.

Proof (sketch): Let T be an MST and assume eisnotinT.lIfweaddetoT, a
cycle will be created with another edge e’ across the cut (S,V — S). We can
now remove e’ and obtain another tree T' with weight(T') < weight(T).
Since T is an MST, then the weights must be equal.

The cut property: example

Minimum Spanning Tree

Any scheme like this works (because of the properties of trees):

X={} # The set of edges of the MST

repeat |[V|—1 times:
pick a set ScV for which X has no edges between § and I/ —S§
let e € E be the minimum-weight edge between S and V —3S§
X=XU{e}

BPCTTLLLELE VTS SPTTTLLLTTTYOR
. L] . o
. L] . ~
R -, o* .,
* ‘e o ‘e
o ‘e ** . —
* » ° .
o *e g £
0 . o - ‘e
.0' . e & - .
s - .
. - Q .
. - N .
| - - .
- % . .
. " .
. . .
. n .
. . .
. . .
. n
- L]
.
% Q
0
[.
. Q
. g
. Q
. g
. *
* R4
LR o
. .
. .
S .
L] PS4
LN [A
RETTTTYE LA

L
"
"
»
]
.
b Ll
-
L
.
L

. L .
*, g

*, g

*, Q

* g
* Q
. o
* o
h¢ *
A4 .
LN S
.
., .
“, .
‘a L
"Tsapumnnn®

MST: two strategies

V — S Invariant:
e ,.,f' - ° « Asetof nodes (S)isin the tree.
ST . g
° : Progress:
® * The lightest edge with exactly

one endpoint in S is added.

Prim’s algorithm

Invariant:
* A set of trees (forest) has been
constructed.

e t e~
<./. Progress:
* The lightest edge between two

trees is added.

Kruskal’s algorithm

Graphs: MST © Dept. CS, UPC 10

Prim’s algorithm

def Prim(G, w) — prev:
"""Input: A connected undirected Graph G(V,E)
with edge weights w(e).
Output: An MST defined by the vector prev."""
for all ueVv:
visited[u] = False

previu] = nil ® W
pick any initial node u, I
visited[uy] = True Jiited o

n =1

Q: priority queue of edges using w(e) as priority
Q = makequeue()
for each (ug,v) € E: Q.insert(uy,v)

while n < |V|:
(u,v) = deletemin(Q) # Edge with smallest weight
if not visited[v]:
visited[v] = True
prev[v] = u Complexity: O(|E|log |V])
n=n+1
for each (v,x) €EE:
if not visited[x]: Q.insert(v, x)

Prim’s algorithm

(Q:|(AD,4) (AB,5) (AC,6)

(DB,2) (DC,2) (DF4) (AB,5) (AC,6)
(BC,1) (DC,2) (DF,4) (AB,5) (AC,6)
(DC,2) (CF,3) (DF,4) (AB,5) (CE,5) (AC,6)
(CF,3) (DF4) (AB,5) (CE,5) (AC,6)

(DF,4) (FE,4) (AB,5) (CE,5) (AC,6)

(FE,4) (AB,5) (CE,5) (AC,6)

Kruskal’s algorithm

Informal algorithm:
 Sort edges by weight.

e Visit edges in ascending order of weight and add them as long
as they do not create a cycle.

How do we know whether a new edge will create a cycle?

def Kruskal(G, w) — MST:
"""Input: A connected undirected Graph G(V,E)
with edge weights w,.
Output: An MST defined by the edges in MST."""

MST = {}
sort the edges in E by weight
for all (u,v) € E, in ascending order of weight:
if (MST has no path connecting u and v):
MST = MST U {(u,v)}

Disjoint sets

* A data structure to store a collection of disjoint sets.

* Operations:
— makeset(x): creates a singleton set containing just x.
— find(x): returns the identifier of the set containing x.
— union(x, y): merges the sets containing x and y.

* Kruskal’s algorithm uses disjoint sets and calls
— makeset: || times
— find: 2 - |E| times
— union: |V| — 1 times

Kruskal’s algorithm

def Kruskal(G, w) — MST:
"""Input: A connected undirected Graph G(V,E)
with edge weights w,.
Output: An MST defined by the edges in MST."""

for all ueV: makeset(u)

MST = {}
sort the edges in E by weight
for all (u,v) € E, in ascending order of weight:
if (find(u) # find(v)):
MST = MST U {(u,v)}
union(u,v)

Graphs: MST © Dept. CS, UPC

Disjoint sets

The nodes are organized as a set of
trees. Each tree represents a set.

Each node has two attributes:

— parent (): ancestor in the tree
— rank: height of the subtree

The root element is the
representative for the set: its

parent pointer is itself (self-loop).

The efficiency of the operations

depends on the height of the
trees.

def makeset(x):
(x) =x
rank(x) =0

def find(x):
while x # m(x): x = w(x)
return x

Disjoint sets

def union(x, y):

r, = find(x)
ry, = find(y)
if r,=r,: return

if rank(r,) > rank(r,):
n(ry) = Ty

else:
n(ry) = ry

if rank(r,) = rank(r,):
rank(r,) = rank(r,) + 1

def makeset(x):
(x) =x
rank(x) =0

def find(x):
while x # m(x): x = w(x)
return x

Disjoint sets

After makeset(4),..,makeset(G):

After union(4,D), union(B,E), union(C,F):

After union(C,G), union(E,A): After union(B,G):

Property: Any root node of rank k has at least 2% nodes in its tree.
Property: If there are n elements overall, there can be at most /2% nodes of rank k.
Therefore, all trees have height < logn.

Disjoint sets

Property 1: proof by induction Property 2:
cank k + 1 For n nodes, the tallest possible
rank k rank k tree could have rank k, such that:
n > 2k
k <log,n

Therefore, find(x) is O(logn)

Property 1: Any root node of rank k has at least 2% nodes in its tree.
Property 2: If there are n elements overall, there can be at most n/2¥ nodes of rank k.
Therefore, all trees have height < logn.

Disjoint sets: path compression

* Complexity of Kruskal’s algorithm: O(|E|log |V |).
— Sorting edges: O(|E| log|E|) = O(|E|log |V]).
— Find + union (2 - |E| times): O(|E| log|V]).

* How about if the edges are already sorted or sorting can
be done in linear time (weights are integer and small)?

* Path compression:
(A) (A) (A)
® © = @ O ® O =
®) (§) (D) (6)
H ©

Disjoint sets: path compression

def find(x):
if x + n(x): m(x)=find(m(x))
return m(x)

@ @ @ flnd(l) @ @ @ @ @

®® @ @ @@ @ ¢
N
0l6G s

Amortized cost of find: 0(1)
@ @ @ @ @ @ @ Kruskal’s cost: O(|E|)
(if sorting has linear cost)
@) @ ¢

EXERCISES

Minimum Spanning Trees

Calculate the shortest path tree from
node A using Dijkstra’s algorithm.

Calculate the MST using Prim’s
algorithm. Indicate the sequence of
edges added to the tree and the
evolution of the priority queue.

Calculate the MST using Kruskal’s
algorithm. Indicate the sequence of
edges added to the tree and the
evolution of the disjoint sets. In case of
a tie between two edges, try to select
the one that is not in Prim’s tree.

	Graphs:�Minimum Spanning Trees
	Laying a communication network
	Laying a communication network
	Minimum Spanning Trees
	Minimum Spanning Tree
	Properties of trees
	The cut property
	The cut property: example
	Minimum Spanning Tree
	MST: two strategies
	Prim’s algorithm
	Prim’s algorithm
	Kruskal’s algorithm
	Disjoint sets
	Kruskal’s algorithm
	Disjoint sets
	Disjoint sets
	Disjoint sets
	Disjoint sets
	Disjoint sets: path compression
	Disjoint sets: path compression
	exercises
	Minimum Spanning Trees

