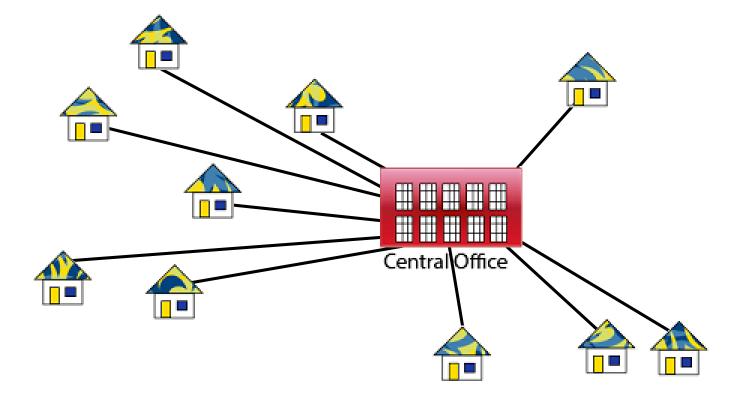
Graphs: Minimum Spanning Trees

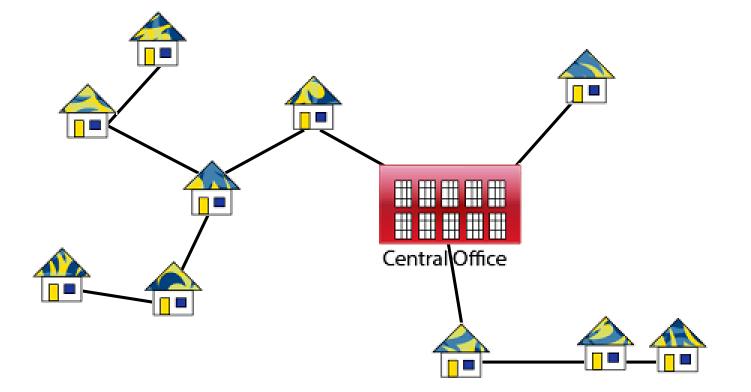
Jordi Cortadella and Jordi Petit Department of Computer Science

Laying a communication network



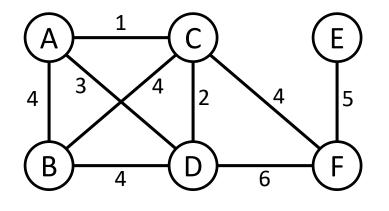
Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Laying a communication network



Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Minimum Spanning Trees



- Nodes are computers
- Edges are links
- Weights are maintenance cost
- Goal: pick a subset of edges such that
 - the nodes are connected
 - the maintenance cost is minimum

The solution is not unique. Find another one !

 $A \xrightarrow{1} C \qquad E \\ 2 & 4 & 5 \\ B & 4 & D & F$

Property:

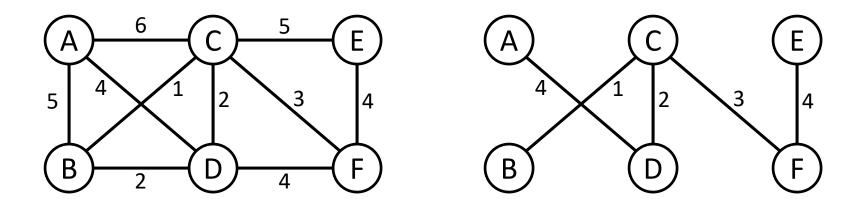
An optimal solution cannot contain a cycle.

Minimum Spanning Tree

• Given un undirected graph G = (V, E) with edge weights w_e , find a tree T = (V, E'), with $E' \subseteq E$, that minimizes

weight(T) =
$$\sum_{e \in E'} w_e$$
.

 Greedy algorithm: repeatedly add the next lightest edge that does not produce a cycle.

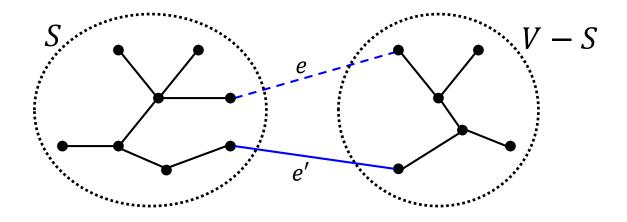


Note: We will now see that this strategy guarantees an MST.

Properties of trees

- **Definition:** A tree is an undirected graph that is connected and acyclic.
- **Property:** Any connected, undirected graph G = (V, E) has $|E| \ge |V| 1$ edges.
- **Property:** A tree on n nodes has n 1 edges.
 - Start from an empty graph. Add one edge at a time making sure that it connects two disconnected components. After having added n-1 edges, a tree has been formed.
- **Property:** Any connected, undirected graph G = (V, E) with |E| = |V| 1 is a tree.
 - It is sufficient to prove that G is acyclic. If not, we can always remove edges from cycles until the graph becomes acyclic.
- **Property:** Any undirected graph is a tree iff there is a unique path between any pair of nodes.
 - If there would be two paths between two nodes, the union of the paths would contain a cycle.

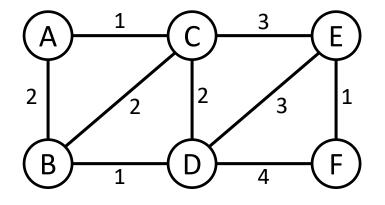
The cut property

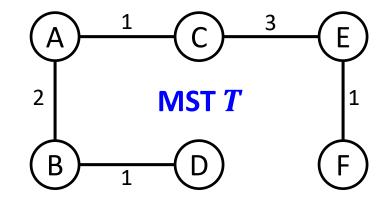


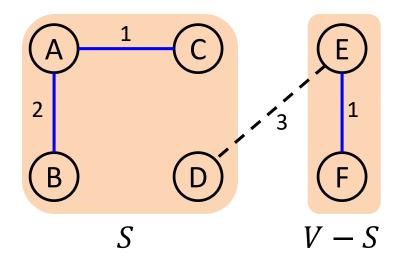
Suppose edges X are part of an MST of G = (V, E). Pick any subset of nodes S for which X does not cross between S and V - S, and let e be the lightest edge across this partition. Then $X \cup \{e\}$ is part of some MST.

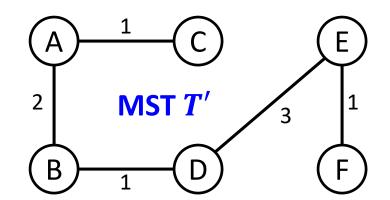
Proof (sketch): Let T be an MST and assume e is not in T. If we add e to T, a cycle will be created with another edge e' across the cut (S, V - S). We can now remove e' and obtain another tree T' with weight $(T') \le \text{weight}(T)$. Since T is an MST, then the weights must be equal.

The cut property: example





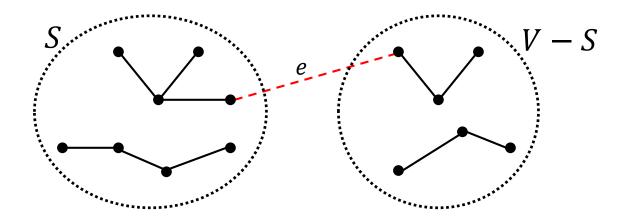




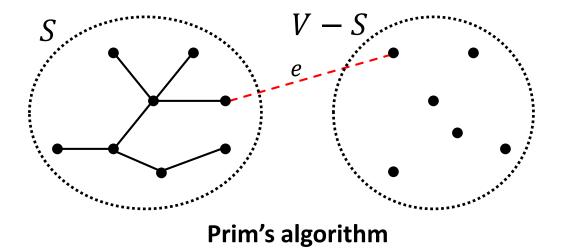
Minimum Spanning Tree

Any scheme like this works (because of the properties of trees):

$$X = \{\}$$
The set of edges of the MST
repeat $|V| - 1$ times:
pick a set $S \subset V$ for which X has no edges between S and $V - S$
let $e \in E$ be the minimum-weight edge between S and $V - S$
 $X = X \cup \{e\}$



MST: two strategies

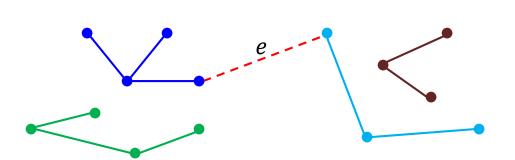


Invariant:

• A set of nodes (*S*) is in the tree.

Progress:

• The lightest edge with exactly one endpoint in *S* is added.



Kruskal's algorithm

Invariant:

• A set of trees (forest) has been constructed.

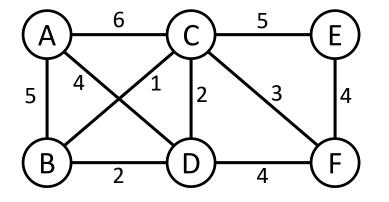
Progress:

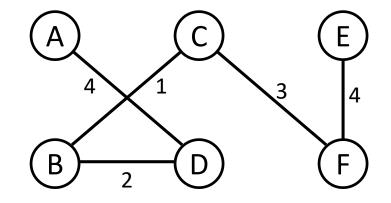
• The lightest edge between two trees is added.

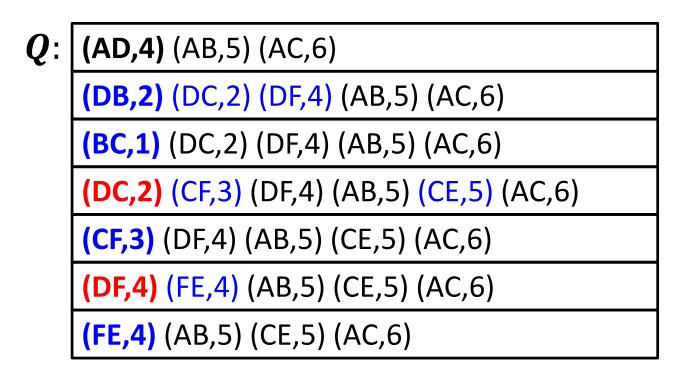
Prim's algorithm

```
def Prim(G, w) \rightarrow prev:
"""Input: A connected undirected Graph G(V, E)
           with edge weights w(e).
   Output: An MST defined by the vector prev."""
for all u \in V:
  visited[u] = False
  prev[u] = nil
pick any initial node u_0
visited[u_0] = True
n = 1
# Q: priority queue of edges using w(e) as priority
Q = makequeue()
for each (u_0, v) \in E: Q.insert(u_0, v)
while n < |V|:
  (u, v) = deletemin(Q) # Edge with smallest weight
  if not visited[v]:
    visited[v] = True
                                        Complexity: O(|E| \log |V|)
    prev[v] = u
    n = n + 1
    for each (v, x) \in E:
      if not visited[x]: Q.insert(v,x)
```

Prim's algorithm







Kruskal's algorithm

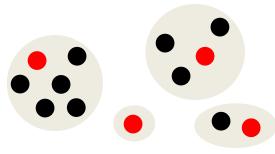
Informal algorithm:

- Sort edges by weight.
- Visit edges in ascending order of weight and add them as long as they do not create a cycle.

How do we know whether a new edge will create a cycle?

```
def Kruskal(G, w) \rightarrow MST:
 """Input: A connected undirected Graph G(V,E)
      with edge weights w<sub>e</sub>.
 Output: An MST defined by the edges in MST."""
 MST = {}
 sort the edges in E by weight
 for all (u, v) \in E, in ascending order of weight:
      if (MST has no path connecting u and v):
          MST = MST \cup {(u, v)}
```

• A data structure to store a collection of disjoint sets.

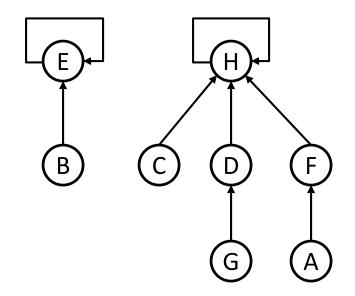


- Operations:
 - makeset(x): creates a singleton set containing just x.
 - find(x): returns the identifier of the set containing x.
 - union(x, y): merges the sets containing x and y.
- Kruskal's algorithm uses disjoint sets and calls
 - makeset: |V| times
 - find: $2 \cdot |E|$ times
 - union: |V| 1 times

Kruskal's algorithm

```
def Kruskal(G, w) \rightarrow MST:
"""Input: A connected undirected Graph G(V, E)
           with edge weights w_{\rho}.
   Output: An MST defined by the edges in MST."""
for all u \in V: makeset(u)
MST = \{\}
sort the edges in E by weight
for all (u, v) \in E, in ascending order of weight:
    if (find(u) \neq find(v)):
         MST = MST \cup \{(u, v)\}
         union(u,v)
```

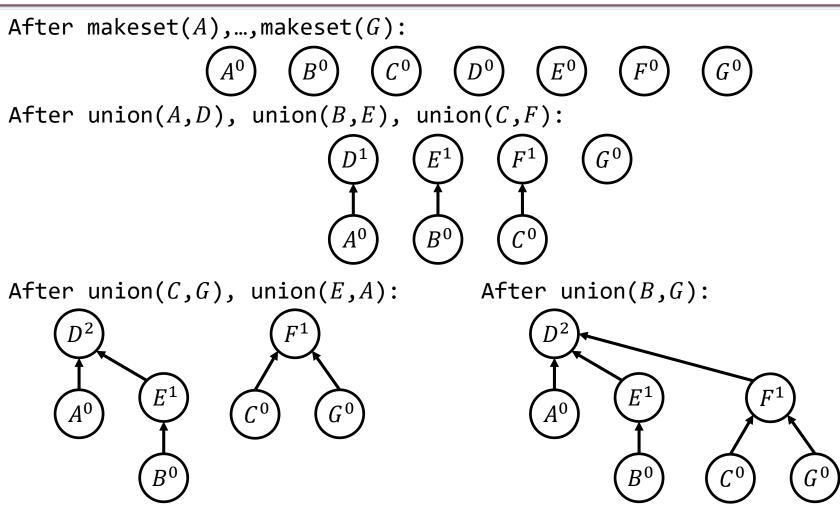
- The nodes are organized as a set of trees. Each tree represents a set.
- Each node has two attributes:
 - parent (π): ancestor in the tree
 - rank: height of the subtree
- The root element is the representative for the set: its parent pointer is itself (self-loop).
- The efficiency of the operations depends on the height of the trees.



def makeset(x): $\pi(x) = x$ rank(x) = 0 def find(x): while $x \neq \pi(x)$: $x = \pi(x)$ return x

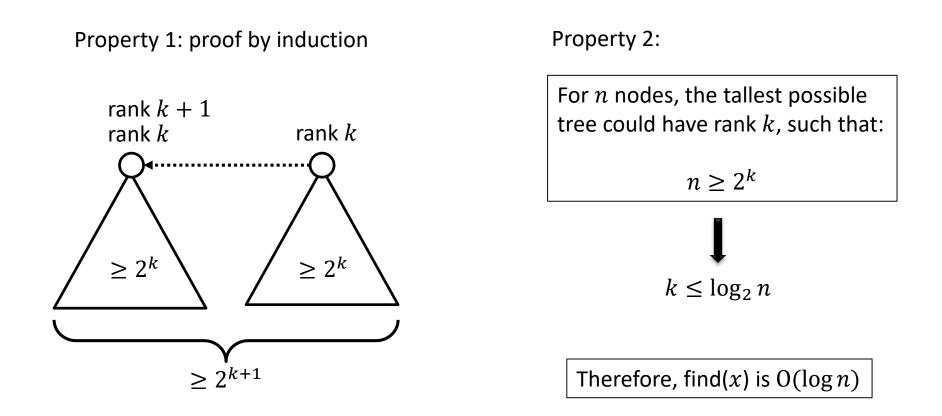
def union(x, y): $r_x = find(x)$ $r_y = find(y)$ if $r_x = r_y$: return if rank(r_x) > rank(r_y): $\pi(r_y) = r_x$ else: $\pi(r_x) = r_y$ if rank(r_x) = rank(r_y): $rank(r_v) = rank(r_v) + 1$ def makeset(x): $\pi(x) = x$ rank(x) = 0

def find(x): while $x \neq \pi(x)$: $x = \pi(x)$ return x



Property: Any root node of rank k has at least 2^k nodes in its tree. **Property:** If there are n elements overall, there can be at most $n/2^k$ nodes of rank k. Therefore, all trees have height $\leq \log n$.

Graphs: MST



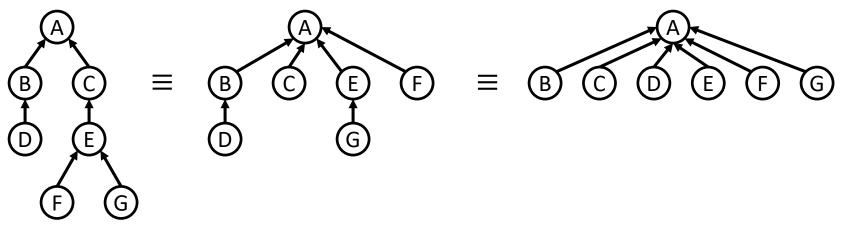
Property 1: Any root node of rank k has at least 2^k nodes in its tree. **Property 2:** If there are n elements overall, there can be at most $n/2^k$ nodes of rank k. Therefore, all trees have height $\leq \log n$.

Graphs: MST

© Dept. CS, UPC

Disjoint sets: path compression

- Complexity of Kruskal's algorithm: $O(|E| \log |V|)$.
 - Sorting edges: $O(|E|\log|E|) = O(|E|\log|V|)$.
 - Find + union $(2 \cdot |E| \text{ times})$: $O(|E| \log |V|)$.
- How about if the edges are already sorted or sorting can be done in linear time (weights are integer and small)?
- Path compression:

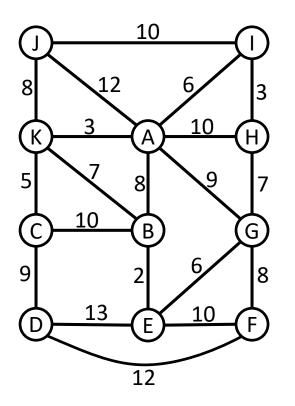


Disjoint sets: path compression



EXERCISES

Minimum Spanning Trees



- Calculate the shortest path tree from node A using Dijkstra's algorithm.
- Calculate the MST using Prim's algorithm. Indicate the sequence of edges added to the tree and the evolution of the priority queue.
- Calculate the MST using Kruskal's algorithm. Indicate the sequence of edges added to the tree and the evolution of the disjoint sets. In case of a tie between two edges, try to select the one that is not in Prim's tree.