Graphs: A* search

Jordi Cortadella and Jordi Petit
Department of Computer Science

Shortest path between two nodes

How to find the shortest path from Barcelona to Girona?

Easy: run Dijkstra from Barcelona

Dijkstra will find ALL shortest paths from Barcelona

Do we really need to waste computations exploring roads that go to Lleida, Amposta or Vielha?

A* search algorithm

- Original paper:
P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968.
- A* is a class of graph searching strategies using ad hoc heuristic information. A* guarantees optimal solutions when the heuristic information meets certain properties.

A* search: heuristic guidance

What is the most promising node to explore?

Heuristic: select nodes that reduce the straight-line distance to the target

A* search: intuition

How to extend the path and find the next node n ?

For each node n calculate $f(n)=g(n)+h(n)$

- $g(n)$ is the cost of the path from the source to n
- $h(n)$ is the estimated cost of the cheapest path from n to the goal

Select the node with minimum $f(n)$

Example: train network

Finding the optimum path from Washington, D.C. and Los Angeles
$h(x)$ is the great-circle distance (the shortest possible distance on a sphere) to the target
Source: https://en.wikipedia.org/wiki/A* search algorithm

A* algorithm for shortest paths

```
def Astar_search(G, s, t, c, h) }->\mathrm{ pred:
    """Input: Graph G(V,E), source node }s\mathrm{ , target node }t\mathrm{ ,
                        positive edge costs {c(e): e\inE},
                        function to estimate the cost to the target {h(v):v\inV}
        Output: pred[u] has the predecessor in the shortest path from s to t,
                        if t& pred, no path exists from s to t
    """
    f = {} # dictionary for the f value ( }\infty\mathrm{ if not present)
    g = {} # dictionary for the g value ( }\infty\mathrm{ if not present)
    pred = {} # dictionary of predecessors
    g[s] = 0
    f[s]=h(s)
    Q = {s} # open nodes: priority queue sorted by f
```

 while not Q.empty():
 \(u=\) Q.deletemin() \# get open node with min cost

$g v=g[u]+c(u, v)$
if gv<g[v]: \# g[v]= \quad if $v \notin g$
$\mathrm{g}[v]=\mathrm{gv}$
$\mathrm{f}[v]=\mathrm{gv}+h(v)$
pred[v] $=u$
Q.add(v) \# new open node (or update if already in Q)

Running A*: example

Running A^{*} : example

Avoiding obstacles

Source: https://github.com/vittin/A-Star/

The heuristic function: $h(x)$

- A* relies on a good heuristic to estimate the cost to reach the goal
- How about using a "bad" heuristic function?
- Does the algorithm find the optimum path?
- Does it run efficiently?
- Let us study the concepts of admissible and consistent heuristic function

Admissibility

- A heuristic function is said to be admissible if it never overestimates the cost of reaching the goal
- Example: the straight-line distance in a map is an admissible function (no path can be shorter than the straight line)

Admissibility

- Important result:
- If $h(x)$ is admissible, A^{*} will find the optimum path
- Proof (informal):
- A* will never overlook a path with lower cost, since a node v with lower $f(v)$ than the goal will exist in the set of open nodes before the goal is reached.

Consistency

- A heuristic function $h(x)$ is said to be consistent (or monotone) if

$$
h(u) \leq c(u, v)+h(v)
$$

for every edge (u, v) with cost $c(u, v)$

- Important result:
- If $h(x)$ is consistent, A^{*} is guaranteed to find an optimal path without processing any node more than once

Consistency

If $h(x)$ is consistent then $f(x)$ is an increasing function

$$
h(u) \leq c(u, v)+h(v)
$$

Example

Goal: find the shortest path from A to H

- The h function is not admissible (it overestimates the cost to the goal)
- Example: $h(\mathrm{C})=12$. The solution may not be optimal

Visited nodes during the A* search: A B E F G H

Example

Goal: find the shortest path from A to H .

- The h function is admissible (it does not overestimate the cost to the goal)
- The h function is not consistent, e.g., $h(\mathrm{E})>d(\mathrm{E}, \mathrm{C})+h(\mathrm{C})$
- The solution will be optimal. Some nodes may be visited more than once

Visited nodes during the A* search: A B C D E C D F G H

Example

Goal: find the shortest path from A to H .

- The h function is admissible (it does not overestimate the cost to the goal)
- The h function is consistent
- The solution will be optimal and the nodes will be visited once at most

Visited nodes during the A* search: A E B C D F G H

Complexity

- The time complexity of A^{*} highly depends on the heuristic function. The worst-case complexity is $O\left(b^{d}\right)$, where
- d is the depth of the shortest path
- b is the average branching factor (number of successor nodes of each node)
- Each heuristic has an effective branching factor b^{*}, and the number of visited nodes is:

$$
1+b^{*}+\left(b^{*}\right)^{2}+\cdots+\left(b^{*}\right)^{d}
$$

- Good heuristics have small values for b^{*} (the optimal heuristic has $b^{*}=1$)

Complexity

- A* may not terminate if the graph is infinite and no path exists to the target
- A* keeps all generated nodes in memory. There are memory-bounded heuristic searches:
- Iterative deepening A*: guided DFS, no priority queue, nodes may be visited multiple times
- Simplified Memory-Bounded A* (SMA*): nodes with highest f-cost pruned from the queue
- and others ...

EXERCISES

Shortest path

Find the shortest path from A to J using the A* algorithm. The red numbers next to the nodes represent the heuristic value. Questions:

- Is the heuristic admissible?
- Is the heuristic consistent?
- Report the visited node at each step of the algorithm

8-puzzle problem

Initial state

$\mathbf{2}$	$\mathbf{8}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{6}$	$\mathbf{4}$
$\mathbf{7}$		$\mathbf{5}$

- Use the A^{*} algorithm to find the smallest sequence of shifts to reach the goal. Depict the search tree
- Consider:
- $g(n)=$ depth of the node (number of shifts)
- $h(n)=$ number of misplaced tiles

Pancake sorting

- You have a disordered stack of pancakes of different sizes. You want to sort this pile (smallest pancake on top, largest one at the bottom) using a spatula by flipping parts of the stack
- Describe how you would use A^{*} to find the shortest sequence of flips that sort the pile
- Define the initial state, successor states, and the functions $g(n)$ and $h(n)$. Make sure $h(n)$ is admissible

