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Distance in a graph
Depth-first search finds vertices reachable from another 
given vertex. The paths are not the shortest ones.
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Breadth-first search
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Similar to a wave propagation



Breadth-first search
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Breadth-first search
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BFS algorithm
• BFS visits vertices layer by layer: 0,1,2, … ,𝑑𝑑.

• Once the vertices at layer 𝑑𝑑 have been visited, 
start visiting vertices at layer 𝑑𝑑 + 1.

• Algorithm with two active layers:
– Vertices at layer 𝑑𝑑 (currently being visited).
– Vertices at layer 𝑑𝑑 + 1 (to be visited next).

• Central data structure: a queue.
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BFS algorithm: simulation
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BFS queue
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BFS algorithm
def BFS(𝑮𝑮, 𝒔𝒔) → dist:
"""Input: Graph 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔.

Output: For each vertex 𝒖𝒖, dist[𝒖𝒖] is
the distance from 𝒔𝒔 to 𝒖𝒖."""

for all 𝒖𝒖 ∈ 𝑽𝑽: dist[𝒖𝒖]=∞

dist[𝒔𝒔] = 0
Q = {𝒔𝒔}  # Queue containing just 𝒔𝒔
while not Q.empty():
𝒖𝒖 = Q.pop_front()
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if dist[𝒗𝒗] == ∞:
dist[𝒗𝒗] = dist[𝒖𝒖] + 1
Q.push_back(𝒗𝒗)
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Runtime O( 𝑉𝑉 + 𝐸𝐸 ): Each vertex is visited once, each edge is visited once
(for directed graphs) or twice (for undirected graphs).



Reachability: BFS vs. DFS

def BFS(𝑮𝑮, 𝒔𝒔) → visited:
for all 𝒖𝒖 ∈ 𝑽𝑽:
visited[𝒖𝒖] = False

Q = ← # Empty queue
Q.push_back(𝒔𝒔)
visited[𝒔𝒔] = True
while not Q.empty():
𝒖𝒖 = Q.pop_front()
process(𝒖𝒖)
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if not visited[𝒗𝒗]:
visited[𝒗𝒗] = True
Q.push_back(𝒗𝒗)
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def DFS(𝑮𝑮, 𝒔𝒔) → visited:
for all 𝒖𝒖 ∈ 𝑽𝑽:
visited[𝒖𝒖] = False

S = ⊔ # Empty stack
S.push(𝒔𝒔)
while not S.empty():
𝒖𝒖 = S.pop()
process(𝒖𝒖)
if not visited[𝒖𝒖]:

visited[𝒖𝒖] = True
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:
S.push(𝒗𝒗)

Input: A graph 𝐺𝐺 and a source node 𝑠𝑠.
Output: ∀𝑢𝑢 ∈ 𝑉𝑉: visited[𝑢𝑢] ⇔𝑢𝑢 is reachable from 𝑠𝑠.
The function processes the nodes in BFS/DFS order



Reachability: BFS vs. DFS
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Weights on edges
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Image credits: https://thegadgetflow.com/blog/google-maps-vs-google-earth/

https://thegadgetflow.com/blog/google-maps-vs-google-earth/


Reusing BFS
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Dijkstra’s algorithm: invariant
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Example
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Example
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Dijkstra’s algorithm for shortest paths
def ShortestPaths(𝑮𝑮, 𝒔𝒔, len) → dist, prev:

"""Input: Graph 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔,
positive edge lengths {len(𝒆𝒆):𝒆𝒆 ∈ 𝑬𝑬}

Output: dist[𝒖𝒖] has the distance from 𝒔𝒔,
prev[𝒖𝒖] has the predecessor in the tree

"""
for all 𝒖𝒖 ∈ 𝑽𝑽:

dist[𝒖𝒖] = ∞
prev[𝒖𝒖] = nil

dist[𝒔𝒔] = 0
Q = makequeue(𝑽𝑽)  # priority queue (dist as value)

while not Q.empty():
𝒖𝒖 = Q.deletemin()
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):
dist[𝒗𝒗] = dist[𝒖𝒖] + len 𝒖𝒖,𝒗𝒗
prev[𝒗𝒗] = 𝒖𝒖
Q.decreasekey(𝒗𝒗)
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Dijkstra’s algorithm: complexity
Q = makequeue(𝑽𝑽)
while not Q.empty():
𝒖𝒖 = Q.deletemin()
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):
dist[𝒗𝒗] = dist[𝒖𝒖] + len 𝒖𝒖,𝒗𝒗
prev[𝒗𝒗] = 𝒖𝒖
Q.decreasekey(𝒗𝒗)
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|𝑽𝑽| times

|𝑬𝑬| times

 The skeleton of Dijkstra’s algorithm is based on BFS, which is O( 𝑉𝑉 + 𝐸𝐸 )
 We need to account for the cost of:

• makequeue: insert |𝑉𝑉| vertices to a list.
• deletemin: find the vertex with min dist in the list (|𝑉𝑉| times)
• decreasekey: update dist for a vertex (|𝐸𝐸| times)

 Let us consider two implementations for the list: vector and binary heap



Dijkstra’s algorithm: complexity
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Implementation deletemin insert/
decreasekey

Dijkstra’s
complexity

Vector O( 𝑉𝑉 ) O(1) O( 𝑉𝑉 2)
Binary heap O(log |𝑉𝑉|) O(log |𝑉𝑉|) O(( 𝑉𝑉 + 𝐸𝐸 ) log |𝑉𝑉|)

Binary heap:
• The elements are stored in a complete (balanced) binary tree.
• Insertion: place element at the bottom and let it bubble up swapping the

location with the parent (at most log2 |𝑉𝑉| levels).
• Deletemin: Remove element from the root, take the last node in the tree,

place it at the root and let it bubble down (at most log2 |𝑉𝑉| levels).
• Decreasekey: decrease the key in the tree and let it bubble up (same as

insertion). A data structure might be required to known the location of
each vertex in the heap (table of pointers).

For connected graphs:  O(( 𝑉𝑉 + 𝐸𝐸 ) log |𝑉𝑉|) = O( 𝐸𝐸 log |𝑉𝑉|)



Why Dijkstra’s works
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Graphs with negative edges
• Dijkstra’s algorithm does not work:

• Dijkstra is based on a safe update each time an edge (𝑢𝑢, 𝑣𝑣)
is treated:

dist 𝑣𝑣 = min dist 𝑣𝑣 , dist 𝑢𝑢 + 𝑙𝑙 𝑢𝑢, 𝑣𝑣

• Problem: shortest paths are consolidated too early.

• Possible solution: add a constant weight to all edges, make 
them positive, and apply Dijkstra.
– It does not work, prove it!
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Graphs with negative edges
• The shortest path from 𝑠𝑠 to 𝑡𝑡 can have at most 𝑉𝑉 − 1 edges:

• If the sequence of updates includes

𝑠𝑠,𝑢𝑢1 , 𝑢𝑢1,𝑢𝑢2 , 𝑢𝑢2,𝑢𝑢3 , … , 𝑢𝑢𝑘𝑘, 𝑡𝑡 ,

in that order, the shortest distance from 𝑠𝑠 to 𝑡𝑡 will be 
computed correctly (updates are always safe). Note that the 
sequence of updates does not need to be consecutive.

• Solution: update all edges 𝑉𝑉 − 1 times !

• Complexity: O( 𝑉𝑉 ⋅ 𝐸𝐸 ).
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Bellman-Ford algorithm
def ShortestPaths(𝑮𝑮, 𝒔𝒔, len) → dist, prev:

"""Input: Graph 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔,
edge lengths {len(𝒆𝒆):𝒆𝒆 ∈ 𝑬𝑬}, no negative cycles

Output: dist[𝒖𝒖] has the distance from 𝒔𝒔,
prev[𝒖𝒖] has the predecessor in the tree

"""
for all 𝒖𝒖 ∈ 𝑽𝑽:

dist[𝒖𝒖] = ∞
prev[𝒖𝒖] = nil

dist[𝒔𝒔] = 0
repeat 𝑽𝑽 − 𝟏𝟏 times:

for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:
if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):

dist[𝒗𝒗] = dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗)
prev[𝒗𝒗] = 𝒖𝒖
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Bellman-Ford: example
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Negative cycles
• What is the shortest distance between S and A?

• A negative cycle produces −∞ distances by endlessly 
applying rounds to the cycle.

• How to detect negative cycles?
– Apply Bellman-Ford (update edges 𝑉𝑉 − 1 times)
– Perform an extra round and check whether some distance 

decreases.
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Shortest paths in DAGs
• DAG’s property:

In any path of a DAG, the vertices appear in increasing 
topological order.

• Any sequence of updates that preserves the 
topological order will compute distances correctly.

• Only one round visiting the edges in topological order 
is sufficient: 𝑂𝑂( 𝑉𝑉 + 𝐸𝐸 ).

• How to calculate the longest paths?
– Negate the edge lengths and compute the shortest paths.
– Alternative: update with max (instead of min).
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DAG shortest paths algorithm
def DagShortestPaths(𝑮𝑮, 𝒔𝒔, len) → dist, prev:

"""Input: DAG 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔,
edge lengths {len(𝒆𝒆):𝒆𝒆∈𝑬𝑬}

Output: dist[𝒖𝒖] has the distance from 𝒔𝒔,
prev[𝒖𝒖] has the predecessor in the tree

"""
for all 𝒖𝒖 ∈ 𝑽𝑽:

dist[𝒖𝒖] = ∞
prev[𝒖𝒖] = nil

dist[𝒔𝒔] = 0
Linearize G
for all 𝒖𝒖 ∈ 𝑽𝑽 in linearized order:

for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:
if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):

dist[𝒗𝒗] = dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗)
prev[𝒗𝒗] = 𝒖𝒖
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DAG shortest/longest paths: example
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Shortest paths: summary
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Graph Algorithm Complexity
Unit edge-length BFS O( 𝑉𝑉 + 𝐸𝐸 )
Non-negative edges Dijkstra O 𝑉𝑉 + |𝐸𝐸| log |𝑉𝑉|
Negative edges Bellman-Ford O( 𝑉𝑉 ⋅ 𝐸𝐸 )
DAG Topological sort O( 𝑉𝑉 + 𝐸𝐸 )

Single-source shortest paths

A related problem: All-pairs shortest paths
• Floyd-Warshall algorithm (O( 𝑉𝑉 3)),

based on dynamic programming.
• Other algorithms exist.



EXERCISES
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Dijkstra (from [DPV2008])

Run Dijkstra’s algorithm starting at node A:
– Draw a table showing the intermediate distance values of 

all the nodes at each iteration
– Show the final shortest-path tree
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Bellman-Ford (from [DPV2008])

Run Bellman-Ford algorithm starting at node S:
– Draw a table showing the intermediate distance values of 

all the nodes at each iteration
– Show the final shortest-path tree
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