
Graphs:
Shortest paths

Jordi Cortadella and Jordi Petit
Department of Computer Science

Distance in a graph
Depth-first search finds vertices reachable from another
given vertex. The paths are not the shortest ones.

Graphs: Shortest paths © Dept. CS, UPC 2

A

BC

SE

D

F

Graph

S

A

B

C F

D

E

DFS tree

Distance between two nodes: length of the shortest path between them

S

A

B

C

F

D E

Shortest distance

𝑑𝑑 = 0

𝑑𝑑 = 1

𝑑𝑑 = 2

𝑑𝑑 = 3

Breadth-first search

Graphs: Shortest paths © Dept. CS, UPC 3

Similar to a wave propagation

Breadth-first search

Graphs: Shortest paths © Dept. CS, UPC 4

Breadth-first search

Graphs: Shortest paths © Dept. CS, UPC 5

6 5 4 3 2 3 4 5 6

5 4 3 2 1 2 3 4 5

4 3 2 1 0 1 2 3 4

5 4 3 2 1 2 3 4 5

6 5 4 3 2 3 4 5 6

BFS algorithm
• BFS visits vertices layer by layer: 0,1,2, … ,𝑑𝑑.

• Once the vertices at layer 𝑑𝑑 have been visited,
start visiting vertices at layer 𝑑𝑑 + 1.

• Algorithm with two active layers:
– Vertices at layer 𝑑𝑑 (currently being visited).
– Vertices at layer 𝑑𝑑 + 1 (to be visited next).

• Central data structure: a queue.

Graphs: Shortest paths © Dept. CS, UPC 6

BFS algorithm: simulation

Graphs: Shortest paths © Dept. CS, UPC 7

A

BC

SE

D

F

S A B C D E F

0 ∞ ∞ ∞ ∞ ∞ ∞
𝑆𝑆0

0 1 ∞ 1 1 1 ∞

0 1 2 1 1 1 ∞

0 1 2 1 1 1 ∞

0 1 2 1 1 1 ∞

0 1 2 1 1 1 ∞

0 1 2 1 1 1 3

0 1 2 1 1 1 3

𝐴𝐴1 𝐶𝐶1 𝐷𝐷1 𝐸𝐸1𝑆𝑆0

𝐹𝐹3

𝐹𝐹3𝐵𝐵2

𝐵𝐵2𝐸𝐸1

𝐸𝐸1 𝐵𝐵2𝐷𝐷1

𝐷𝐷1 𝐸𝐸1 𝐵𝐵2𝐶𝐶1

𝐶𝐶1 𝐷𝐷1 𝐸𝐸1 𝐵𝐵2𝐴𝐴1

BFS queue

Graphs: Shortest paths © Dept. CS, UPC 8

𝑑𝑑 𝑑𝑑 + 1

Pop elements
with distance 𝑑𝑑

Push elements
with distance 𝑑𝑑 + 1

BFS algorithm
def BFS(𝑮𝑮, 𝒔𝒔) → dist:
"""Input: Graph 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔.

Output: For each vertex 𝒖𝒖, dist[𝒖𝒖] is
the distance from 𝒔𝒔 to 𝒖𝒖."""

for all 𝒖𝒖 ∈ 𝑽𝑽: dist[𝒖𝒖]=∞

dist[𝒔𝒔] = 0
Q = {𝒔𝒔} # Queue containing just 𝒔𝒔
while not Q.empty():
𝒖𝒖 = Q.pop_front()
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if dist[𝒗𝒗] == ∞:
dist[𝒗𝒗] = dist[𝒖𝒖] + 1
Q.push_back(𝒗𝒗)

Graphs: Shortest paths © Dept. CS, UPC 9

Runtime O(𝑉𝑉 + 𝐸𝐸): Each vertex is visited once, each edge is visited once
(for directed graphs) or twice (for undirected graphs).

Reachability: BFS vs. DFS

def BFS(𝑮𝑮, 𝒔𝒔) → visited:
for all 𝒖𝒖 ∈ 𝑽𝑽:
visited[𝒖𝒖] = False

Q = ← # Empty queue
Q.push_back(𝒔𝒔)
visited[𝒔𝒔] = True
while not Q.empty():
𝒖𝒖 = Q.pop_front()
process(𝒖𝒖)
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if not visited[𝒗𝒗]:
visited[𝒗𝒗] = True
Q.push_back(𝒗𝒗)

Graphs: Shortest paths © Dept. CS, UPC 10

def DFS(𝑮𝑮, 𝒔𝒔) → visited:
for all 𝒖𝒖 ∈ 𝑽𝑽:
visited[𝒖𝒖] = False

S = ⊔ # Empty stack
S.push(𝒔𝒔)
while not S.empty():
𝒖𝒖 = S.pop()
process(𝒖𝒖)
if not visited[𝒖𝒖]:

visited[𝒖𝒖] = True
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:
S.push(𝒗𝒗)

Input: A graph 𝐺𝐺 and a source node 𝑠𝑠.
Output: ∀𝑢𝑢 ∈ 𝑉𝑉: visited[𝑢𝑢] ⇔𝑢𝑢 is reachable from 𝑠𝑠.
The function processes the nodes in BFS/DFS order

Reachability: BFS vs. DFS

Graphs: Shortest paths © Dept. CS, UPC 11

A B

D F E

DFS order: A B C E F G H D

BFS order: A B D C F E G H
Distance: 0 1 1 2 2 3 3 3

C

H

G

Weights on edges

Graphs: Shortest paths © Dept. CS, UPC 12

Image credits: https://thegadgetflow.com/blog/google-maps-vs-google-earth/

https://thegadgetflow.com/blog/google-maps-vs-google-earth/

Reusing BFS

Graphs: Shortest paths © Dept. CS, UPC 13

A

B

C

D

E

2
2

2

1

1

4

3 A

B

C

D

E

A

B

S

100

200

50

A

B

S

Inefficient: many cycles without any interesting progress. How about real numbers?

1310

Dijkstra’s algorithm: invariant

Graphs: Shortest paths © Dept. CS, UPC 14

S

A

B

D

E

F

GC

0

5

3

7

12

13

…
8

11

7

8

5

4

11

Shortest paths
already computed

(completed vertices)

Frontier

S

A

B

D

F

GC

0

5

3

7

12

…
8

11

7

8

5

4

11

2

H
5 13

EE

Data structure:
The set of non-completed vertices with
their shortest distance from S using only
the completed vertices.

F

Example

Graphs: Shortest paths © Dept. CS, UPC 15

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

∞

∞

∞

∞∞

∞

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

∞

𝟐𝟐

∞

∞∞

𝟏𝟏

𝒕𝒕 = 𝟎𝟎 𝒕𝒕 = 𝟎𝟎

Done Queue

A:𝟎𝟎
B:∞
E:∞
D:∞
C:∞
F:∞
G:∞

Done Queue

A:𝟎𝟎 D:𝟏𝟏
B:𝟐𝟐
E:∞
C:∞
F:∞
G:∞

Example

Graphs: Shortest paths © Dept. CS, UPC 16

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟑𝟑

𝟓𝟓𝟗𝟗

𝟏𝟏

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟑𝟑

𝟓𝟓𝟗𝟗

𝟏𝟏

𝒕𝒕 = 𝟏𝟏 𝒕𝒕 = 𝟐𝟐

Done Queue

A:𝟎𝟎 B:𝟐𝟐
D:𝟏𝟏 E:𝟑𝟑

C:𝟑𝟑
G:𝟓𝟓
F:𝟗𝟗

Done Queue

A:𝟎𝟎 E:𝟑𝟑
D:𝟏𝟏 C:𝟑𝟑
B:𝟐𝟐 G:𝟓𝟓

F:𝟗𝟗

Example

Graphs: Shortest paths © Dept. CS, UPC 17

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟑𝟑

𝟓𝟓𝟗𝟗

𝟏𝟏

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟑𝟑

𝟓𝟓𝟖𝟖

𝟏𝟏

𝒕𝒕 = 𝟑𝟑 𝒕𝒕 = 𝟑𝟑

Done Queue

A:𝟎𝟎 C:𝟑𝟑
D:𝟏𝟏 G:5

B:𝟐𝟐 F:𝟗𝟗
E:𝟑𝟑

Done Queue

A:𝟎𝟎 G:𝟓𝟓
D:𝟏𝟏 F:𝟖𝟖
B:𝟐𝟐
E:𝟑𝟑
C:𝟑𝟑

Example

Graphs: Shortest paths © Dept. CS, UPC 18

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟑𝟑

𝟓𝟓𝟔𝟔

𝟏𝟏

A B

C D

GF

E

4

4

1

1

2

2

3 10

685

2

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟑𝟑

𝟓𝟓𝟔𝟔

𝟏𝟏

𝒕𝒕 = 𝟓𝟓 𝒕𝒕 = 𝟔𝟔

Done Queue

A:𝟎𝟎 F:𝟔𝟔
D:𝟏𝟏
B:𝟐𝟐
E:𝟑𝟑
C:𝟑𝟑
G:𝟓𝟓

Done Queue

A:𝟎𝟎
D:𝟏𝟏
B:𝟐𝟐
E:𝟑𝟑
C:𝟑𝟑
G:𝟓𝟓
F:𝟔𝟔

Example

Graphs: Shortest paths © Dept. CS, UPC 19

A B

C D

GF

E
4

1

1

2

22

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟑𝟑

𝟓𝟓𝟔𝟔

𝟏𝟏

We need to:
• keep a list non-completed vertices and their expected distances.
• select the non-completed vertex with shortest distance.
• update the distances of the neighbouring vertices.

Shortest-path tree
A

B

C

D

G

F

E 4

1

1

22

2

𝟎𝟎

𝟑𝟑

𝟐𝟐

𝟒𝟒

𝟓𝟓

𝟔𝟔

𝟏𝟏

Dijkstra’s algorithm for shortest paths
def ShortestPaths(𝑮𝑮, 𝒔𝒔, len) → dist, prev:

"""Input: Graph 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔,
positive edge lengths {len(𝒆𝒆):𝒆𝒆 ∈ 𝑬𝑬}

Output: dist[𝒖𝒖] has the distance from 𝒔𝒔,
prev[𝒖𝒖] has the predecessor in the tree

"""
for all 𝒖𝒖 ∈ 𝑽𝑽:

dist[𝒖𝒖] = ∞
prev[𝒖𝒖] = nil

dist[𝒔𝒔] = 0
Q = makequeue(𝑽𝑽) # priority queue (dist as value)

while not Q.empty():
𝒖𝒖 = Q.deletemin()
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):
dist[𝒗𝒗] = dist[𝒖𝒖] + len 𝒖𝒖,𝒗𝒗
prev[𝒗𝒗] = 𝒖𝒖
Q.decreasekey(𝒗𝒗)

Graphs: Shortest paths © Dept. CS, UPC 20

Dijkstra’s algorithm: complexity
Q = makequeue(𝑽𝑽)
while not Q.empty():
𝒖𝒖 = Q.deletemin()
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:

if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):
dist[𝒗𝒗] = dist[𝒖𝒖] + len 𝒖𝒖,𝒗𝒗
prev[𝒗𝒗] = 𝒖𝒖
Q.decreasekey(𝒗𝒗)

Graphs: Shortest paths © Dept. CS, UPC 21

|𝑽𝑽| times

|𝑬𝑬| times

 The skeleton of Dijkstra’s algorithm is based on BFS, which is O(𝑉𝑉 + 𝐸𝐸)
 We need to account for the cost of:

• makequeue: insert |𝑉𝑉| vertices to a list.
• deletemin: find the vertex with min dist in the list (|𝑉𝑉| times)
• decreasekey: update dist for a vertex (|𝐸𝐸| times)

 Let us consider two implementations for the list: vector and binary heap

Dijkstra’s algorithm: complexity

Graphs: Shortest paths © Dept. CS, UPC 22

Implementation deletemin insert/
decreasekey

Dijkstra’s
complexity

Vector O(𝑉𝑉) O(1) O(𝑉𝑉 2)
Binary heap O(log |𝑉𝑉|) O(log |𝑉𝑉|) O((𝑉𝑉 + 𝐸𝐸) log |𝑉𝑉|)

Binary heap:
• The elements are stored in a complete (balanced) binary tree.
• Insertion: place element at the bottom and let it bubble up swapping the

location with the parent (at most log2 |𝑉𝑉| levels).
• Deletemin: Remove element from the root, take the last node in the tree,

place it at the root and let it bubble down (at most log2 |𝑉𝑉| levels).
• Decreasekey: decrease the key in the tree and let it bubble up (same as

insertion). A data structure might be required to known the location of
each vertex in the heap (table of pointers).

For connected graphs: O((𝑉𝑉 + 𝐸𝐸) log |𝑉𝑉|) = O(𝐸𝐸 log |𝑉𝑉|)

Why Dijkstra’s works

Graphs: Shortest paths © Dept. CS, UPC 23

0

3

2 6

7

8

10

11

Done
Frontier

• A tree of open paths with distances is maintained at each iteration.
• The shortest paths for the internal nodes have already been calculated.
• The node in the frontier with shortest distance is “frozen” and expanded.

Why? Because no other shorter path can reach the node.

0

3

2 6

7

8

10→9

11

Done

12+2
+5

+3

Disclaimer: this is only true if the distances are non-negative!

Graphs with negative edges
• Dijkstra’s algorithm does not work:

• Dijkstra is based on a safe update each time an edge (𝑢𝑢, 𝑣𝑣)
is treated:

dist 𝑣𝑣 = min dist 𝑣𝑣 , dist 𝑢𝑢 + 𝑙𝑙 𝑢𝑢, 𝑣𝑣

• Problem: shortest paths are consolidated too early.

• Possible solution: add a constant weight to all edges, make
them positive, and apply Dijkstra.
– It does not work, prove it!

Graphs: Shortest paths © Dept. CS, UPC 24

S

A

B

3

4

-2 Dijkstra would say that the shortest path
SA has length=3.

Graphs with negative edges
• The shortest path from 𝑠𝑠 to 𝑡𝑡 can have at most 𝑉𝑉 − 1 edges:

• If the sequence of updates includes

𝑠𝑠,𝑢𝑢1 , 𝑢𝑢1,𝑢𝑢2 , 𝑢𝑢2,𝑢𝑢3 , … , 𝑢𝑢𝑘𝑘, 𝑡𝑡 ,

in that order, the shortest distance from 𝑠𝑠 to 𝑡𝑡 will be
computed correctly (updates are always safe). Note that the
sequence of updates does not need to be consecutive.

• Solution: update all edges 𝑉𝑉 − 1 times !

• Complexity: O(𝑉𝑉 ⋅ 𝐸𝐸).

Graphs: Shortest paths © Dept. CS, UPC 25

𝑠𝑠
𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢𝑘𝑘

𝑡𝑡

Bellman-Ford algorithm
def ShortestPaths(𝑮𝑮, 𝒔𝒔, len) → dist, prev:

"""Input: Graph 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔,
edge lengths {len(𝒆𝒆):𝒆𝒆 ∈ 𝑬𝑬}, no negative cycles

Output: dist[𝒖𝒖] has the distance from 𝒔𝒔,
prev[𝒖𝒖] has the predecessor in the tree

"""
for all 𝒖𝒖 ∈ 𝑽𝑽:

dist[𝒖𝒖] = ∞
prev[𝒖𝒖] = nil

dist[𝒔𝒔] = 0
repeat 𝑽𝑽 − 𝟏𝟏 times:

for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:
if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):

dist[𝒗𝒗] = dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗)
prev[𝒗𝒗] = 𝒖𝒖

Graphs: Shortest paths © Dept. CS, UPC 26

Bellman-Ford: example

Graphs: Shortest paths © Dept. CS, UPC 27

S A

B

C

G

F

E D

8

10

1

1

3

-1

-1

-4

-2

21

Node

S

A

B

C

D

E

F

G

Iteration

1

0

10

∞

∞

∞

∞

∞

8

2

0

10

∞

∞

∞

12

9

8

3

0

5

10

∞

∞

8

9

8

4

0

5

6

11

∞

7

9

8

5

0

5

5

7

14

7

9

8

6

0

5

5

6

10

7

9

8

7

0

5

5

6

9

7

9

8

0

0

∞

∞

∞

∞

∞

∞

∞

Negative cycles
• What is the shortest distance between S and A?

• A negative cycle produces −∞ distances by endlessly
applying rounds to the cycle.

• How to detect negative cycles?
– Apply Bellman-Ford (update edges 𝑉𝑉 − 1 times)
– Perform an extra round and check whether some distance

decreases.

Graphs: Shortest paths © Dept. CS, UPC 28

S

A

B

-3

+4

-2 Bellman-Ford does not work as it assumes that the
shortest path will not have more than 𝑉𝑉 − 1 edges.

Shortest paths in DAGs
• DAG’s property:

In any path of a DAG, the vertices appear in increasing
topological order.

• Any sequence of updates that preserves the
topological order will compute distances correctly.

• Only one round visiting the edges in topological order
is sufficient: 𝑂𝑂(𝑉𝑉 + 𝐸𝐸).

• How to calculate the longest paths?
– Negate the edge lengths and compute the shortest paths.
– Alternative: update with max (instead of min).

Graphs: Shortest paths © Dept. CS, UPC 29

DAG shortest paths algorithm
def DagShortestPaths(𝑮𝑮, 𝒔𝒔, len) → dist, prev:

"""Input: DAG 𝑮𝑮(𝑽𝑽,𝑬𝑬), source vertex 𝒔𝒔,
edge lengths {len(𝒆𝒆):𝒆𝒆∈𝑬𝑬}

Output: dist[𝒖𝒖] has the distance from 𝒔𝒔,
prev[𝒖𝒖] has the predecessor in the tree

"""
for all 𝒖𝒖 ∈ 𝑽𝑽:

dist[𝒖𝒖] = ∞
prev[𝒖𝒖] = nil

dist[𝒔𝒔] = 0
Linearize G
for all 𝒖𝒖 ∈ 𝑽𝑽 in linearized order:

for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:
if dist[𝒗𝒗] > dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗):

dist[𝒗𝒗] = dist[𝒖𝒖] + len(𝒖𝒖,𝒗𝒗)
prev[𝒗𝒗] = 𝒖𝒖

Graphs: Shortest paths © Dept. CS, UPC 30

DAG shortest/longest paths: example

Graphs: Shortest paths © Dept. CS, UPC 31

A

B D F H

C E G

S

3

-2

3
-1

244

1

36-1

Linearization: S A B C D E F G H

0

3 2 5 5

-2 2 6 8

Shortest
paths

A

B D F H

C E G

S

3

-2

1 3

3

-1

244

6-1

0

3 2 8 11

-2 4 8 10

Longest
paths

Shortest paths: summary

Graphs: Shortest paths © Dept. CS, UPC 32

Graph Algorithm Complexity
Unit edge-length BFS O(𝑉𝑉 + 𝐸𝐸)
Non-negative edges Dijkstra O 𝑉𝑉 + |𝐸𝐸| log |𝑉𝑉|
Negative edges Bellman-Ford O(𝑉𝑉 ⋅ 𝐸𝐸)
DAG Topological sort O(𝑉𝑉 + 𝐸𝐸)

Single-source shortest paths

A related problem: All-pairs shortest paths
• Floyd-Warshall algorithm (O(𝑉𝑉 3)),

based on dynamic programming.
• Other algorithms exist.

EXERCISES

Graphs: Shortest paths © Dept. CS, UPC 33

Dijkstra (from [DPV2008])

Run Dijkstra’s algorithm starting at node A:
– Draw a table showing the intermediate distance values of

all the nodes at each iteration
– Show the final shortest-path tree

Graphs: Shortest paths © Dept. CS, UPC 34

A B C D

E F G H

1 2 1

42 1

115

4 8 6 6

Bellman-Ford (from [DPV2008])

Run Bellman-Ford algorithm starting at node S:
– Draw a table showing the intermediate distance values of

all the nodes at each iteration
– Show the final shortest-path tree

Graphs: Shortest paths © Dept. CS, UPC 35

A

B

C D

E

F

G H

1

-2

1

-2 2

1-1

-2

5

4 3

6

I

S

67

-4

3

	Graphs:�Shortest paths
	Distance in a graph
	Breadth-first search
	Breadth-first search
	Breadth-first search
	BFS algorithm
	BFS algorithm: simulation
	BFS queue
	BFS algorithm
	Reachability: BFS vs. DFS
	Reachability: BFS vs. DFS
	Weights on edges
	Reusing BFS
	Dijkstra’s algorithm: invariant
	Example
	Example
	Example
	Example
	Example
	Dijkstra’s algorithm for shortest paths
	Dijkstra’s algorithm: complexity
	Dijkstra’s algorithm: complexity
	Why Dijkstra’s works
	Graphs with negative edges
	Graphs with negative edges
	Bellman-Ford algorithm
	Bellman-Ford: example
	Negative cycles
	Shortest paths in DAGs
	DAG shortest paths algorithm
	DAG shortest/longest paths: example
	Shortest paths: summary
	exercises
	Dijkstra (from [DPV2008])
	Bellman-Ford (from [DPV2008])

