Graphs:
Shortest paths

B

Jordi Cortadella and Jordi Petit
Department of Computer Science

Distance in a graph

Depth-first search finds vertices reachable from another
given vertex. The paths are not the shortest ones.

Graph DFS tree Shortest distance
Z O ET/
o o0—@® @ © . 'ee'e

(8) (&
© d=3 (F)

Distance between two nodes: length of the shortest path between them

Breadth-first search

Similar to a wave propagation

Graphs: Shortest paths © Dept. CS, UPC 3

Breadth-first search

()
./

()
W/

()
./

Graphs: Shortest paths © Dept. CS, UPC

Breadth-first search

Graphs: Shortest paths © Dept. CS, UPC

BFS algorithm

BFS visits vertices layer by layer: 0,1,2, ..., d.

Once the vertices at layer d have been visited,
start visiting vertices at layer d + 1.

Algorithm with two active layers:
— Vertices at layer d (currently being visited).
— Vertices at layer d + 1 (to be visited next).

Central data structure: a queue.

BFS algorithm: simulation

29!

Graphs: Shortest paths

S A|B|C|D|E|F

0 |00 |00 |00 |00 |00
So |41 Ci Dy Eq 1(oo|1]1|1]o
Aq Cy D, E; B, 1(2|1]1]1 |
C; |D{E{B, 12111
D, |E; B, 112|111
E4 B, 12111
B, |F; 1|12|1]1]1]|3
F; 121|113

© Dept. CS, UPC

BFS queue

Pop elements
with distance d

- Push elements
with distance d + 1

d+1

Q. <

Graphs: Shortest paths © Dept. CS, UPC 8

BFS algorithm

def BFS(G, s) — dist:
"""Input: Graph G(V,E), source vertex s.
Output: For each vertex u, dist[u] is

the distance from s to u.
for all ueV: dist[u]=

dist[s] = ©
Q = {s} # Queue containing just s
while not Q.empty():
u = Q.pop_front()
for all (u,v) €EE:
if dist[v] == oo:
dist[v] = dist[u] + 1
Q.push_back(v)

Runtime O(|V| + |E|): Each vertex is visited once, each edge is visited once

(for directed graphs) or twice (for undirected graphs).
Graphs: Shortest paths © Dept. CS, UPC

Reachability: BFS vs. DFS

Input: A graph (¢ and a source node s.
Output: Vu € V: visited[u] © u is reachable from s.
The function processes the nodes in BFS/DFS order

def BFS(G, s) — visited:
for all ueVv:
visited[u] = False

Q = < # Empty queue
Q.push_back(s)
visited[s] = True
while not Q.empty():
u = Q.pop_front()
process(u)
for all (u,v) EE:
if not visited[v]:
visited[v] = True
Q.push_back(v)

def DFS(G, s) — visited:
for all ueVv:
visited[u] = False

s = L # Empty stack
S.push(s)
while not S.empty():
u = S.pop()
process(u)
if not visited[u]:
visited[u] = True
for all (u,v) €E:
S.push(v)

Reachability: BFS vs. DFS

DFS order:

A C
BFS order: A B D C(C
Distance: e 1 1 2

Graphs: Shortest paths

Image credits: https://thegadgetflow.com/blog/google-maps-vs-google-earth/

© Dept. CS, UPC

12

https://thegadgetflow.com/blog/google-maps-vs-google-earth/

Reusing BFS

A
100
50
200
B

Inefficient: many cycles without any interesting progress. How about real numbers?

Dijkstra’s algorithm: invariant

J U)
Y Y
alf::(;’tecsct)rzatuhtse(j Frontier Data structure:
(com IeYced v:rtices) The set of non-completed vertices with
P their shortest distance from S using only

the completed vertices.

Example

A:0

A:0

Done Queue

D:1

B:2

E:oc0

C:0

F:c0

G:oo

Example

Done Queue

A:0 B:2
D:1 E:3
C:3
G:5
F:9

Graphs: Shortest paths

© Dept. CS, UPC

Done Queue

A:0 E:3
D:1 C:3
B:2 G:5

F:9

16

Example

Done Queue Done Queue

A:0 C:3 A:0 G:5
D:1 G:5 D:1 F:8
B:2 F:9 B:2
E:3 E:3

C:3

Graphs: Shortest paths © Dept. CS, UPC

Example

Done Queue

A:0

F:6

D:1

B:2

E:3

C:3

G:5

Graphs: Shortest paths

© Dept. CS, UPC

Done Queue

A:0
D:1
B:2
E:3
C:3
G:5
F:6

18

Example

Shortest-path tree

B o
e

o8
@43\ 2

We need to:
* keep a list non-completed vertices and their expected distances.
* select the non-completed vertex with shortest distance.
* update the distances of the neighbouring vertices.

Graphs: Shortest paths © Dept. CS, UPC 19

Dijkstra’s algorithm for shortest paths

def ShortestPaths(G, s, len) — dist, prev:
"""Input: Graph G(V,E), source vertex s,
positive edge lengths {len(e):e € E}
Output: dist[u] has the distance from s,
previu] has the predecessor in the tree
for all uev:
dist[u]
prev[u]

(00]
nil

dist[s] = ©
Q = makequeue(V) # priority queue (dist as value)

while not Q.empty():
u = Q.deletemin()
for all (u,v) EE:
if dist[v] > dist[u] + len(u,v):
dist[v] = dist[u] + len(u,v)
prev[v] = u
Q.decreasekey(v)

Dijkstra’s algorithm: complexity

Q = makequeue(V)
while not Q.empty():
u = Q.deletemin() ———————————— |V| times
for all (u,v) € E:
if dist[v] > dist[u] + len(u,v):
dist[v] = dist[u] + len(u,v)
prev[v] = u
Q.decreasekey(v)

<+ | E| times

= The skeleton of Dijkstra’s algorithm is based on BFS, which is O(|V| + |E])
"= We need to account for the cost of:

* makequeue: insert |V| vertices to a list.

* deletemin: find the vertex with min dist in the list (|V| times)

* decreasekey: update dist for a vertex (|E| times)

= Let us consider two implementations for the list: vector and binary heap

Dijkstra’s algorithm: complexity

Implementation deletemin insert/ Dijkstra’s

decreasekey complexity
Vector o(lVD 0(1) o(|V|%)
Binary heap OClog V) Odog|V]) O((V]+ |E[)1log|V])

Binary heap:

* The elements are stored in a complete (balanced) binary tree.

* Insertion: place element at the bottom and let it bubble up swapping the
location with the parent (at most log, |V] levels).

* Deletemin: Remove element from the root, take the last node in the tree,
place it at the root and let it bubble down (at most log, |V| levels).

* Decreasekey: decrease the key in the tree and let it bubble up (same as
insertion). A data structure might be required to known the location of
each vertex in the heap (table of pointers).

For connected graphs: O((|V| + |E|) log |[V]) = O(|E]|log |V])

Why Dijkstra’s works

10

7 Frontier

* Atree of open paths with distances is maintained at each iteration.

* The shortest paths for the internal nodes have already been calculated.

 The node in the frontier with shortest distance is “frozen” and expanded.
Why? Because no other shorter path can reach the node.

Disclaimer: this is only true if the distances are non-negative!

Graphs with negative edges

Dijkstra’s algorithm does not work:

Dijkstra would say that the shortest path
S—>A has length=3.

Dijkstra is based on a safe update each time an edge (u, v)
is treated:

dist(v) = min{dist(v), dist(u) + l(u, v)}

Problem: shortest paths are consolidated too early.

Possible solution: add a constant weight to all edges, make
them positive, and apply Dijkstra.
— |t does not work, prove it!

Graphs with negative edges

The shortest path from s to t can have at most |[VV| — 1 edges:

S @ ® ® @ -—-————————— ——o
Uy Uz Uz Ug

If the sequence of updates includes

(S, ul)! (ul' uz), (Uz, U3), ery (ukJ t)r

in that order, the shortest distance from s to t will be
computed correctly (updates are always safe). Note that the
sequence of updates does not need to be consecutive.

Solution: update all edges |[V| — 1 times |

Complexity: O(|V]| - |E]).

Bellman-Ford algorithm

def ShortestPaths(G, s, len) — dist, prev:
"""Input: Graph G(V,E), source vertex s,
edge lengths {len(e):e € E}, no negative cycles
Output: dist[u] has the distance from s,
prev[u] has the predecessor in the tree

for all uev:
dist[u] =
previu] = nil

dist[s] = ©
repeat |V|—1 times:
for all (u,v) EE:
if dist[v] > dist[u] + len(u, v):
dist[v] = dist[u] + len(u,v)
previv] = u

Bellman-Ford: example

Iteration

Node| O 1 2 3 4 5 6

S 0 0 0 0 0 0 0

o [10 |10 | 5 5 5 5

A
B © [oo | oo | 10| 6 5 5
C
D

Negative cycles

e What is the shortest distance between S and A?

Bellman-Ford does not work as it assumes that the
shortest path will not have more than |V| — 1 edges.

* A negative cycle produces —oo distances by endlessly
applying rounds to the cycle.

 How to detect negative cycles?
— Apply Bellman-Ford (update edges |V| — 1 times)

— Perform an extra round and check whether some distance
decreases.

Shortest paths in DAGs

DAG’s property:

In any path of a DAG, the vertices appear in increasing
topological order.

Any sequence of updates that preserves the
topological order will compute distances correctly.

Only one round visiting the edges in topological order
is sufficient: O(|V| + |E]).

How to calculate the longest paths?
— Negate the edge lengths and compute the shortest paths.
— Alternative: update with max (instead of min).

DAG shortest paths algorithm

def DagShortestPaths(G, s, len) — dist, prev:
"""Input: DAG G(V,E), source vertex s,
edge lengths {len(e):e€E}
Output: dist[u] has the distance from s,
previu] has the predecessor in the tree

for all ueVv:
dist[u] =
previu] = nil

dist[s] = ©
Linearize G
for all u €V in linearized order:
for all (u,v) EE:
if dist[v] > dist[u] + len(u,v):
dist[v] = dist[u] + len(u,v)
prev[v] = u

DAG shortest/longest paths: example

Linearization: S ABCDEFGH

Shortest
paths

Longest
paths

Shortest paths: summary

Single-source shortest paths

Graph Algorithm Complexity
Unit edge-length BFS o(|V| + |E])
Non-negative edges Dijkstra o((IV] + |E]) log |V|)
Negative edges Bellman-Ford o(|V|-|E])
DAG Topological sort O(|V| + |E|)

A related problem: All-pairs shortest paths
* Floyd-Warshall algorithm (O(|V]?)),
based on dynamic programming.
* Other algorithms exist.

EXERCISES

Dijkstra (from [DPV2008])

Run Dijkstra’s algorithm starting at node A:

— Draw a table showing the intermediate distance values of
all the nodes at each iteration

— Show the final shortest-path tree

Bellman-Ford (from [DPV2008])

Run Bellman-Ford algorithm starting at node S:

— Draw a table showing the intermediate distance values of
all the nodes at each iteration

— Show the final shortest-path tree

	Graphs:�Shortest paths
	Distance in a graph
	Breadth-first search
	Breadth-first search
	Breadth-first search
	BFS algorithm
	BFS algorithm: simulation
	BFS queue
	BFS algorithm
	Reachability: BFS vs. DFS
	Reachability: BFS vs. DFS
	Weights on edges
	Reusing BFS
	Dijkstra’s algorithm: invariant
	Example
	Example
	Example
	Example
	Example
	Dijkstra’s algorithm for shortest paths
	Dijkstra’s algorithm: complexity
	Dijkstra’s algorithm: complexity
	Why Dijkstra’s works
	Graphs with negative edges
	Graphs with negative edges
	Bellman-Ford algorithm
	Bellman-Ford: example
	Negative cycles
	Shortest paths in DAGs
	DAG shortest paths algorithm
	DAG shortest/longest paths: example
	Shortest paths: summary
	exercises
	Dijkstra (from [DPV2008])
	Bellman-Ford (from [DPV2008])

