Divide & Conquer (I)

Jordi Cortadella and Jordi Petit Department of Computer Science

Divide-and-conquer algorithms

Strategy:

- Divide the problem into smaller subproblems of the same type of problem
- Solve the subproblems recursively
- Combine the answers to solve the original problem

- The work is done in three places:
 - In partitioning the problem into subproblems
 - In solving the basic cases at the tail of the recursion
 - In merging the answers of the subproblems to obtain the solution of the original problem

Conventional product of polynomials

Example:

$$P(x) = 2x^{3} + x^{2} - 4$$
$$Q(x) = x^{2} - 2x + 3$$

$$(P \cdot Q)(x) = 2x^5 + (-4+1)x^4 + (6-2)x^3 + 8x - 12$$
$$(P \cdot Q)(x) = 2x^5 - 3x^4 + 4x^3 + 8x - 12$$

Conventional product of polynomials

```
Polynomial = list[float]
def mul(p: Polynomial, q: Polynomial) -> Polynomial:
    """Returns p\timesq (product of polynomials)"""
    \# degree(p) = len(p)-1, degree(q) = len(q)-1
    # degree(r) = degree(p)+degree(q)
    r: Polynomial = [0]*(len(p) + len(q) - 1)
    for i, pi in enumerate(p):
        for j, qj in enumerate(q):
            r[i+j] += pi*qj
    return r
```

Complexity analysis:

- Multiplication of polynomials of degree $n: O(n^2)$
- Addition of polynomials of degree n: O(n)

Product of polynomials: Divide&Conquer

Assume that we have two polynomials with n coefficients (degree n-1)

	n-1 $n/2$	0
P :	P_L	$\boldsymbol{P_R}$
Q :	Q_L	Q_R

$$P(x) \cdot Q(x) = P_L(x) \cdot Q_L(x) \cdot x^n +$$

$$(P_R(x) \cdot Q_L(x) + P_L(x) \cdot Q_R(x)) \cdot x^{n/2} +$$

$$P_R(x) \cdot Q_R(x)$$

$$T(n) = 4 \cdot T(n/2) + O(n) = O(n^2)$$
 \leftarrow Shown later

Divide & Conquer © Dept. CS, UPC

Product of complex numbers

 The product of two complex numbers requires four multiplications:

$$(a+bi)(c+di) = ac - bd + (bc + ad)i$$

• Carl Friedrich Gauss (1777-1855) noticed that it can be done with just three: ac,bd and (a+b)(c+d)

$$bc + ad = (a+b)(c+d) - ac - bd$$

A similar observation applies for polynomial multiplication.

Product of polynomials with Gauss's trick

$$R_1 = P_L Q_L$$

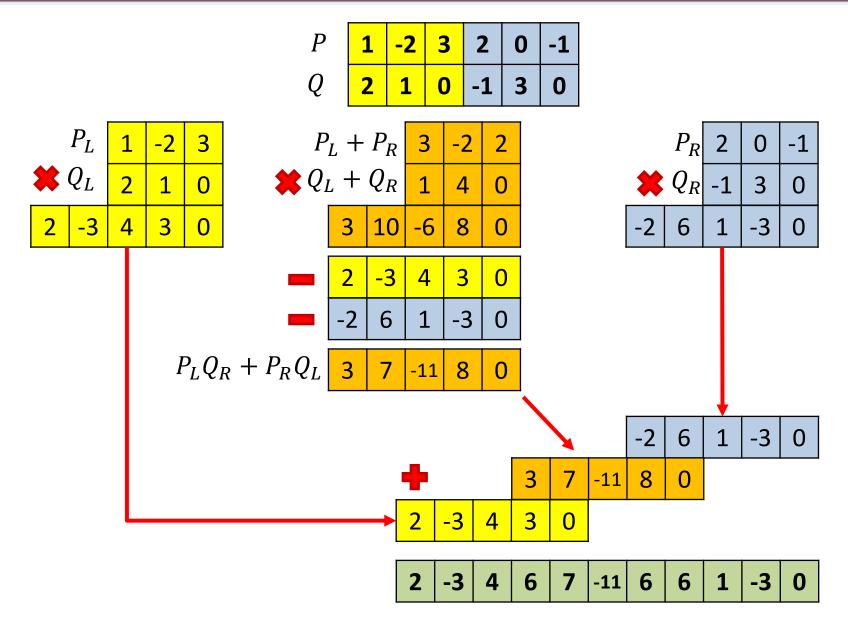
$$R_2 = P_R Q_R$$

$$R_3 = (P_L + P_R)(Q_L + Q_R)$$

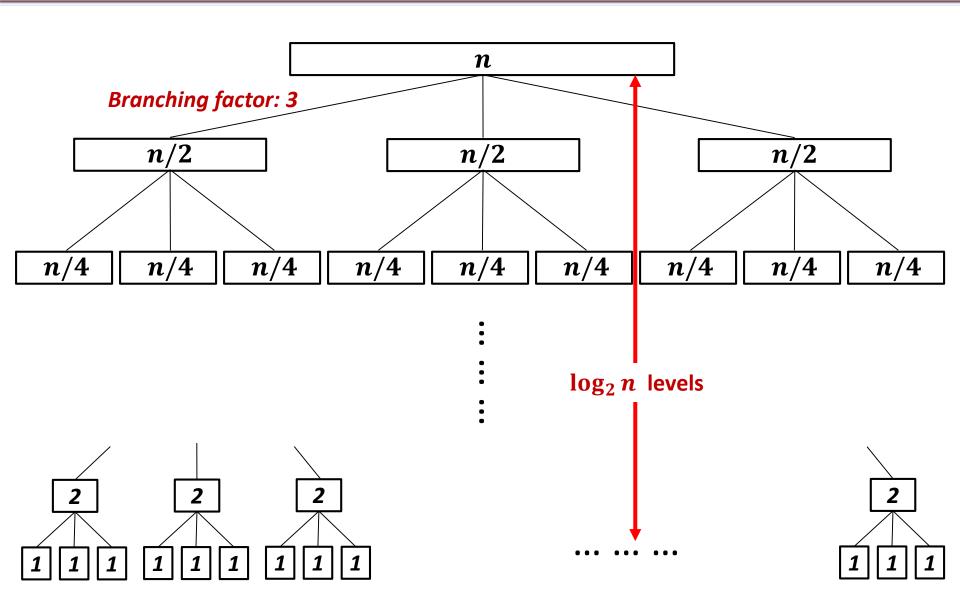
$$PQ = \underbrace{P_L Q_L}_{R_1} x^n + \underbrace{(P_R Q_L + P_L Q_R)}_{R_3 - R_1 - R_2} x^{n/2} + \underbrace{P_R Q_R}_{R_2}$$

$$T(n) = 3T(n/2) + O(n)$$

Polynomial multiplication: recursive step



Pattern of recursive calls



Useful reminders

Sum of geometric series with ratio r:

$$S = k + kr + kr^{2} + kr^{3} + \dots + kr^{n-1} = k\left(\frac{1 - r^{n}}{1 - r}\right)$$

For a decreasing series
$$(r < 1)$$
: $S \le \frac{k}{1-r}$

Logarithms:

$$\log_b n = \log_b a \cdot \log_a n$$

$$a^{\log_b n} = a^{(\log_a n)(\log_b a)} = n^{\log_b a}$$

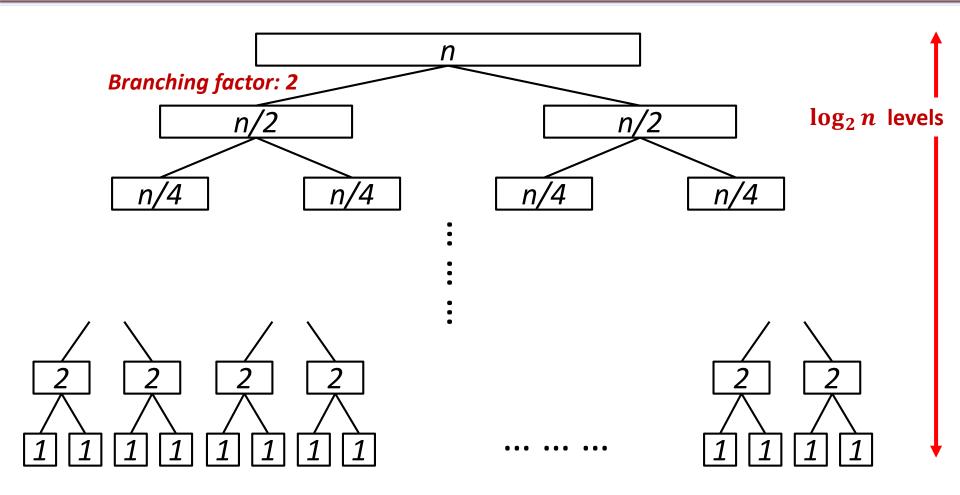
Complexity analysis

The time spent at level k is

$$3^k \cdot O\left(\frac{n}{2^k}\right) = \left(\frac{3}{2}\right)^k \cdot O(n)$$

- For k = 0, runtime is O(n).
- For $k = \log_2 n$, runtime is $O(3^{\log_2 n})$, which is equal to $O(n^{\log_2 3})$.
- The runtime per level increases geometrically by a factor of 3/2 per level. The sum of any increasing geometric series is, within a constant factor, simply the last term of the series.
- Therefore, the complexity is $O(n^{1.59})$.

A popular recursion tree



Example: efficient sorting algorithms.

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

Algorithms may differ on the amount of work done at each level: $O(n^c)$

Examples

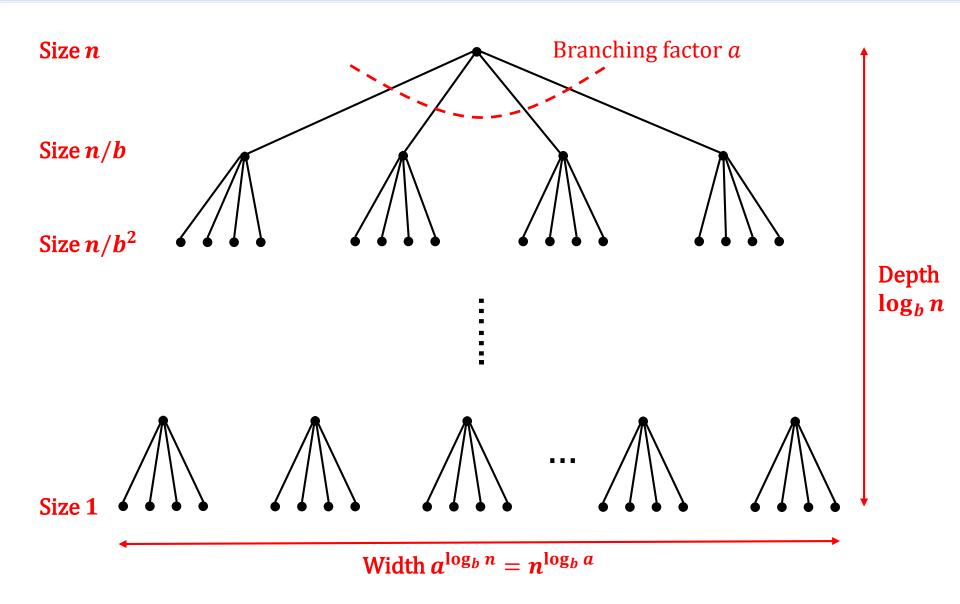
Algorithm	Branch	С	Runtime equation
Power (x^y)	1	0	T(y) = T(y/2) + O(1)
Binary search	1	0	T(n) = T(n/2) + O(1)
Merge sort	2	1	$T(n) = 2 \cdot T(n/2) + O(n)$
Polynomial product	4	1	$T(n) = 4 \cdot T(n/2) + O(n)$
Polynomial product (Gauss)	3	1	$T(n) = 3 \cdot T(n/2) + O(n)$

Master theorem

- Typical pattern for Divide&Conquer algorithms:
 - Split the problem into a subproblems of size n/b
 - Solve each subproblem recursively
 - Combine the answers in $O(n^c)$ time
- Running time: $T(n) = a \cdot T(n/b) + O(n^c)$
- Master theorem:

$$T(n) = \begin{cases} O(n^c) & \text{if } a < b^c \\ O(n^c \log n) & \text{if } a = b^c \\ O(n^{\log_b a}) & \text{if } a > b^c \end{cases}$$

Master theorem: recursion tree



Divide & Conquer © Dept. CS, UPC 15

Master theorem: proof

- For simplicity, assume n is a power of b.
- The base case is reached after $\log_b n$ levels.
- The kth level of the tree has a^k subproblems of size n/b^k .
- The total work done at level k is:

$$a^k \times O\left(\frac{n}{b^k}\right)^c = O(n^c) \times \left(\frac{a}{b^c}\right)^k$$

• As k goes from 0 (the root) to $\log_b n$ (the leaves), these numbers form a geometric series with ratio a/b^c . We need to find the sum of such a series.

$$T(n) = O(n^{c}) \cdot \left(1 + \frac{a}{b^{c}} + \frac{a^{2}}{b^{2c}} + \frac{a^{3}}{b^{3c}} + \dots + \frac{a^{\log_{b} n}}{b^{(\log_{b} n)c}}\right)$$

$$\log_{b} n \text{ terms}$$

Master theorem: proof

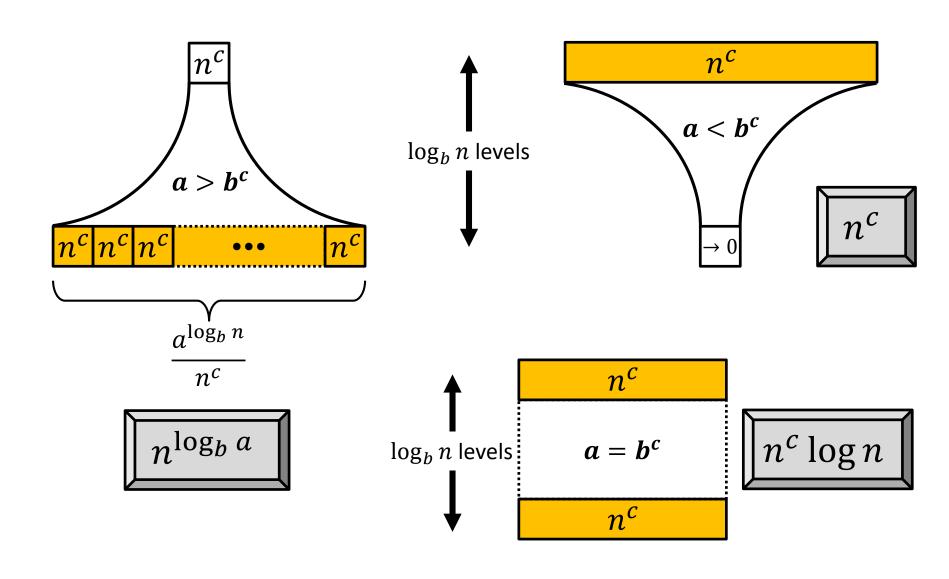
• Case $a/b^c < 1$. Decreasing series. The sum is dominated by the first term (k = 0): $O(n^c)$.

• Case $a/b^c > 1$. Increasing series. The sum is dominated by the last term $(k = \log_b n)$:

$$n^{c} \left(\frac{a}{b^{c}}\right)^{\log_{b} n} = n^{c} \left(\frac{a^{\log_{b} n}}{(b^{\log_{b} n})^{c}}\right) = a^{\log_{b} n} = n^{\log_{b} a}$$

• Case $a/b^c = 1$. We have $O(\log n)$ terms all equal to $O(n^c)$.

Master theorem: visual proof



Master theorem: examples

Running time:
$$T(n) = a \cdot T(n/b) + O(n^c)$$

$$T(n) = \begin{cases} O(n^c) & \text{if } a < b^c \\ O(n^c \log n) & \text{if } a = b^c \\ O(n^{\log_b a}) & \text{if } a > b^c \end{cases}$$

Algorithm		С	Runtime equation	Complexity
Power (x^y)	1	0	T(y) = T(y/2) + O(1)	$O(\log y)$
Binary search		0	T(n) = T(n/2) + O(1)	$O(\log n)$
Merge sort	2	1	$T(n) = 2 \cdot T(n/2) + O(n)$	$O(n \log n)$
Polynomial product		1	$T(n) = 4 \cdot T(n/2) + O(n)$	$O(n^2)$
Polynomial product (Gauss)	3	1	$T(n) = 3 \cdot T(n/2) + O(n)$	$O(n^{\log_2 3})$

b = 2 for all the examples

Product multiplication

Fundamental question:

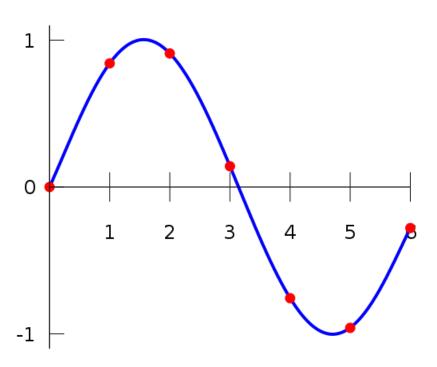
Can polynomials be multiplied efficiently when the degree is large?

Answer: yes (FFT: Fast Fourier Transform)

 FFT is an essential algorithm for efficient signal analysis. The algorithm will not be explained in this course.

Polynomials: point-value representation

- Fundamental Theorem (Gauss): A degree-n polynomial with complex coefficients has exactly n complex roots.
- Corollary: A degree-n polynomial A(x) is uniquely identified by its evaluation at n+1 distinct values of x.

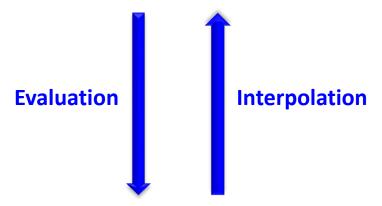


Polynomial representation

$$P(x) = x^3 - 2x^2 - 3x + 1$$

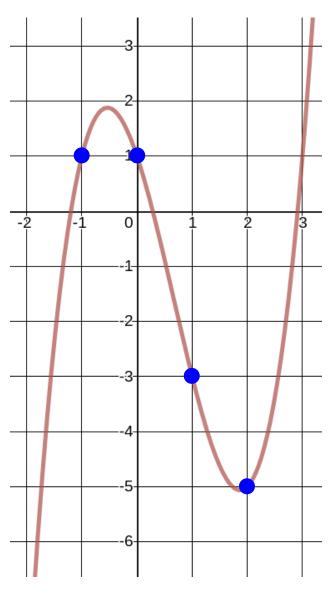
$$P(x) = (1, -2, -3, 1)$$

Coefficient representation



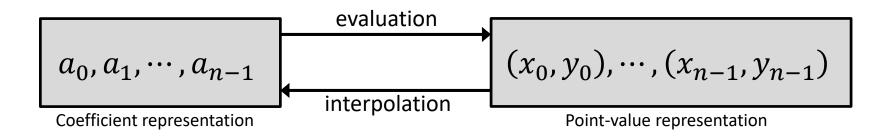
Point-value representation

$$P(x) = \{(-1,1), (0,1), (1,-3), (2,-5)\}$$



Conversion between both representations

representation	addition	multiplication	evaluation
coefficient	0(n)	$0(n^2)$	0(n)
point-value	0(n)	O(n)	$O(n^2)$



Could we have an *efficient* algorithm to move from coefficient to point-value representation and vice versa?

Fast Fourier Transform (FFT): $O(n \log n)$

Fourier series

• Periodic function f(t) of period 1:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi nt) + \sum_{n=1}^{\infty} b_n \sin(2\pi nt)$$

Fourier coefficients:

$$a_n = 2 \int_0^T f(t) \cos(2\pi nt) dt, \qquad b_n = 2 \int_0^T f(t) \sin(2\pi nt) dt$$

 Fourier series is fundamental for signal analysis (to move from time domain to frequency domain, and vice versa)

Why Fourier Transform?

