Algorithm Analysis (II)

Jordi Cortadella and Jordi Petit Department of Computer Science

Examples

Selection sort

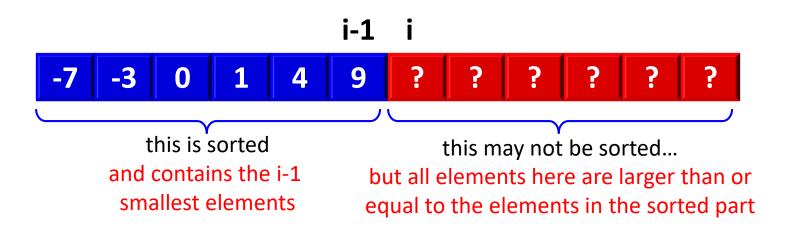
Insertion sort

The Maximum Subsequence Sum Problem

Convex Hull

Selection Sort

Selection sort uses this invariant:



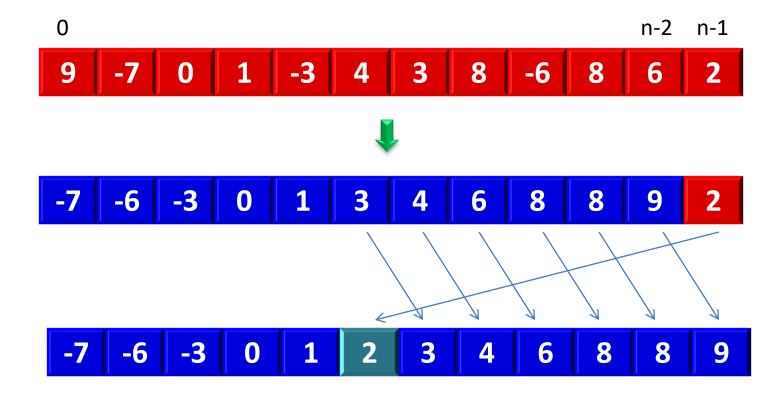
Selection Sort

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} O(1) = O(1) \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = O(1) \sum_{i=0}^{n-2} (n-i-1)$$
$$= O(1) \left(\frac{n}{2}(n-1)\right) = O(1) \cdot O(n^2) = O(n^2)$$

Observation: notice that $T(n) \in \Omega(n^2)$, also. Therefore, $T(n) \in \Theta(n^2)$.

Insertion Sort

- Let us use inductive reasoning:
 - If we know how to sort arrays of size n-1,
 - do we know how to sort arrays of size n?



Insertion Sort

$$T_{\text{worst}}(n) = \sum_{i=1}^{n-1} i \cdot O(1) = O(n^2)$$
 \Rightarrow sorted in reverse order $n-1$

$$T_{\text{best}}(n) = \sum_{i=1}^{n-1} O(1) = O(n)$$
 \Rightarrow already sorted

• Given (possibly negative) integers $A_1, A_2, ..., A_n$, find the maximum value of $\sum_{k=i}^{j} A_k$. (the max subsequence sum is 0 if all integers are negative).

• Example:

- Input: -2, 11, -4, 13, -5, -2
- Answer: 20 (subsequence 11, -4, 13)

(extracted from M.A. Weiss, Data Structures and Algorithms in C++, Pearson, 2014, 4th edition)

```
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a"""
    n = len(a)
    max_sum = 0
    # try all possible subsequences
    for i in range(n):
        for j in range(i, n):
            this_sum = 0
            for k in range(i, j+1):
                this_sum += a[k]
                max_sum = max(max_sum, this_sum)
    return max_sum
```

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1$$

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1$$

$$=\sum_{i=0}^{n-1}\sum_{j=i}^{n-1}(j-i+1)$$

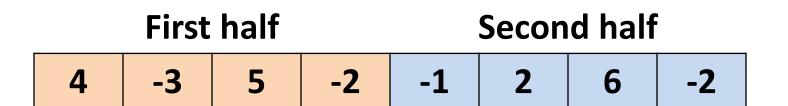
$$=\sum_{i=0}^{n-1} \frac{(n-i+1)(n-i)}{2} = \cdots$$

$$=\frac{n^3 + 3n^2 + 2n}{6} = \Theta(n^3)$$

```
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a"""
    n = len(a)
    max_sum = 0
    # try all possible subsequences
    for i in range(n):
        this_sum = 0
        for j in range(i, n):
            this_sum += a[j] # reuse computation
            max_sum = max(max_sum, this_sum)
    return max_sum
```

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} 1 = \Theta(n^2)$$

Max Subsequence Sum: Divide&Conquer



The max sum can be in one of three places:

- 1st half
- 2nd half
- Spanning both halves and crossing the middle

In the 3rd case, two max subsequences must be found starting from the center of the vector (one to the left and the other to the right)

Max Subsequence Sum: Divide&Conquer

```
def max_sub_sum_rec(a: list[int], left: int, right: int) -> int:
     """Returns the sum of the maximum subsequence of a[left:right+1]"""
     if left == right: # base case
         return max(a[left], 0)
    # Recursive cases: left and right halves
     center = (left + right)//2
    max_left = max_sub_sum_rec(a, left, center)
    max_right = max_sub_sum_rec(a, center+1, right)
    # Subsequence in a[center+1:right+1]
    max_rcenter, right_sum = 0, 0
     for i in range(center+1, right+1):
         right_sum += a[i]
         max rcenter = max(max rcenter, right sum)
    # Subsequence in a[left:center+1]
    max_lcenter, left_sum = 0, 0
     for i in range(center, left-1, -1):
         left sum += a[i]
         max lcenter = max(max lcenter, left sum)
    return max(max left, max right, max lcenter + max rcenter)
a:
                                         right
             left
                          center
                                   © Dept. CS, UPC
                                                                              12
Algorithm Analysis
```

Max Subsequence Sum: Divide&Conquer

$$T(1) = 1$$

$$T(n) = 2T(n/2) + \Theta(n)$$

We will see how to solve this equation formally in the next lesson (Master Theorem). Informally:

$$T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n$$

$$= 4T(n/4) + n + n = 8T(n/8) + n + n + n = \cdots$$

$$= 2^k T(n/2^k) + \underbrace{n + n + \cdots + n}_{k}$$

when $n = 2^k$, we have that $k = \log_2 n$, hence

$$T(n) = 2^k T(1) + kn = n + n \log_2 n = \Theta(n \log n)$$

But, can we still do it faster?

Observations:

- If a[i] is negative, it cannot be the start of the optimal subsequence.
- Any negative subsequence cannot be the prefix of the optimal subsequence.
- Let us consider the inner loop of the $O(n^2)$ algorithm and assume that all prefixes of a[i..j-1] are positive and a[i..j] is negative:

a: p j

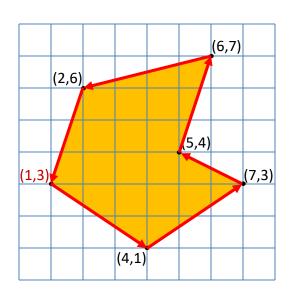
- If p is an index between i+1 and j, then any subsequence from a[p] is not larger than any subsequence from a[i] and including a[p-1].
- If a[j] makes the current subsequence negative, we can advance i to j+1.

```
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a"""
    max_sum, this_sum = 0, 0
    for x in a:
        this_sum += x
        max_sum = max(max_sum, this_sum)
        this_sum = max(this_sum, 0)
    return max_sum
```

$$T(n) = \Theta(n)$$

a:	4	-3	5	-4	-3	-1	5	-2	6	-3	2
this_sum:	4	1	6	2	0	0	5	3	9	6	8
max_sum:	4	4	6	6	6	6	6	6	9	9	9

Representation of polygons



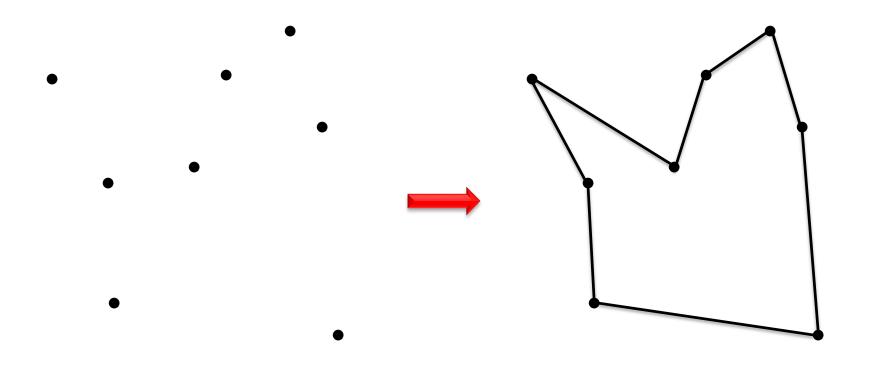
- A polygon can be represented by a sequence of vertices.
- Two consecutive vertices represent an edge of the polygon.
- The last edge is represented by the first and last vertices of the sequence.

```
Vertices: (1,3) (4,1) (7,3) (5,4) (6,7) (2,6)
```

Edges:
$$(1,3)-(4,1)-(7,3)-(5,4)-(6,7)-(2,6)-(1,3)$$

A polygon (an ordered set of vertices)
Polygon = list[Point]

Create a polygon from a set of points

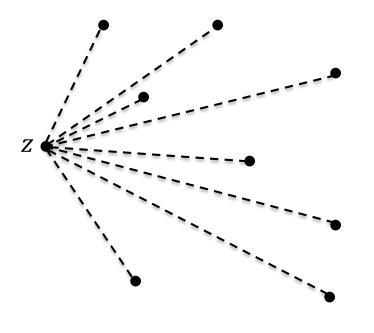


Given a set of n points in the plane, connect them in a simple closed path.

Simple polygon

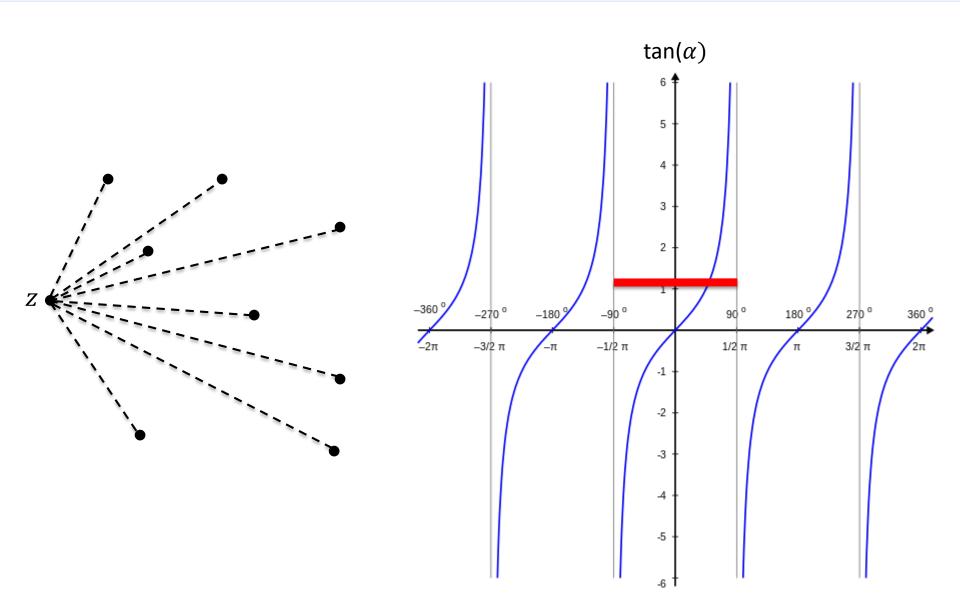
Input: $p_1, p_2, ..., p_n$ (points in the plane).

Output: P (a polygon whose vertices are $p_1, p_2, ..., p_n$ in some order).



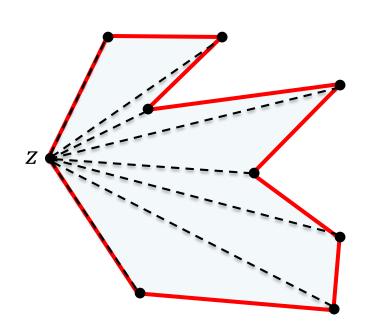
- 1) Select a point z with the smallest x coordinate (and smallest y in case of a tie in the x coordinate). Assume $z=p_1$.
- 2) For each $p_i \in \{p_2, \dots, p_n\}$, calculate the angle α_i between the lines $z-p_i$ and the x axis.
- 3) Sort the points $\{p_2, ..., p_n\}$ according to their angles. In case of a tie, use distance to z.

Simple polygon



Simple polygon

Implementation details:



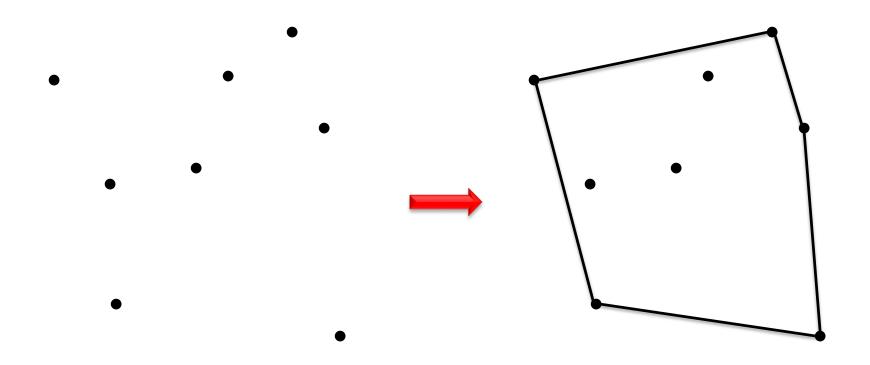
- There is no need to calculate angles (requires arctan). It is enough to calculate slopes $(\Delta y/\Delta x)$.
- There is not need to calculate distances.
 It is enough to calculate the square of distances (no sqrt required).

Complexity: $O(n \log n)$.

The runtime is dominated by the sorting algorithm.

20

Convex hull

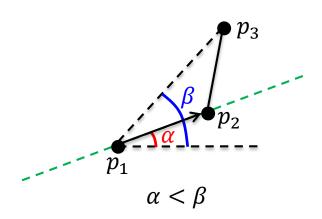


Compute the convex hull of n given points in the plane.

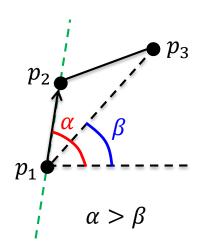
Clockwise and counter-clockwise

How to calculate whether three consecutive vertices are in a **clockwise** or **counter-clockwise** turn.

counter-clockwise $(p_3 \text{ at the left of } \overrightarrow{p_1p_2})$

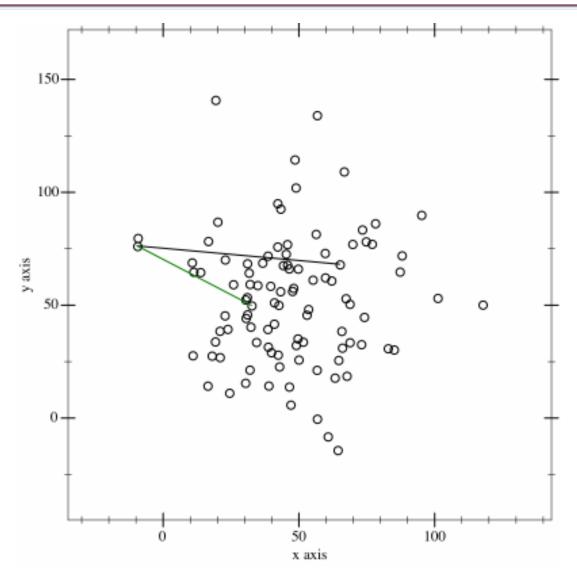


clockwise $(p_3 \text{ at the right of } \overline{p_1p_2})$



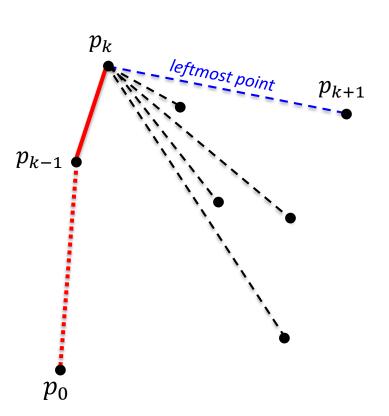
```
def left_of(p_1: Point, p_2: Point, p_3: Point) -> bool: """Returns true if p_3 is at the left of \overrightarrow{p_1p_2}""" return (p_2.x-p_1.x)\cdot(p_3.y-p_1.y)>(p_2.y-p_1.y)\cdot(p_3.x-p_1.x)
```

Convex hull: gift wrapping algorithm



https://en.wikipedia.org/wiki/Gift wrapping algorithm

Convex hull: gift wrapping algorithm

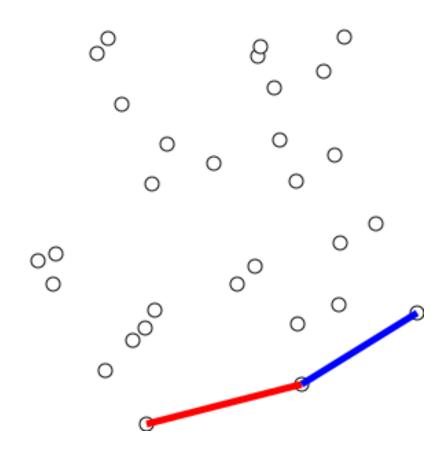


- Input: p_1, p_2, \dots, p_n (points in the plane).
- Output: P (the convex hull of p_1 , p_2 , ..., p_n).
- Initial points: p_0 with the smallest x coordinate.
- **Iteration:** Assume that a partial path with k points has been built (p_k is the last point). Pick some arbitrary $p_{k+1} \neq p_k$. Visit the remaining points. If some point q is at the left of $\overline{p_k p_{k+1}}$ redefine $p_{k+1} = q$.
- Stop when P is complete (back to point p_0).

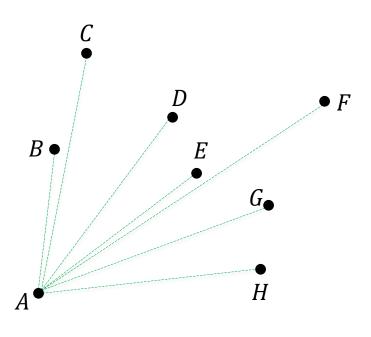
Complexity: At each iteration, we calculate n angles. T(n) = O(hn), where h is the number of points in the convex hull. In the worst case, $T(n) = O(n^2)$.

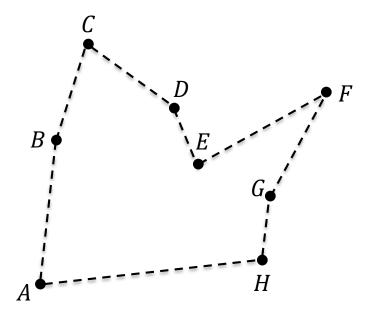
Convex hull: gift wrapping algorithm

```
def gift_wrapping(pol: Polygon) -> Polygon:
    """Returns the convex-hull of a set of points"""
    hull: Polygon = []
    # Pick the leftmost point
    left = 0
    for i, p in enumerate(pol):
        if pol[i].x < pol[left].x:</pre>
            left = i
    p = left
    while True: # Add points while the polygon is not closed
        hull.append(pol[p]) # Add point to the convex hull
        q = (p+1)%len(pol) # Pick a point different from p
        for i, new p in enumerate(pol): # Find leftmost point of p->q
            if left of(pol[p], pol[q], new p):
                q = i
        p = q # This is the leftmost point
        if p == left: # Stop if the point closes the polygon
            break
    return hull
```

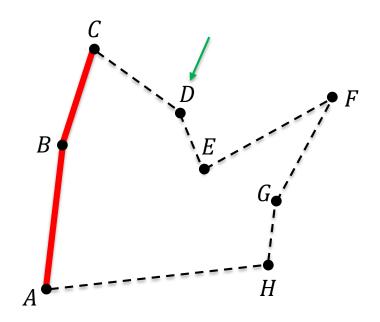


https://en.wikipedia.org/wiki/Graham_scan

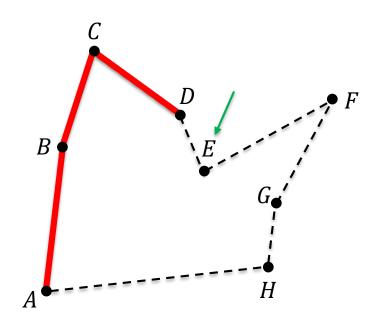




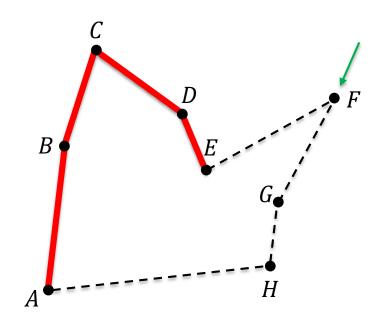
Q: *A B C*



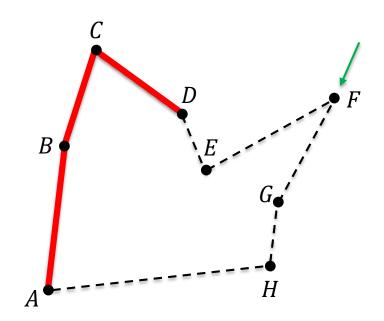
Q: *A B C D*



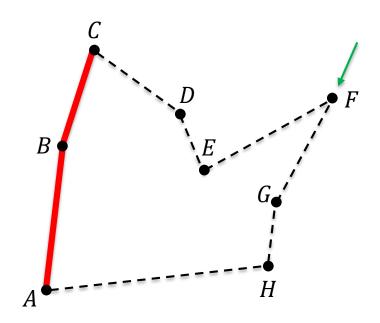
Q: *A B C D E*



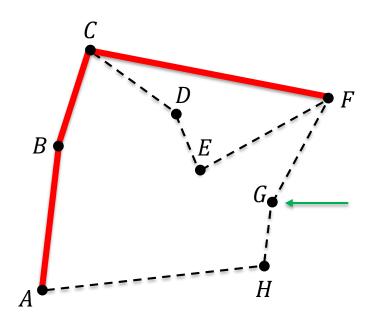
Q: *A B C D*



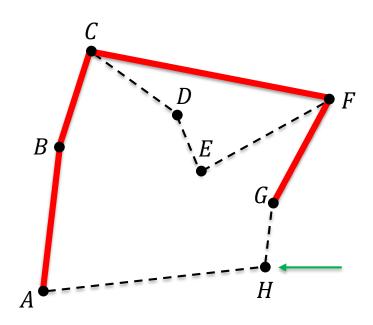
Q: *A B C*



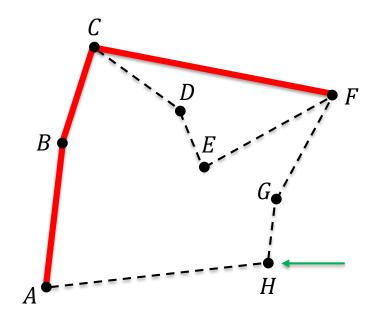
Q: *A B C F*



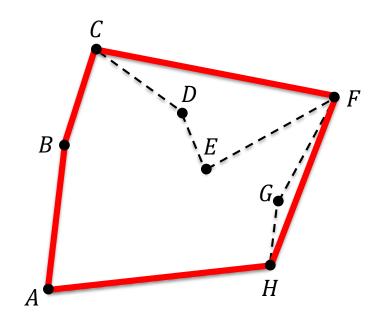
Q: *A B C F G*



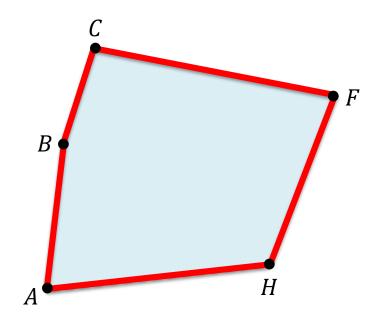
Q: *A B C F*

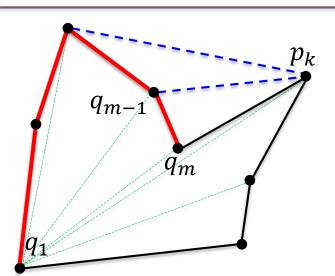


Q: *A B C F H*



Q: *A B C F H*





```
Input: p_1, p_2, ..., p_n (polygon: points in the plane).
```

Output: q_1, q_2, \dots, q_m (the convex hull).

Initially:

Create a simple polygon P (complexity $O(n \log n)$). Assume the order of the points is $p_1, p_2, ..., p_n$.

```
def graham_scan(pol: Polygon) -> Polygon:
    """Returns the convex hull of a non-convex polygon"""
    hull = pol[0:3]
    for k in range(3, len(pol)):
        while left_of(hull[-2], hull[-1], pol[k]):
            hull.pop()
        hull.append(pol[k])
    return hull
```

Observation: each point p_k can be included in Q and deleted at most once. The main loop of Graham scan has linear cost.

Complexity: dominated by the creation of the simple polygon $\rightarrow O(n \log n)$.

EXERCISES

Summations

Prove the following equalities:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

For loops: analyze the cost of each code

Calculate the value of variable **s** at the end of each code

```
# Code 1
s = 0
for i in range(n):
    s += 1
# Code 2
s = 0
for i in range(0, n, 2):
    s += 1
# Code 3
s = 0
for i in range(n):
    s += 1
for j in range(n):
    s += 1
```

```
# Code 4
S = 0
for i in range(n):
    for j in range(n):
        s += 1
# Code 5
for i in range(n):
    for j in range(i):
        s += 1
# Code 6
S = 0
for i in range(n):
    for j in range(i, n):
```

For loops: analyze the cost of each code

```
# Code 7
                                    # Code 10
s = 0
                                    s = 0
for i in range(n):
                                    for i in range(n):
    for j in range(n):
        for k in range(n):
                                        while j <= n:
            s += 1
                                            s += 1
                                            i *= 2
# Code 8
s = 0
                                    # Code 11
for i in range(n):
    for j in range(i):
                                    for i in range(n):
        for k in range(j):
                                        for j in range(i*i):
            s += 1
                                            for k in range(n):
                                                 s += 1
# Code 9
s = 0
                                    # Code 12
                                    s = 0
while i <= n:
                                    for i in range(n):
    s += 1
                                        for j in range(i*i):
    i *= 2
                                            if j%i == 0:
                                                 for k in range(n):
                                                     s += 1
```

$0, \Omega \text{ or } \Theta$?

The following statements refer to the *insertion sort* algorithm and the X's hide an occurrence of O, Ω or Θ . For each statement, find which options for $X \in \{O, \Omega, \Theta\}$ make the statement true or false. Justify your answers.

- 1. The worst case is $X(n^2)$
- 2. The worst case is X(n)
- 3. The best case is $X(n^2)$
- 4. The best case is X(n)
- 5. For every probability distribution, the average case is $X(n^2)$
- 6. For every probability distribution, the average case is X(n)
- 7. For some probability distribution, the average case is $X(n \log n)$

Primality

The following algorithms try to determine whether $n \ge 0$ is prime. Find which ones are correct and analyze their cost as a function of n.

```
def is prime1(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2,n):
        if n%i == 0:
            return False
    return True
def is_prime2(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n))):
        if n\%i == 0:
            return False
    return True
def is_prime3(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2, round(math.sqrt(n))):
        if n%i == 0:
            return False
    return True
```

```
def is prime4(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n))+1):
        if n%i == 0:
            return False
    return True
def is prime5(n: int) -> bool:
    if n <= 1:
        return False
    if n == 2:
        return True
    if n%2 == 0:
        return False
    for i in range(3, int(math.sqrt(n))+1, 2):
        if (n%i == 0):
            return False
    return True
```

The Sieve of Eratosthenes

The following program is a version of the Sieve of Eratosthenes. Analyze its complexity.

```
def primes(n: int) -> list[bool]:
    p: list[bool] = [True]*(n+1)
    p[0] = p[1] = False
    for i in range(2, int(math.sqrt(n))+1):
        if p[i]:
            for j in range(i*i, n+1, i):
                 p[j] = False
    return p
```

You can use the following equality, where $p \le x$ refers to all primes $p \le x$:

$$\sum_{p \le x} \frac{1}{p} = \log \log x + O(1)$$

The Cell Phone Dropping Problem

- You work for a cell phone company which has just invented a new cell phone protector and wants to advertise that it can be dropped from the f^{th} floor without breaking.
- If you are given 1 or 2 phones and an n story building, propose an algorithm that minimizes the worst-case number of trial drops to know the highest floor it won't break.
- Assumption: a broken cell phone cannot be used for further trials.
- How about if you have p cell phones?