
Algorithm Analysis (I)

Jordi Cortadella and Jordi Petit
Department of Computer Science

What do we expect from an algorithm?

• Correct
• Easy to understand
• Easy to implement
• Efficient:

– Every algorithm requires a set of resources
• Memory
• CPU time
• Energy

Algorithm Analysis © Dept. CS, UPC 2

Fibonacci: recursive version

def fib(n: int) -> int:
"""Returns the Fibonacci number of order n

Pre: n ≥ 0
"""
if n <= 1:

return n
return fib(n - 1) + fib(n - 2)

Algorithm Analysis © Dept. CS, UPC 3

Fibonacci
8

7

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

How many recursive calls?

Algorithm Analysis © Dept. CS, UPC 4

Fibonacci: runtime

Algorithm Analysis © Dept. CS, UPC 5

Fibonacci numbers: iterative version

def fib(n: int) -> int:
"""Returns the Fibonacci number of order n

Pre: n ≥ 0
"""
f_i, f_i1 = 0, 1
Inv: f_i is the Fibonacci number of order i
f_i1 is the Fibonacci number of order i+1
for i in range(n):

f_i, f_i1 = f_i1, f_i+f_i1
return f_i

Algorithm Analysis © Dept. CS, UPC 6

Runtime: n iterations

Fibonacci numbers
Algebraic solution: find matrix A such that

Algorithm Analysis © Dept. CS, UPC 7

Fibonacci numbers

Runtime ≈ log2 n 2x2 matrix multiplications

Algorithm Analysis © Dept. CS, UPC 8

Algorithm analysis
Given an algorithm that reads inputs from a
domain 𝐷𝐷, we want to define a cost function 𝐶𝐶:

where 𝐶𝐶(𝑥𝑥) represents the cost of using some
resource (CPU time, memory, energy, …).
Analyzing 𝐶𝐶 𝑥𝑥 for every possible 𝑥𝑥 is impractical.

Algorithm Analysis © Dept. CS, UPC 9

Algorithm analysis: simplifications
• Analysis based on the size of the input: 𝑥𝑥 = 𝑛𝑛

• Only the best/average/worst cases are analyzed:

𝑝𝑝 𝑥𝑥 : probability of selecting input 𝑥𝑥
among all the inputs of size 𝑛𝑛.

Algorithm Analysis © Dept. CS, UPC 10

Algorithm analysis
• Properties:

• We want a notation that characterizes the cost of
algorithms independently from the technology
(CPU speed, programming language, efficiency of
the compiler, etc.).

• Runtime is usually the most important resource
to analyze.

Algorithm Analysis © Dept. CS, UPC 11

Asymptotic notation

Algorithm Analysis © Dept. CS, UPC 12

Asymptotic notation

Algorithm Analysis © Dept. CS, UPC 13

𝑘𝑘1𝑓𝑓1(𝑛𝑛)

𝑔𝑔(𝑛𝑛)

𝑛𝑛𝑛𝑛0

𝑘𝑘2𝑓𝑓2(𝑛𝑛)

Asymptotic notation

Algorithm Analysis © Dept. CS, UPC 14

𝑘𝑘1𝑓𝑓(𝑛𝑛)

𝑔𝑔(𝑛𝑛)

𝑛𝑛𝑛𝑛0

𝑘𝑘2𝑓𝑓(𝑛𝑛)

Asymptotic notation: example

Algorithm Analysis © Dept. CS, UPC 15

Examples

Algorithm Analysis © Dept. CS, UPC 16

13𝑛𝑛3 − 4𝑛𝑛 + 8 ∈ O 𝑛𝑛3
2𝑛𝑛 − 5 ∈ O 𝑛𝑛
𝑛𝑛2 ∉ O 𝑛𝑛
2𝑛𝑛 ∈ O(𝑛𝑛!)
3𝑛𝑛 ∉ O 2𝑛𝑛

3 log2 𝑛𝑛 ∈ O(log𝑛𝑛)
𝑛𝑛 log2 𝑛𝑛 ∈ O(𝑛𝑛2)
O(𝑛𝑛2) ⊆ O(𝑛𝑛3)

13𝑛𝑛3 − 4𝑛𝑛 + 8 ∈ Ω 𝑛𝑛3

𝑛𝑛2 ∈ Ω 𝑛𝑛
𝑛𝑛2 ∉ Ω 𝑛𝑛3
𝑛𝑛! ∈ Ω(2𝑛𝑛)
3𝑛𝑛 ∉ Ω 2𝑛𝑛

3 log2 𝑛𝑛 ∈ Ω(log𝑛𝑛)
𝑛𝑛 log2 𝑛𝑛 ∈ Ω(𝑛𝑛)
Ω(𝑛𝑛3) ⊆ Ω(𝑛𝑛2)

Big-O Big-Ω

Complexity ranking

Algorithm Analysis © Dept. CS, UPC 17

The limit rule

Algorithm Analysis © Dept. CS, UPC 18

Properties

• 𝑓𝑓 ∈ O 𝑓𝑓
• ∀𝑐𝑐 > 0, O 𝑓𝑓 = O 𝑐𝑐 � 𝑓𝑓
• 𝑓𝑓 ∈ O 𝑔𝑔 ∧ 𝑔𝑔 ∈ O ℎ ⇒ 𝑓𝑓 ∈ O ℎ

• 𝑓𝑓1 ∈ O 𝑔𝑔1 ∧ 𝑓𝑓2 ∈ O 𝑔𝑔2
⇒𝑓𝑓1 + 𝑓𝑓2 ∈ O 𝑔𝑔1 + 𝑔𝑔2 = O(max {𝑔𝑔1,𝑔𝑔2})

• 𝑓𝑓 ∈ O 𝑔𝑔 ⇒ 𝑓𝑓 + 𝑔𝑔 ∈ O 𝑔𝑔

• 𝑓𝑓1 ∈ O 𝑔𝑔1 ∧ 𝑓𝑓2 ∈ O 𝑔𝑔2 ⇒ 𝑓𝑓1 � 𝑓𝑓2 ∈ O 𝑔𝑔1 � 𝑔𝑔2
• 𝑓𝑓 ∈ O 𝑔𝑔 ⇔ 𝑔𝑔 ∈ Ω 𝑓𝑓

Algorithm Analysis © Dept. CS, UPC 19

Asymptotic complexity (small values)

Algorithm Analysis © Dept. CS, UPC 20

Asymptotic complexity (larger values)

Algorithm Analysis © Dept. CS, UPC 21

Execution time: example
Let us consider that every operation can be
executed in 1 ns (10-9 s).

Algorithm Analysis © Dept. CS, UPC 22

How about “big data”?

Algorithm Analysis © Dept. CS, UPC 23

Source: Jon Kleinberg and Éva Tardos, Algorithm Design, Addison Wesley 2006.

This is often the practical limit for big data

The robot and the door in an infinite wall

Algorithm Analysis © Dept. CS, UPC 24

A robot stands in front of a wall that is infinitely long to the right and left side.
The wall has a door somewhere and the robot has to find it to reach the other side.
Unfortunately, the robot can only see the part of the wall in front of it.

The robot does not know neither how far away the door is nor what direction to
take to find it. It can only execute moves to the left or right by a certain number of
steps.

Let us assume that the door is at a distance 𝑑𝑑. How to find the door in a minimum
number of steps?

𝑑𝑑

The robot and the door in an infinite wall

Algorithm Analysis © Dept. CS, UPC 25

𝑑𝑑

Algorithm 1:

• Pick one direction and move until the door is found.

Complexity:

• If the direction is correct O(𝑑𝑑).
• If incorrect the algorithm does not terminate.

The robot and the door in an infinite wall

Algorithm Analysis © Dept. CS, UPC 26

𝑑𝑑

Algorithm 2:
• 1 step to the left,
• 2 steps to the right,
• 3 steps to the left, …
• … increasing by one step in the opposite direction.

Complexity:

𝑇𝑇 𝑑𝑑 = 3𝑑𝑑 + �
𝑖𝑖=1

𝑑𝑑−1

4𝑖𝑖 = 3𝑑𝑑 + 4
𝑑𝑑(𝑑𝑑 − 1)

2
= 2𝑑𝑑2 + 𝑑𝑑 = O(𝑑𝑑2)

The robot and the door in an infinite wall

Algorithm Analysis © Dept. CS, UPC 27

𝑑𝑑

Algorithm 3:
• 1 step to the left and return to origin,
• 2 steps to the right and return to origin,
• 3 steps to the left and return to origin,…
• … increasing by one step in the opposite direction.

Complexity:

𝑇𝑇 𝑑𝑑 = 𝑑𝑑 + �
𝑖𝑖=1

𝑑𝑑

2𝑖𝑖 = 𝑑𝑑 + 2
𝑑𝑑(𝑑𝑑 + 1)

2
= 𝑑𝑑2 + 2𝑑𝑑 = O(𝑑𝑑2)

The robot and the door in an infinite wall

Algorithm Analysis © Dept. CS, UPC 28

𝑑𝑑

Algorithm 4:
• 1 step to the left and return to origin,
• 2 steps to the right and return to origin,
• 4 steps to the left and return to origin,…
• … doubling the number of steps in the opposite direction.

Complexity (assume that 𝑑𝑑 = 2𝑛𝑛):

𝑇𝑇 𝑑𝑑 = 𝑑𝑑 + 2�
𝑖𝑖=0

𝑛𝑛

2𝑖𝑖 = 𝑑𝑑 + 2 2𝑛𝑛+1 − 1 = 5𝑑𝑑 − 2 = O(𝑑𝑑)

Runtime analysis rules
• Variable declarations cost no time.

• Elementary operations are those that can be
executed with a small number of basic computer
steps (an assignment, a multiplication, a
comparison between two numbers, etc.).

• Vector sorting or matrix multiplication are not
elementary operations.

• We consider that the cost of elementary
operations is O 1 .

Algorithm Analysis © Dept. CS, UPC 29

Runtime analysis rules
• Consecutive statements:

– If S1 is O(𝑓𝑓) and S2 is O(𝑔𝑔),
then S1;S2 is O(max{𝑓𝑓,𝑔𝑔})

• Conditional statements:
– If S1 is O 𝑓𝑓 , S2 is O 𝑔𝑔 and B is O(ℎ),

then if (B) S1; else S2; is O(max{𝑓𝑓 + ℎ,𝑔𝑔 + ℎ}),
or also O(max{𝑓𝑓,𝑔𝑔, ℎ}).

Algorithm Analysis © Dept. CS, UPC 30

Runtime analysis rules
• For/While loops:

– Running time is at most the running time of the
statements inside the loop times the number of
iterations

• Nested loops:
– Analyze inside out: running time of the statements

inside the loops multiplied by the product of the
sizes of the loops

Algorithm Analysis © Dept. CS, UPC 31

Nested loops: examples
for i in range(n):

for j in range(n):
do_something() # O(1)

for i in range(n):
for j in range(i, n):

do_something() # O(1)

for i in range(n):
for j in range(m):

for k in range(p):
do_something() # O(1)

Algorithm Analysis © Dept. CS, UPC 32

Linear time: O(𝑛𝑛)
Running time proportional to input size

Compute the maximum of a vector with n numbers
m = a[0]
for i in range(1, len(a)):

m = max(m, a[i])

Equivalent way in Python (same complexity)
m = max(a)

Algorithm Analysis © Dept. CS, UPC 33

Linear time: O(𝑛𝑛)
Other examples:

– Reversing a vector

– Merging two sorted vectors

– Finding the largest null segment of a sorted vector:
a linear-time algorithm exists
(a null segment is a compact sub-vector in which
the sum of all the elements is zero)

Algorithm Analysis © Dept. CS, UPC 34

Logarithmic time: O(log𝑛𝑛)

• Logarithmic time is usually related to divide-
and-conquer algorithms

• Examples:
– Binary search
– Calculating 𝑥𝑥𝑛𝑛

– Calculating the 𝑛𝑛-th Fibonacci number

Algorithm Analysis © Dept. CS, UPC 35

Example: recursive 𝑥𝑥𝑦𝑦

def power(x: int, y: int) -> int:
"""Returns 𝒙𝒙𝒚𝒚. Pre: 𝒙𝒙 ≠ 𝟎𝟎,𝒚𝒚 ≥ 𝟎𝟎"""
if y == 0: return 1
if y%2 == 0: return power(x∗x, y//2);
return x∗power(x∗x, y//2);

Assumption: each */% takes O(1)

Algorithm Analysis © Dept. CS, UPC 36

Linearithmic time: O(𝑛𝑛 log𝑛𝑛)
• Sorting: Merge sort and heap sort can be

executed in O(𝑛𝑛 log 𝑛𝑛).

• Largest empty interval: Given 𝑛𝑛 time-stamps
𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛 on which copies of a file arrive at a
server, what is largest interval when no copies
of file arrive?
– O(𝑛𝑛 log𝑛𝑛) solution. Sort the time-stamps. Scan

the sorted list in order, identifying the maximum
gap between successive time-stamps.

Algorithm Analysis © Dept. CS, UPC 37

	Algorithm Analysis (I)
	What do we expect from an algorithm?
	Fibonacci: recursive version
	Fibonacci
	Fibonacci: runtime
	Fibonacci numbers: iterative version
	Fibonacci numbers
	Fibonacci numbers
	Algorithm analysis
	Algorithm analysis: simplifications
	Algorithm analysis
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation: example
	Examples
	Complexity ranking
	The limit rule
	Properties
	Asymptotic complexity (small values)
	Asymptotic complexity (larger values)
	Execution time: example
	How about “big data”?
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	Runtime analysis rules
	Runtime analysis rules
	Runtime analysis rules
	Nested loops: examples
	Linear time: O(𝑛)
	Linear time: O(𝑛)
	Logarithmic time: O(log 𝑛)
	Example: recursive 𝑥 𝑦
	Linearithmic time: O(𝑛 log 𝑛)

