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What do we expect from an algorithm?

• Correct
• Easy to understand
• Easy to implement
• Efficient:

– Every algorithm requires a set of resources
• Memory
• CPU time
• Energy
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Fibonacci: recursive version

def fib(n: int) -> int:
"""Returns the Fibonacci number of order n

Pre: n ≥ 0
"""
if n <= 1:

return n
return fib(n - 1) + fib(n - 2)
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Fibonacci
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How many recursive calls?

Algorithm Analysis © Dept. CS, UPC 4



Fibonacci: runtime
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Fibonacci numbers: iterative version

def fib(n: int) -> int:
"""Returns the Fibonacci number of order n

Pre: n ≥ 0
"""
f_i, f_i1 = 0, 1
# Inv: f_i is the Fibonacci number of order i
#      f_i1 is the Fibonacci number of order i+1
for i in range(n): 

f_i, f_i1 = f_i1, f_i+f_i1
return f_i
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Runtime: n iterations



Fibonacci numbers
Algebraic solution: find matrix A such that
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Fibonacci numbers

Runtime ≈ log2 n  2x2 matrix multiplications
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Algorithm analysis
Given an algorithm that reads inputs from a
domain 𝐷𝐷, we want to define a cost function 𝐶𝐶:

where 𝐶𝐶(𝑥𝑥) represents the cost of using some 
resource (CPU time, memory, energy, …).
Analyzing 𝐶𝐶 𝑥𝑥 for every possible 𝑥𝑥 is impractical.
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Algorithm analysis: simplifications
• Analysis based on the size of the input: 𝑥𝑥 = 𝑛𝑛

• Only the best/average/worst cases are analyzed:

𝑝𝑝 𝑥𝑥 : probability of selecting input 𝑥𝑥
among all the inputs of size 𝑛𝑛.
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Algorithm analysis
• Properties:

• We want a notation that characterizes the cost of 
algorithms independently from the technology 
(CPU speed, programming language, efficiency of 
the compiler, etc.).

• Runtime is usually the most important resource 
to analyze.
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Asymptotic notation
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Asymptotic notation 

Algorithm Analysis © Dept. CS, UPC 13

𝑘𝑘1𝑓𝑓1(𝑛𝑛)

𝑔𝑔(𝑛𝑛)

𝑛𝑛𝑛𝑛0

𝑘𝑘2𝑓𝑓2(𝑛𝑛)



Asymptotic notation 
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𝑘𝑘1𝑓𝑓(𝑛𝑛)

𝑔𝑔(𝑛𝑛)

𝑛𝑛𝑛𝑛0

𝑘𝑘2𝑓𝑓(𝑛𝑛)



Asymptotic notation: example
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Examples
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13𝑛𝑛3 − 4𝑛𝑛 + 8 ∈ O 𝑛𝑛3
2𝑛𝑛 − 5 ∈ O 𝑛𝑛
𝑛𝑛2 ∉ O 𝑛𝑛
2𝑛𝑛 ∈ O(𝑛𝑛!)
3𝑛𝑛 ∉ O 2𝑛𝑛

3 log2 𝑛𝑛 ∈ O(log𝑛𝑛)
𝑛𝑛 log2 𝑛𝑛 ∈ O(𝑛𝑛2)
O(𝑛𝑛2) ⊆ O(𝑛𝑛3)

13𝑛𝑛3 − 4𝑛𝑛 + 8 ∈ Ω 𝑛𝑛3

𝑛𝑛2 ∈ Ω 𝑛𝑛
𝑛𝑛2 ∉ Ω 𝑛𝑛3
𝑛𝑛! ∈ Ω(2𝑛𝑛)
3𝑛𝑛 ∉ Ω 2𝑛𝑛

3 log2 𝑛𝑛 ∈ Ω(log𝑛𝑛)
𝑛𝑛 log2 𝑛𝑛 ∈ Ω(𝑛𝑛)
Ω(𝑛𝑛3) ⊆ Ω(𝑛𝑛2)

Big-O Big-Ω



Complexity ranking
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The limit rule
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Properties

• 𝑓𝑓 ∈ O 𝑓𝑓
• ∀𝑐𝑐 > 0, O 𝑓𝑓 = O 𝑐𝑐 � 𝑓𝑓
• 𝑓𝑓 ∈ O 𝑔𝑔 ∧ 𝑔𝑔 ∈ O ℎ ⇒ 𝑓𝑓 ∈ O ℎ

• 𝑓𝑓1 ∈ O 𝑔𝑔1 ∧ 𝑓𝑓2 ∈ O 𝑔𝑔2
⇒𝑓𝑓1 + 𝑓𝑓2 ∈ O 𝑔𝑔1 + 𝑔𝑔2 = O(max {𝑔𝑔1,𝑔𝑔2})

• 𝑓𝑓 ∈ O 𝑔𝑔 ⇒ 𝑓𝑓 + 𝑔𝑔 ∈ O 𝑔𝑔

• 𝑓𝑓1 ∈ O 𝑔𝑔1 ∧ 𝑓𝑓2 ∈ O 𝑔𝑔2 ⇒ 𝑓𝑓1 � 𝑓𝑓2 ∈ O 𝑔𝑔1 � 𝑔𝑔2
• 𝑓𝑓 ∈ O 𝑔𝑔 ⇔ 𝑔𝑔 ∈ Ω 𝑓𝑓
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Asymptotic complexity (small values)
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Asymptotic complexity (larger values)
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Execution time: example
Let us consider that every operation can be 
executed in 1 ns (10-9 s).
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How about “big data”?
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Source: Jon Kleinberg and Éva Tardos, Algorithm Design, Addison Wesley 2006.

This is often the practical limit for big data



The robot and the door in an infinite wall
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A robot stands in front of a wall that is infinitely long to the right and left side.
The wall has a door somewhere and the robot has to find it to reach the other side.
Unfortunately, the robot can only see the part of the wall in front of it.

The robot does not know neither how far away the door is nor what direction to
take to find it. It can only execute moves to the left or right by a certain number of 
steps.

Let us assume that the door is at a distance 𝑑𝑑. How to find the door in a minimum 
number of steps?

𝑑𝑑



The robot and the door in an infinite wall
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𝑑𝑑

Algorithm 1:

• Pick one direction and move until the door is found.

Complexity:

• If the direction is correct  O(𝑑𝑑).
• If incorrect  the algorithm does not terminate.



The robot and the door in an infinite wall
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𝑑𝑑

Algorithm 2:
• 1 step to the left, 
• 2 steps to the right,
• 3 steps to the left, …
• … increasing by one step in the opposite direction.

Complexity:

𝑇𝑇 𝑑𝑑 = 3𝑑𝑑 + �
𝑖𝑖=1

𝑑𝑑−1

4𝑖𝑖 = 3𝑑𝑑 + 4
𝑑𝑑(𝑑𝑑 − 1)

2
= 2𝑑𝑑2 + 𝑑𝑑 = O(𝑑𝑑2)



The robot and the door in an infinite wall
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𝑑𝑑

Algorithm 3:
• 1 step to the left and return to origin,
• 2 steps to the right and return to origin,
• 3 steps to the left and return to origin,…
• … increasing by one step in the opposite direction.

Complexity:

𝑇𝑇 𝑑𝑑 = 𝑑𝑑 + �
𝑖𝑖=1

𝑑𝑑

2𝑖𝑖 = 𝑑𝑑 + 2
𝑑𝑑(𝑑𝑑 + 1)

2
= 𝑑𝑑2 + 2𝑑𝑑 = O(𝑑𝑑2)



The robot and the door in an infinite wall
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𝑑𝑑

Algorithm 4:
• 1 step to the left and return to origin,
• 2 steps to the right and return to origin,
• 4 steps to the left and return to origin,…
• … doubling the number of steps in the opposite direction.

Complexity (assume that 𝑑𝑑 = 2𝑛𝑛):

𝑇𝑇 𝑑𝑑 = 𝑑𝑑 + 2�
𝑖𝑖=0

𝑛𝑛

2𝑖𝑖 = 𝑑𝑑 + 2 2𝑛𝑛+1 − 1 = 5𝑑𝑑 − 2 = O(𝑑𝑑)



Runtime analysis rules
• Variable declarations cost no time.

• Elementary operations are those that can be 
executed with a small number of basic computer 
steps (an assignment, a multiplication, a 
comparison between two numbers, etc.).

• Vector sorting or matrix multiplication are not 
elementary operations.

• We consider that the cost of elementary 
operations is O 1 .
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Runtime analysis rules
• Consecutive statements:

– If S1 is O(𝑓𝑓) and S2 is O(𝑔𝑔),
then  S1;S2 is O(max{𝑓𝑓,𝑔𝑔})

• Conditional statements:
– If S1 is O 𝑓𝑓 , S2 is O 𝑔𝑔 and B is O(ℎ),

then  if (B) S1; else S2; is O(max{𝑓𝑓 + ℎ,𝑔𝑔 + ℎ}),
or also O(max{𝑓𝑓,𝑔𝑔, ℎ}).
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Runtime analysis rules
• For/While loops:

– Running time is at most the running time of the 
statements inside the loop times the number of 
iterations

• Nested loops:
– Analyze inside out: running time of the statements 

inside the loops multiplied by the product of the 
sizes of the loops
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Nested loops: examples
for i in range(n):

for j in range(n):
do_something() # O(1)

for i in range(n):
for j in range(i, n):

do_something() # O(1)

for i in range(n):
for j in range(m):

for k in range(p):
do_something() # O(1)
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Linear time: O(𝑛𝑛)
Running time proportional to input size

# Compute the maximum of a vector with n numbers
m = a[0]
for i in range(1, len(a)):

m = max(m, a[i])

# Equivalent way in Python (same complexity)
m = max(a)
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Linear time: O(𝑛𝑛)
Other examples:

– Reversing a vector

– Merging two sorted vectors

– Finding the largest null segment of a sorted vector: 
a linear-time algorithm exists
(a null segment is a compact sub-vector in which 
the sum of all the elements is zero)
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Logarithmic time: O(log𝑛𝑛)

• Logarithmic time is usually related to divide-
and-conquer algorithms

• Examples:
– Binary search
– Calculating 𝑥𝑥𝑛𝑛

– Calculating the 𝑛𝑛-th Fibonacci number
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Example: recursive 𝑥𝑥𝑦𝑦

def power(x: int, y: int) -> int:
"""Returns 𝒙𝒙𝒚𝒚. Pre: 𝒙𝒙 ≠ 𝟎𝟎,𝒚𝒚 ≥ 𝟎𝟎"""
if y == 0: return 1
if y%2 == 0: return power(x∗x, y//2);
return x∗power(x∗x, y//2);

# Assumption: each */% takes O(1)
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Linearithmic time: O(𝑛𝑛 log𝑛𝑛)
• Sorting: Merge sort and heap sort can be 

executed in O(𝑛𝑛 log 𝑛𝑛).

• Largest empty interval: Given 𝑛𝑛 time-stamps 
𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛 on which copies of a file arrive at a 
server, what is largest interval when no copies 
of file arrive?
– O(𝑛𝑛 log𝑛𝑛) solution. Sort the time-stamps. Scan 

the sorted list in order, identifying the maximum 
gap between successive time-stamps.

Algorithm Analysis © Dept. CS, UPC 37


	Algorithm Analysis (I)
	What do we expect from an algorithm?
	Fibonacci: recursive version
	Fibonacci
	Fibonacci: runtime
	Fibonacci numbers: iterative version
	Fibonacci numbers
	Fibonacci numbers
	Algorithm analysis
	Algorithm analysis: simplifications
	Algorithm analysis
	Asymptotic notation
	Asymptotic notation 
	Asymptotic notation 
	Asymptotic notation: example
	Examples
	Complexity ranking
	The limit rule
	Properties
	Asymptotic complexity (small values)
	Asymptotic complexity (larger values)
	Execution time: example
	How about “big data”?
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	The robot and the door in an infinite wall
	Runtime analysis rules
	Runtime analysis rules
	Runtime analysis rules
	Nested loops: examples
	Linear time: O(𝑛)
	Linear time: O(𝑛)
	Logarithmic time: O( log 𝑛 )
	Example: recursive  𝑥 𝑦 
	Linearithmic time: O(𝑛 log 𝑛) 

