
Abstract Data Types (II)
(and Object-Oriented Programming)

Jordi Cortadella and Jordi Petit
Department of Computer Science

Public or private?
• What should be public?

– Only the methods that need to interact with the external world. Hide as
much as possible. Make a method public only if necessary.

• What should be private?
– All the attributes.
– The internal methods of the class.

• Can we have public attributes?
– Theoretically yes (Python and C++ allow it).
– Recommendation: never define a public attribute.

• Observation: Python does not support public/private attributes and
methods. There is no protection to prevents a bad use.

• The naming conventions (underscores) are used to distinguish them.

ADTs © Dept. CS, UPC 2

Class Point: a new implementation

• Let us assume that we need to represent the point with
polar coordinates for efficiency reasons (e.g., we need to
use them very often).

• We can modify the private section and the implementation
of the class without modifying the specification of the
public methods.

• The API (a contract between designers and users) should
not be modified.

• Do you know what a deprecated method is?
– Not recommended, possibly superseded by another method
– Likely to be removed or discontinued in the future

ADTs © Dept. CS, UPC 3

Class Point: a new implementation

ADTs © Dept. CS, UPC 4

class Point:
"""A class to represent and operate with two-dimensional points"""

Declaration of attributes (recommended for type checking)
_radius: float # radius of the polar coordinates
_angle: float # angle of the polar coordinates

def __init__(self, x: float = 0, y: float = 0):
"""Constructor with x and y coordinates"""
self._radius = math.sqrt(x*x + y*y)
self._angle = 0 if x == 0 and y == 0 else math.atan2(y/x)

def x(self) -> float:
"""Returns the x coordinate"""
return self._radius*math.cos(self._angle)

def y(self) -> float:
"""Returns the y coordinate"""
return self._radius*math.sin(self._angle)

def distance(self, p: Optional['Point']) -> float:
"""Returns the distance to point p

(or the distance to the origin if p is None)"""
dx, dy = self.x(), self.y()
if p is not None:

dx -= p.x()
dy –= p.y()

return math.sqrt(dx*dx + dy*dy)

Works without any
change (but it can be

done more efficiently)

Class Point: a new implementation

ADTs © Dept. CS, UPC 5

def angle(self) -> float:
"""Returns the angle of the polar coordinates"""
return self._angle

def __add__(self, p: 'Point') -> 'Point':
"""Returns a new point by adding the coordinates of two points.

This method is associated to the + operator"""
return Point(self.x() + p.x(), self.y() + p.y())

def __eq__(self, p: 'Point') -> bool:
"""Checks whether two points are equal.

This method is associated to the == operator"""
return self.x() == p.x() and self.y() == p.y()

Discussion:
• How about using _x and _y (or _radius and _angle) as "public" attributes?
• Programs using p._x and p._y would not be valid for the new implementation.
• Programs using p.x() and p.y() would still be valid.

Recommendation:
• All attributes should be private.

A new class: Rectangle
• We will only consider rectilinear rectangles

(axis-aligned).

• A rectilinear rectangle can be represented in
different ways:

ADTs © Dept. CS, UPC 6

LL

UR

LL

ℎ

𝑤𝑤

Two points (extremes of diagonal) One point, width and height

Rectangle: abstract view

ADTs © Dept. CS, UPC 7

Rectangle(ll,ur)

ll scale(0.5)

Create Scale

(1,8)
(11,10)

move(10,2)

rotate(false)

Rotate

Move Flip (horizontally/vertically)

Intersection Point inside?

ur

Rectangle: ADT (incomplete)
from point import Point

class Rectangle:
"""Class to operate with rectilinear rectangles"""

def __init__(self, ll: Point, ur: Point):
"""Constructor using the LL and UR corners"""
...

def area(self) -> float:
"""Returns the area of the rectangle"""
...

def scale(self, s: float) -> None:
"""Scales the rectangle with a factor s > 0"""
...

def __mul__(self, r: 'Rectangle') -> 'Rectangle':
"""Returns the intersection with another rectangle"""
...

ADTs © Dept. CS, UPC 8

Rectangle: using the ADT

Creates a rectangle 4x5
r1 = Rectangle(Point(0,0), Point(4,5))

Creates a rectangle 8x4
r2 = Rectangle(Point(0,0), Point(8,4))

r1.move(2, 3) # Moves the rectangle
r1.scale(1.2) # Scales the rectangle
area1 = r1.area() # Calculates the area

r3 = r1*r2;

if r3.empty(): …

ADTs © Dept. CS, UPC 9

Rectangle: ADT
from point import Point

class Rectangle:
"""Class to operate with rectilinear rectangles"""

Private attributes to represent a rectangle
_ll: Point # Lower-left corner of the rectangle
_w: float # width of the rectangle (>= 0)
_h: float # height of the rectangle (>= 0)

def __init__(self, ll: Point, ur: Point):
"""Constructor using the LL and UR corners"""
assert ll.x() <= ur.x() and ll.y() <= ur.y()
self._ll = Point(ll.x(), ll.y())
self._w = ur.x() – ll.x()
self._h = ur.y() – ll.y()

ADTs © Dept. CS, UPC 10

Note: Python does not support function overloading. Classes can only have one constructor.

Rectangle: ADT
class Rectangle:

⋮
def width(self) -> float:

"""Returns the width of the rectangle"""
return self._w

def height(self) -> float:
"""Returns the height of the rectangle"""
return self._h

def ll(self) -> Point:
"""Returns the LL corner of the rectangle"""
return Point(self._ll.x(), self._ll.y())

def ur(self) -> Point:
"""Returns the UR corner of the rectangle"""
return self._ll + Point(self.width(), self.height())

ADTs © Dept. CS, UPC 11

Discussion: what if ll() would return self._ll (instead of a copy)?

Rectangle: ADT
class Rectangle:

⋮
def area(self) -> float:

"""Returns the area of the rectangle"""
return self.width()*self.height()

def scale(self, s: float) -> None:
"""Scales the rectangle by s,

keeping the LL corner fixed"""
self._w *= s
self._h *= s

def empty(self) -> bool:
"""Checks whether the rectangle is empty"""
return self.area() <= 0 # Gives some tolerance

ADTs © Dept. CS, UPC 12

Rectangle: ADT
class Rectangle:

⋮
def __mul__(self, r: 'Rectangle') -> 'Rectangle':

"""Returns the intersection of two rectangles"""

Calculate the ll coordinates
r1ll, r2ll = self.ll(), r.ll()
ll_x = max(r1ll.x(), r2ll().x())
ll_y = max(r1ll.y(), r2ll().y())

Calculate the ur coordinates
r1ur, r2ur = self.ur(), r.ur()
ur_x = min(r1ur.x(), r2ur().x())
ur_y = min(r1ur.y(), r2ur().y())

Check if no intersection: return empty rectangle
if ur_x <= ll_x or ur_y <= ll_y:

return Rectangle(Point(0,0), Point(0,0))

return Rectangle(Point(ll_x, ll_y), Point(ur_x, ur_y))

ADTs © Dept. CS, UPC 13

self

r

Let us work with rectangles

r1 = Rectangle(Point(2,3), Point(6,8))
area1 = r1.area() # area1 = 20

r2 = Rectangle(Point(3,5), Point(5, 9))

Check whether the point (4,7) is inside the
intersection of r1 and r2.
in = (r1*r2).isPointInside(Point(4,7))

r2.rotate(false) // r2 is rotated counterclockwise
r2 *= r1; // Intersection with r1

ADTs © Dept. CS, UPC 14

Exercise: draw a picture of R1 and R2 after the execution of the previous code.

A Python session with rational numbers
>>> from rational import Rational # from file rational.py
>>> a = Rational(4, -6) # construct with num and den
>>> print(a)
-2/3
>>> b = Rational(4) # integer value
>>> print(b)
4
>>> print((a+b).num(), (a+b).den())
10 3
>>> c = Rational() # c = 0
>>> if a < c:
... print(a, "is negative")
...
-2/3 is negative
>>> print(a*b) # uses the __str__ method (see later)
-8/3
>>> a/b # uses the __repr__ method (see later)
Rational(-1/6)
>>>

ADTs © Dept. CS, UPC 15

The Rational class in Python

class Rational:
"""Class to represent rational numbers"""

Private attributes:
Invariant: _den > 0 and gcd(_num, _den) = 1
_num: int # numerator
_den: int # denominator (invariant: _den > 0)

def __init__(self, num: int = 0, den: int = 1):
assert den != 0

self._num, self._den = num, den
self._simplify()

ADTs © Dept. CS, UPC 16

The Rational class in Python
class Rational:

⋮
def num(self) -> int:

"""Returns the numerator"""
return self._num

def den(self) -> int:
"""Returns the denominator"""
return self._den

def _simplify(self) -> None: # Private method
"""Simplifies the representation"""
if self._den < 0:

self._num *= -1
self._den *= -1

d = math.gcd(abs(self._num), self._den)
self._num //= d
self._den //= d

ADTs © Dept. CS, UPC 17

Magic representation methods
class Rational:

⋮

def __str__(self) -> str:
"""Returns a user-friendly string with information
about the value of the object. It is invoked by
str(x) or print(x)."""
if self._den == 1:

return str(self._num)
return f"{self._num}/{self._den}"

def __repr__(self) -> str:
"""Returns a string with information about the
representation of the class. It is invoked by repr(x)
or simply 'x'."""
return f"Rational({self})"

ADTs © Dept. CS, UPC 18

Magic arithmetic methods
class Rational:

⋮

def __neg__(self) -> 'Rational':
"""Returns -self."""
return Rational(-self._num, self._den)

def __add__(self, rhs: 'Rational') -> 'Rational':
"""Returns self + rhs."""
num = self._num*rhs._den + self._den*rhs._num
den = self._den*rhs._den
return Rational(num, den)

Similarly for __sub__, __mul__, __truediv__

ADTs © Dept. CS, UPC 19

Magic relational methods
class Rational:

⋮

def __eq__(self, rhs: 'Rational') -> bool:
"""Checks whether self == rhs."""
return self._num == rhs._num and self._den == rhs._den

def __ne__(self, rhs: 'Rational') -> bool:
"""Checks whether self != rhs."""
return not self == rhs

def __lt__(self, rhs: 'Rational') -> bool:
"""Checks whether self < rhs."""
return self._num*rhs._den < self._den*rhs._num

def __le__(self, rhs: 'Rational') -> bool:
"""Checks whether self <= rhs."""
return not rhs < self

Similarly for __gt__ and __ge__

ADTs © Dept. CS, UPC 20

Python documentation: docstrings
>>> from rational import Rational
>>> help(Rational.__add__)
Help on function __add__ in module rational:

__add__(self, rhs)
Returns self + rhs.

>>> help(Rational)
class Rational(builtins.object)
| Rational(num=0, den=1)
|
| Class to represent rational numbers.
|
| The class includes the basic arithmetic and relational
| operators.
|
| Methods defined here:
|
| __add__(self, rhs)
| Returns self + rhs.
|
| __eq__(self, rhs)
| Checks whether self == rhs.

ADTs © Dept. CS, UPC 21

Python documentation: docstrings
• The first line after a module, class or function can be

used to insert a string that documents the component.

• Triple quotes (""") are very convenient to insert multi-
line strings.

• The docstrings are stored in a special attribute of the
component named __doc__.

• Different ways of print the docstrings associated to a
component:
– print(Rational.num.__doc__)
– help(Rational.num)

ADTs © Dept. CS, UPC 22

Designing a module: example
geometry.py

"""geometry.py
Provides two classes for representing Polygons and Circles."""

author: Euclid of Alexandria

from math import pi, sin, cos

class Polygon:

"""Represents polygons and provides methods to
calculate area, intersection, convex hull, etc."""

def __init__(self, list_vertices: list[Point]):
"""Creates a polygon from a list of vertices."""

...

class Circle:
...

ADTs © Dept. CS, UPC 23

Documentation
of the module

Documentation
of the class

Documentation
of the method

Using a module: example

ADTs © Dept. CS, UPC 24

import geometry
p = geometry.Poligon(…)
c = geometry.Circle(…)

import geometry as geo
p = geo.Poligon(…)
c = geo.Circle(…)

from geometry import *
p = Poligon(…)
c = Circle(…)

from geometry import Poligon as plg, Circle as cir
p = plg(…)
c = cir(…)

Imports the module. Now all classes can be
used with the prefix of the module.

Imports and renames the module.

Imports all classes in the module. No need
to add the prefix of the module.

Imports and renames the classes in the module.

Conclusions

• Finding the appropriate hierarchy is a fundamental step
towards the design of a complex system.

• User-friendly documentation is indispensable.

ADTs © Dept. CS, UPC 25

EXERCISES

ADTs © Dept. CS, UPC 26

Implement methods

def rotate(self, clockwise: bool) -> None:
"""Rotate the rectangle 90 degrees clockwise or counterclockwise,

depending on the value of the parameter. The rotation should be
done around the lower-left corner of the rectangle"""

def flip(self, horizontally: bool) -> None:
"""Flip horizontally (around the left edge) or vertically (around

the bottom edge), depending on the value of the parameter."""

def isPointInside(self, p: Point) -> bool:
""" Check whether point p is inside the rectangle"""

ADTs © Dept. CS, UPC 27

Implement the following methods for the class Rectangle:

Re-implement a class

Re-implement the class Rectangle using an internal
representation with two Points:

• Lower-Left (LL)
• Upper-Right(UR)

Make the minimum number of changes to preserve the API
of the class.

ADTs © Dept. CS, UPC 28

Distance between rectangles

def distance(self, r: 'Rectangle') -> float:
"""Calculates the shortest distance between two rectangles.

If two rectangles intersect, their distance is zero."""

ADTs © Dept. CS, UPC 29

Implement the following method for the class Rectangle:

Hint: try to make the code simple and elegant,
possibly defining some reusable private method.

	Abstract Data Types (II)�(and Object-Oriented Programming)
	Public or private?
	Class Point: a new implementation
	Class Point: a new implementation
	Class Point: a new implementation
	A new class: Rectangle
	Rectangle: abstract view
	Rectangle: ADT (incomplete)
	Rectangle: using the ADT
	Rectangle: ADT
	Rectangle: ADT
	Rectangle: ADT
	Rectangle: ADT
	Let us work with rectangles
	A Python session with rational numbers
	The Rational class in Python
	The Rational class in Python
	Magic representation methods
	Magic arithmetic methods
	Magic relational methods
	Python documentation: docstrings
	Python documentation: docstrings
	Designing a module: example
	Using a module: example
	Conclusions
	Exercises
	Implement methods
	Re-implement a class
	Distance between rectangles

