Abstract Data Types (l)
(and Object-Oriented Programming)

B

Jordi Cortadella and Jordi Petit
Department of Computer Science

How many horses can you distinguish?

-

i

e
i

ADTs © Dept. CS, UPC 2

LlVESCI NCE NEWS TECH HEALTH PLANET EARTH

f 468

MORE*

Live Science » Health

Mind's Limit Found: 4 Things at
Once

By Clara Moskowitz April 27, 2008 08:00pm ET

| forget how | wanted to begin this story. That's probably because my
mind, just like everyone else's, can only remember a few things at a time.

Researchers have often debated thejmaximum amount of itemsjwe can
store in our conscious mind, in what's called our working memory, and a
new study puts]the limit at three or four.

Working memory is a more active version of short-term memory, which
refers to the temporary storage of information| Working memory relates

to the information we can pay attention to and manipulate.

ADTs

© Dept. CS, UPC

Two examples

Main loop of binary search
while left <= right:
i = (left + right)/2
if x < A[i]: right = i-1
elif x > A[i]: left = i+l
else: return i

Main loop of insertion sort
for i in range(1, len(A)):

x = A[1i]

j =1

while j > @ and A[j-1] > x:
A[3] = A[J-1]
j -=1

A[3] = x

ADTs © Dept. CS, UPC

Variables used (5):
A, x, left, right, i
(only 3 modified)

Variables used (4):
A) X) i) j

Hiding details: abstractions

ADTs © Dept. CS, UPC

Different types of abstractions

ADTs © Dept. CS, UPC

Concept maps are hierarchical: why?

ADTs

IEl Anthropology

EI Archasology |

Animal communications Il
Infarmation theory |
—— i

|

Interpersonal %) |
= 0 El Communications l
Nonverbal communications P {
{ \

|

Speech communications 4
v 1

Telecommunications

|§| Economics

™ Social
Ethnic Studies = i s i

Ethnology
—

sciences
| Academicr"
Linguistics /| [Disciplines,

Political science |
: /

Psychalogy ||

Astronomy

Astrophysics

Behavioral science

IEl o Natural sciences

cEicIc;y‘

Chemistry

Frofessions

Computer 5d-’=r‘o&5l§| 5
o O

x Formal EI‘

Computational logic %

Set theory W
oy

hath
logic

Lc;icEl#

Intuiticnistic logic =
Fhilosophical Logic
Philosophical Logic =
Modal logic =
Logical reasocning =

Algebra w
—0
! Analysis %
[kt i
Il Probability theary
——n

r-.Istr'en'sti:sE|¢ Y Geometry and Topology

Mumber theory
_—

', Logic& Math Foundations

b Applied mathematics W

]

Computational statistics =

Data mining =

| Statistics[S] =
k Regression &

Simulation =

| Systems 5:4'-’:r‘:&|§| 5

El»

Applied sciences

Earth sciences

=]
Humanities and A"tal%l =
-

Each level has few items

© Dept. CS, UPC

The computer systems stack

Application
Algorithm
~ Programming Language
[Operating System
| Instruction Set Architecture
Microarchitecture
| Register-Transfer Level
[Gate Level
, Circuits
Devices
Technology

Image Credit: Christopher Batten,

Cornell University
ADTs © Dept. CS, UPC

The computer systems stack

Application

Algorithm

Programming Language

[Operating System

Instruction Set Architecture

Microarchitecture

Register-Transfer Level

f Gate Level

\, —

Circuits

Devices

Technology

Image Credit: Christopher Batten,

Cornell University
ADTs

How data flows
through system

Boolean logic gates

and functions

Combining devices
— to do useful work

’ \ Transistors and wires

Silicon process
technology

© Dept. CS, UPC

e

[|

The computer systems stack

Application

Algorithm

Programming Language

Operating System

M

Instruction Set Architecture

Microarchitecture

Register-Transfer Level

Gate Level

Y

" —

Circuits

h'd

Devices

Technology

Image Credit: Christopher Batten,

Cornell University
ADTs

Mac OS X, Windows, Linux
Handles low-level hardware management

:. _
44

\ — \A./
MIPS32 Instruction Set

Instructions that machine executes

blez $a2, done
move $a7, S$zero

1i St4, 99

move S$a4, Sal

move $v1, S$zero

1i Sa3, 99

1w Sa5, 0(sa4)
addiu Sa4, Sa4, 4
slt Sa6, Sa5, Sa3
movn S$SvO0, S$vl, Sab
addiu Svl1, Svl, 1
movn S$a3, $a5, $ab

© Dept. CS, UPC 10

The computer systems stack

Application —— Sort an array of numbers
Algorithm \ 2,6,3,8,4,5->23,4,5,6,8
Programming Language \ _ _
’ 9 , g 9143 ; Insertion sort algorithm
[Operating System . . .
, - - 1. Find minimum number in input array
Instruc’.uon Set .Archltecture : 2. Move minimum number into output array
Microarchitecture 3. Repeat steps 1 and 2 until finished
Register-Transfer Level : : : .
(9 G Lovel . C implementation of insertion sort
\ ate Leve J void isort(int b[], int a[], int n) {
k Circuits J for (int idx, k = 0; k < n; k++) {
(. i int min = 100;
Devices J for (int i = 0; i < n; i++) {
Technology if (a[i] < min) {
min = a[i];
idx = 1i;
}
}
b[k] = min;
a[idx] = 100;
Image Credit: Christopher Batten, }
Cornell University }

ADTs © Dept. CS, UPC 11

Our challenge

We need to design large systems and reason about complex
algorithms.

Our working memory can only manipulate 4 things at once.

We need to interact with computers using programming
languages.

Solution: abstraction
— Abstract reasoning.
— Programming languages that support abstraction.

We already use a certain level of abstraction: functions.
But it is not sufficient. We need much more.

Data types

Programming languages have a set of primitive data types
(e.g., int, bool, float, str, ...).

Each data type has a set of associated operations:
— We can add two integers.
— We can concatenate two strings.
— We can divide two floats.
— But we cannot divide two strings!

Programmers can add new operations to the primitive data types:
— gcd(a,b), match(stringl, string2), ...

The programming languages provide primitives to group data items
and create structured collections of data:

— C: array, struct.
— Python: list, tuple, dictionary.

Abstract Data Types (ADTs)

A set of objects and a set of operations to
manipulate them

Operations:
* Number of vertices
* Number of edges
e Shortest path
 Connected components

Data type: Graph

Abstract Data Types (ADTs)

A set of objects and a set of operations to
manipulate them:

-

_

P(x) =x3—4x*+5

Operations:

J

Data type: Polynomial

*c P+0Q
 PXQ

* P/Q

* ged(P, Q)
* P(x)

* degree(P)

Abstract Data Types (ADTs)

e Separate the notions of specification and
implementation:

— Specification: “what does an operation do?”
— Implementation: “how is it done?”

* Benefits:
— Simplicity: code is easier to understand
— Encapsulation: details are hidden

— Modularity: an ADT can be changed without
modifying the programs that use it

— Reuse: it can be used by other programs

Abstract Data Types (ADTs)

 An ADT has two parts:

— Public or external: abstract view of the data and
operations (methods) that the user can use.

— Private or internal: the actual implementation of
the data structures and operations.

* Operations:
— Creation/Destruction
— Access
— Modification

Abstract Data Types (ADTs)

Internal
Data
Representation

Private

Operations

Y

Invisible

API: Application Programming Interface

ADTs © Dept. CS, UPC 18

Example: a Point

* A point can be represented
by two coordinates (x,y).

e Several operations can be

X
envisioned: P
— Get the x and y coordinates. o
: ./
— Calculate distance between
two points.
— Calculate polar coordinates. 0

— Move the point by (Ax, Ay).

Example: a Point

Things that we can do with points

Point(5.0, -3.2) # Create a point (a variable)
Point(2.8, 9) # Create another point

pl
p2

We now calculate the distance between pl and p2
distl2 = pl.distance(p2)

Distance to the origin
= pl.distance()

Create another point by adding coordinates
p3 = pl + p2

We get the coordinates of the new point
x =p3.x() # x =17.8
y = p3.y() #y = -3.2

ADTs © Dept. CS, UPC

20

ADTs and Object-Oriented Programming

OOP is a programming paradigm: a program is a set of
objects that interact with each other.

An object has:
— fields (or attributes) that contain data
— functions (or methods) that contain code

Objects (variables) are instances of classes (types).
A class is a template for all objects of a certain type.

In OOP, a class is the natural way of implementing an ADT.

Classes and Objects

class objects

_l car \\ —

L._'____,._

Pl

Let us designh the new type for Point

class Point:

ADTs

A class to represent and operate with two-dimensional points

Declaration of attributes (recommended for type checking)
x: float # x coordinate

_y: float # y coordinate

def __init_ (self, x: float = @, y: float = 9):
"""Constructor with x and y coordinates
self. x, self. y =x, y

def x(self) -> float:

"""Returns the x coordinate
return self._x

def y(self) -> float:

"""Returns the y coordinate
return self._y

def distance(self, p: Optional['Point']) -> float:

"""Returns the distance to point p
(or the distance to the origin if p is None)

dx, dy = self.x(), self.y()

if p is not None:
dx -= p.x()
dy -= p.y()
return math.sqrt(dx*dx + dy*dy)

© Dept. CS, UPC 23

Let us designh the new type for Point

ADTs

def angle(self) -> float:
"""Returns the angle of the polar coordinate"""
if self.x() == 0 and self.y() == O:
return 0
return math.atan2(self.y()/self.x())

def __add__ (self, p: 'Point') -> 'Point':
"""Returns a new point by adding the coordinates of two points.
This is a method associated to the + operator"""
return Point(self.x() + p.x(), self.y() + p.y())

def __eq_ (self, p: 'Point') -> bool:
"""Checks whether two points are equal.
This is a method associated to the == operator"""
return self.x() == p.x() and self.y() == p.y()

© Dept. CS, UPC

24

How the class methods are invoked

©
=
I

Point(5.0, -3.2) # init (pl1, 5.0, -3.2)
p2 = Point(2.8) # _init_ (p2, 2.8, 0)

distl2 = pﬁ.distance(pZ) # distance(%;, p2)

self

Distance to the origin
r = pl.distance() # distance(pl, None)

Create another point by adding coordinates
p3 = pl + p2 # Equivalent to pl. add_ (p2)

We get the coordinates of the new point
= p3.x() # x = 7.8
y = p3.y() #y = -3.2

X

ADTs © Dept. CS, UPC

25

How the class methods are invoked

Point (5.0, -3.2)
p2 = Point(2.8)

©
=
I

distl2 = pl.distance(p2)

class Point:
A 4

r = p1.distance() def __init__ (self, x: float = @, y: float = 9):

def x(self) -> float:

def y(self) -> float:
p3 = pl + p2 . . .

def distance(self, p: Optional['Point']) -»>
float:

def angle(self) -> float:

p3.x()
p3.y()

X
I

def __add__(self, p: '"Point') -> 'Point':

<
I

def __eq__(self, p: 'Point') -> bool:

ADTs © Dept. CS, UPC 26

Python naming conventions

Function distance, dot_product, multiply by two
Variable X, hum, num_elements

Class Point, CityGraph, ParkingLot

Public method distance, get _angle, shortest_path
Private method _gcd, _check, _calculate_mean

Magic method __init__, _add__, eq__, str__
Constant GRAVITY, MIN_DISTANCE, MAX_NUM_PEOPLE
Module point.py, city graph.py, parking_lot.py
Package geometry, citygraph

Recommendation:
e use short names for modules and packages
* no underscores for package names

Comment: PascalCase, camelCase and snake case

ADTs © Dept. CS, UPC

27

Magic methods

They are invoked internally to implement certain actions.
They are not supposed to be invoked by the user.

Some examples:

— Arithmetic: _add_, mul , div_, truediv._, neg ..
— Relational: _eq , ne_ , gt , ge ..

— Representation: __str_, repr_, ...

— Class initialization: _init_, new del

_ —_—

— and others

Class Point in C++

// The declaration of the class Point
class Point {
public:

// Constructor

Point(double x, double y);

// Constructor for (0,0)
Point();

// Gets the x coordinate
double x() const;

// Gets the y coordinate
double y() const;

// Returns the distance to point p
double distance(const Point& p) const;

// Returns the distance to the origin
double distance() const;

// Returns the angle of the polar coordinate
double angle() const;

// Creates a new point by adding the coordinates of two points
Point operator + (const Point& p) const;

private:
double x, _y; // Coordinates of the point

ADTs X3 © Dept. CS, UPC

Implementation of the class Point

// The constructor: different implementations A

Point: :Point(double x, double y) {
X=X Y=Y

) S

// or also
Point::Point(double x, double y) : x(x), _y(y) {}_/

They are equivalent, but only one of them should be chosen.
We can have different constructors with different signatures.

// The other constructor
Point::Point() : x(0), y(0) {}

ADTs © Dept. CS, UPC

30

Implementation of the class Point

double Point::x() const {
return _Xx;

}

double Point::y() const {
return _y;

}

double Point::distance(const Point& p) const {
double dx = x() - p.x(); // Better getX() than x

double dy = y() - p.y();
return sqrt(dx*dx + dy*dy);

}

double Point::distance() const {

} return sqrt(x()*x() + y(O)*y());

Note: compilers are smart. Small functions are expanded inline.

ADTs © Dept. CS, UPC

31

Implementation of the class Point

ADTs

double Point::angle() const {
if (x() == @ and y() == @) return 0;
return atan(y()/x());

}

Point Point::operator + (const Point& p) const {

return Point(x() + p.x(), y() + p.y());
}

© Dept. CS, UPC

32

Conclusions

 The human brain has limitations: 4 things at once.

 Modularity and abstraction are for designing
large maintainable systems.

ADTs © Dept. CS, UPC

33

	Abstract Data Types (I)�(and Object-Oriented Programming)
	Slide Number 2
	Slide Number 3
	Two examples
	Hiding details: abstractions
	Different types of abstractions
	Concept maps are hierarchical: why?
	The computer systems stack
	The computer systems stack
	The computer systems stack
	The computer systems stack
	Our challenge
	Data types
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Example: a Point
	Example: a Point
	ADTs and Object-Oriented Programming
	Classes and Objects
	Let us design the new type for Point
	Let us design the new type for Point
	How the class methods are invoked
	How the class methods are invoked
	Python naming conventions
	Magic methods
	Class Point in C++
	Implementation of the class Point
	Implementation of the class Point
	Implementation of the class Point
	Conclusions

