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How many horses can you distinguish?
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Mind's Limit Found: 4 Things at
Once

By Clara Moskowitz April 27, 2008 08:00pm ET

| forget how | wanted to begin this story. That's probably because my
mind, just like everyone else's, can only remember a few things at a time.

Researchers have often debated thejmaximum amount of itemsjwe can
store in our conscious mind, in what's called our working memory, and a
new study puts]the limit at three or four.

Working memory is a more active version of short-term memory, which
refers to the temporary storage of information| Working memory relates

to the information we can pay attention to and manipulate.

ADTs

© Dept. CS, UPC



Two examples

# Main loop of binary search
while left <= right:
i = (left + right)/2
if x < A[i]: right = i-1
elif x > A[i]: left = i+l
else: return i

# Main loop of insertion sort
for i in range(1, len(A)):

x = A[1i]

j =1

while j > @ and A[j-1] > x:
A[3] = A[J-1]
j -=1

A[3] = x
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Variables used (5):
A, x, left, right, i
(only 3 modified)

Variables used (4):
A) X) i) j




Hiding details: abstractions
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Different types of abstractions
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Concept maps are hierarchical: why?
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The computer systems stack

Application
Algorithm
~ Programming Language
[ Operating System
| Instruction Set Architecture
Microarchitecture
| Register-Transfer Level
[ Gate Level
, Circuits
Devices
Technology

Image Credit: Christopher Batten,

Cornell University
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The computer systems stack

Application

Algorithm

Programming Language

[ Operating System
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Microarchitecture
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Circuits

Devices

Technology

Image Credit: Christopher Batten,

Cornell University
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How data flows
through system

Boolean logic gates

and functions

Combining devices
— to do useful work

’ \ Transistors and wires

Silicon process
technology
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The computer systems stack
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Mac OS X, Windows, Linux
Handles low-level hardware management

:. _
44

\ — \A./
MIPS32 Instruction Set

Instructions that machine executes

blez $a2, done
move $a7, S$zero

1i St4, 99

move S$a4, Sal

move $v1, S$zero

1i Sa3, 99

1w Sa5, 0(sa4)
addiu Sa4, Sa4, 4
slt Sa6, Sa5, Sa3
movn S$SvO0, S$vl, Sab
addiu Svl1, Svl, 1
movn S$a3, $a5, $ab
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The computer systems stack

Application —— Sort an array of numbers
Algorithm \ 2,6,3,8,4,5->23,4,5,6,8
Programming Language \ _ _
’ 9 , g 9143 ; Insertion sort algorithm
[ Operating System . . .
, - - 1. Find minimum number in input array
Instruc’.uon Set .Archltecture : 2. Move minimum number into output array
Microarchitecture 3. Repeat steps 1 and 2 until finished
Register-Transfer Level : : : .
( 9 G Lovel . C implementation of insertion sort
\ ate Leve J void isort( int b[], int a[], int n ) {
k Circuits J for ( int idx, k = 0; k < n; k++ ) {
( . i int min = 100;
Devices J for ( int i = 0; i < n; i++ ) {
Technology if ( a[i] < min ) {
min = a[i];
idx = 1i;
}
}
b[k] = min;
a[idx] = 100;
Image Credit: Christopher Batten, }
Cornell University }
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Our challenge

We need to design large systems and reason about complex
algorithms.

Our working memory can only manipulate 4 things at once.

We need to interact with computers using programming
languages.

Solution: abstraction
— Abstract reasoning.
— Programming languages that support abstraction.

We already use a certain level of abstraction: functions.
But it is not sufficient. We need much more.



Data types

Programming languages have a set of primitive data types
(e.g., int, bool, float, str, ...).

Each data type has a set of associated operations:
— We can add two integers.
— We can concatenate two strings.
— We can divide two floats.
— But we cannot divide two strings!

Programmers can add new operations to the primitive data types:
— gcd(a,b), match(stringl, string2), ...

The programming languages provide primitives to group data items
and create structured collections of data:

— C: array, struct.
— Python: list, tuple, dictionary.



Abstract Data Types (ADTs)

A set of objects and a set of operations to
manipulate them

Operations:
* Number of vertices
* Number of edges
e Shortest path
 Connected components

Data type: Graph



Abstract Data Types (ADTs)

A set of objects and a set of operations to
manipulate them:

-

\_

P(x) =x3—4x*+5

Operations:

J

Data type: Polynomial

*c P+0Q
 PXQ

* P/Q

* ged(P, Q)
* P(x)

* degree(P)



Abstract Data Types (ADTs)

e Separate the notions of specification and
implementation:

— Specification: “what does an operation do?”
— Implementation: “how is it done?”

* Benefits:
— Simplicity: code is easier to understand
— Encapsulation: details are hidden

— Modularity: an ADT can be changed without
modifying the programs that use it

— Reuse: it can be used by other programs



Abstract Data Types (ADTs)

 An ADT has two parts:

— Public or external: abstract view of the data and
operations (methods) that the user can use.

— Private or internal: the actual implementation of
the data structures and operations.

* Operations:
— Creation/Destruction
— Access
— Modification



Abstract Data Types (ADTs)

Internal
Data
Representation

Private

Operations

Y

Invisible

API: Application Programming Interface
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Example: a Point

* A point can be represented
by two coordinates (x,y).

e Several operations can be

X
envisioned: P
— Get the x and y coordinates. o
: ./
— Calculate distance between
two points.
— Calculate polar coordinates. 0

— Move the point by (Ax, Ay).




Example: a Point

# Things that we can do with points

Point(5.0, -3.2) # Create a point (a variable)
Point(2.8, 9) # Create another point

pl
p2

# We now calculate the distance between pl and p2
distl2 = pl.distance(p2)

# Distance to the origin
= pl.distance()

# Create another point by adding coordinates
p3 = pl + p2

# We get the coordinates of the new point
x =p3.x() # x =17.8
y = p3.y() #y = -3.2

ADTs © Dept. CS, UPC
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ADTs and Object-Oriented Programming

OOP is a programming paradigm: a program is a set of
objects that interact with each other.

An object has:
— fields (or attributes) that contain data
— functions (or methods) that contain code

Objects (variables) are instances of classes (types).
A class is a template for all objects of a certain type.

In OOP, a class is the natural way of implementing an ADT.



Classes and Objects

class objects

_l car \\ —

L.\_'___\_,._

Pl




Let us designh the new type for Point

class Point:

ADTs

A class to represent and operate with two-dimensional points

# Declaration of attributes (recommended for type checking)
x: float # x coordinate

_y: float # y coordinate

def __init_ (self, x: float = @, y: float = 9):
"""Constructor with x and y coordinates
self. x, self. y =x, y

def x(self) -> float:

"""Returns the x coordinate
return self._x

def y(self) -> float:

"""Returns the y coordinate
return self._y

def distance(self, p: Optional['Point']) -> float:

"""Returns the distance to point p
(or the distance to the origin if p is None)

dx, dy = self.x(), self.y()

if p is not None:
dx -= p.x()
dy -= p.y()
return math.sqrt(dx*dx + dy*dy)

© Dept. CS, UPC 23



Let us designh the new type for Point

ADTs

def angle(self) -> float:
"""Returns the angle of the polar coordinate"""
if self.x() == 0 and self.y() == O:
return 0
return math.atan2(self.y()/self.x())

def __add__ (self, p: 'Point') -> 'Point':
"""Returns a new point by adding the coordinates of two points.
This is a method associated to the + operator"""
return Point(self.x() + p.x(), self.y() + p.y())

def __eq_ (self, p: 'Point') -> bool:
"""Checks whether two points are equal.
This is a method associated to the == operator"""
return self.x() == p.x() and self.y() == p.y()

© Dept. CS, UPC
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How the class methods are invoked

©
=
I

Point(5.0, -3.2) # init (pl1, 5.0, -3.2)
p2 = Point(2.8) # _init_ (p2, 2.8, 0)

distl2 = pﬁ.distance(pZ) # distance(%;, p2)

self

# Distance to the origin
r = pl.distance() # distance(pl, None)

# Create another point by adding coordinates
p3 = pl + p2 # Equivalent to pl. add_ (p2)

# We get the coordinates of the new point
= p3.x() # x = 7.8
y = p3.y() #y = -3.2

X

ADTs © Dept. CS, UPC
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How the class methods are invoked

Point (5.0, -3.2)
p2 = Point(2.8)

©
=
I

distl2 = pl.distance(p2)

class Point:
A 4

r = p1.distance() def __init__ (self, x: float = @, y: float = 9):

def x(self) -> float:

def y(self) -> float:
p3 = pl + p2 . . .

def distance(self, p: Optional['Point']) -»>
float:

def angle(self) -> float:

p3.x()
p3.y()

X
I

def __add__(self, p: '"Point') -> 'Point':

<
I

def __eq__(self, p: 'Point') -> bool:
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Python naming conventions

Function distance, dot_product, multiply by two
Variable X, hum, num_elements

Class Point, CityGraph, ParkingLot

Public method distance, get _angle, shortest_path
Private method _gcd, _check, _calculate_mean

Magic method __init__, _add__, eq__, str__
Constant GRAVITY, MIN_DISTANCE, MAX_NUM_PEOPLE
Module point.py, city graph.py, parking_lot.py
Package geometry, citygraph

Recommendation:
e use short names for modules and packages
* no underscores for package names

Comment: PascalCase, camelCase and snake case

ADTs © Dept. CS, UPC
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Magic methods

They are invoked internally to implement certain actions.
They are not supposed to be invoked by the user.

Some examples:

— Arithmetic: _add_, mul , div_, truediv._, neg ..
— Relational: _eq , ne_ , gt , ge ..

— Representation: __str_,  repr_, ...

— Class initialization: _init_, new del

_ —_—

— and others



Class Point in C++

// The declaration of the class Point
class Point {
public:

// Constructor

Point(double x, double y);

// Constructor for (0,0)
Point();

// Gets the x coordinate
double x() const;

// Gets the y coordinate
double y() const;

// Returns the distance to point p
double distance(const Point& p) const;

// Returns the distance to the origin
double distance() const;

// Returns the angle of the polar coordinate
double angle() const;

// Creates a new point by adding the coordinates of two points
Point operator + (const Point& p) const;

private:
double x, _y; // Coordinates of the point

ADTs X3 © Dept. CS, UPC



Implementation of the class Point

// The constructor: different implementations A

Point: :Point(double x, double y) {
X=X Y=Y

) S

// or also
Point::Point(double x, double y) : x(x), _y(y) {}_/

They are equivalent, but only one of them should be chosen.
We can have different constructors with different signatures.

// The other constructor
Point::Point() : x(0), y(0) {}

ADTs © Dept. CS, UPC
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Implementation of the class Point

double Point::x() const {
return _Xx;

}

double Point::y() const {
return _y;

}

double Point::distance(const Point& p) const {
double dx = x() - p.x(); // Better getX() than x

double dy = y() - p.y();
return sqrt(dx*dx + dy*dy);

}

double Point::distance() const {

} return sqrt(x()*x() + y(O)*y());

Note: compilers are smart. Small functions are expanded inline.

ADTs © Dept. CS, UPC
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Implementation of the class Point

ADTs

double Point::angle() const {
if (x() == @ and y() == @) return 0;
return atan(y()/x());

}

Point Point::operator + (const Point& p) const {

return Point(x() + p.x(), y() + p.y());
}

© Dept. CS, UPC
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Conclusions

 The human brain has limitations: 4 things at once.

 Modularity and abstraction are for designing
large maintainable systems.
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