
Abstract Data Types (I)
(and Object-Oriented Programming)

Jordi Cortadella and Jordi Petit
Department of Computer Science

ADTs © Dept. CS, UPC 2

How many horses can you distinguish?

ADTs © Dept. CS, UPC 3

Two examples
Main loop of binary search
while left <= right:

i = (left + right)/2
if x < A[i]: right = i–1
elif x > A[i]: left = i+1
else: return i

Main loop of insertion sort
for i in range(1, len(A)):

x = A[i]
j = i
while j > 0 and A[j-1] > x:

A[j] = A[j-1]
j -= 1

A[j] = x

ADTs © Dept. CS, UPC 4

Variables used (5):
A, x, left, right, i
(only 3 modified)

Variables used (4):
A, x, i, j

Hiding details: abstractions

ADTs © Dept. CS, UPC 5

Different types of abstractions

ADTs © Dept. CS, UPC 6

Concept maps are hierarchical: why?

ADTs © Dept. CS, UPC 7

Each level has few items

The computer systems stack

ADTs © Dept. CS, UPC 8

Image Credit: Christopher Batten,
Cornell University

The computer systems stack

ADTs © Dept. CS, UPC 9

Image Credit: Christopher Batten,
Cornell University

The computer systems stack

ADTs © Dept. CS, UPC 10

Image Credit: Christopher Batten,
Cornell University

The computer systems stack

ADTs © Dept. CS, UPC 11

Image Credit: Christopher Batten,
Cornell University

Our challenge
• We need to design large systems and reason about complex

algorithms.

• Our working memory can only manipulate 4 things at once.

• We need to interact with computers using programming
languages.

• Solution: abstraction
– Abstract reasoning.
– Programming languages that support abstraction.

• We already use a certain level of abstraction: functions.
But it is not sufficient. We need much more.

ADTs © Dept. CS, UPC 12

Data types
• Programming languages have a set of primitive data types

(e.g., int, bool, float, str, …).

• Each data type has a set of associated operations:
– We can add two integers.
– We can concatenate two strings.
– We can divide two floats.
– But we cannot divide two strings!

• Programmers can add new operations to the primitive data types:
– gcd(a,b), match(string1, string2), …

• The programming languages provide primitives to group data items
and create structured collections of data:
– C: array, struct.
– Python: list, tuple, dictionary.

ADTs © Dept. CS, UPC 13

Abstract Data Types (ADTs)
A set of objects and a set of operations to
manipulate them

ADTs © Dept. CS, UPC 14

Data type: Graph

Operations:
• Number of vertices
• Number of edges
• Shortest path
• Connected components

Abstract Data Types (ADTs)
A set of objects and a set of operations to
manipulate them:

ADTs © Dept. CS, UPC 15

Data type: Polynomial

Operations:
• 𝑃𝑃 + 𝑄𝑄
• 𝑃𝑃 × 𝑄𝑄
• ⁄𝑃𝑃 𝑄𝑄
• gcd(𝑃𝑃, 𝑄𝑄)
• 𝑃𝑃(𝑥𝑥)
• degree(𝑃𝑃)

𝑷𝑷 𝒙𝒙 = 𝒙𝒙𝟑𝟑 − 𝟒𝟒𝒙𝒙𝟐𝟐 + 𝟓𝟓

Abstract Data Types (ADTs)
• Separate the notions of specification and

implementation:
– Specification: “what does an operation do?”
– Implementation: “how is it done?”

• Benefits:
– Simplicity: code is easier to understand
– Encapsulation: details are hidden
– Modularity: an ADT can be changed without

modifying the programs that use it
– Reuse: it can be used by other programs

ADTs © Dept. CS, UPC 16

Abstract Data Types (ADTs)
• An ADT has two parts:

– Public or external: abstract view of the data and
operations (methods) that the user can use.

– Private or internal: the actual implementation of
the data structures and operations.

• Operations:
– Creation/Destruction
– Access
– Modification

ADTs © Dept. CS, UPC 17

Abstract Data Types (ADTs)

ADTs © Dept. CS, UPC 18

Internal
Data

Representation

Private
Operations

Create

Destruct

Read

Write

Modify

⋮

Invisible

User
Interface

(API)

API: Application Programming Interface

Example: a Point

• A point can be represented
by two coordinates (𝑥𝑥,𝑦𝑦).

• Several operations can be
envisioned:
– Get the 𝑥𝑥 and 𝑦𝑦 coordinates.
– Calculate distance between

two points.
– Calculate polar coordinates.
– Move the point by (Δ𝑥𝑥, Δ𝑦𝑦).

ADTs © Dept. CS, UPC 19

𝑥𝑥

𝑦𝑦𝑟𝑟

𝜃𝜃

Example: a Point
Things that we can do with points

p1 = Point(5.0, -3.2) # Create a point (a variable)
p2 = Point(2.8, 0) # Create another point

We now calculate the distance between p1 and p2
dist12 = p1.distance(p2)

Distance to the origin
r = p1.distance()

Create another point by adding coordinates
p3 = p1 + p2

We get the coordinates of the new point
x = p3.x() # x = 7.8
y = p3.y() # y = -3.2

ADTs © Dept. CS, UPC 20

ADTs and Object-Oriented Programming
• OOP is a programming paradigm: a program is a set of

objects that interact with each other.

• An object has:
– fields (or attributes) that contain data
– functions (or methods) that contain code

• Objects (variables) are instances of classes (types).
A class is a template for all objects of a certain type.

• In OOP, a class is the natural way of implementing an ADT.

ADTs © Dept. CS, UPC 21

Classes and Objects

ADTs © Dept. CS, UPC 22

Let us design the new type for Point

ADTs © Dept. CS, UPC 23

class Point:
"""A class to represent and operate with two-dimensional points"""

Declaration of attributes (recommended for type checking)
_x: float # x coordinate
_y: float # y coordinate

def __init__(self, x: float = 0, y: float = 0):
"""Constructor with x and y coordinates"""
self._x, self._y = x, y

def x(self) -> float:
"""Returns the x coordinate"""
return self._x

def y(self) -> float:
"""Returns the y coordinate"""
return self._y

def distance(self, p: Optional['Point']) -> float:
"""Returns the distance to point p

(or the distance to the origin if p is None)"""
dx, dy = self.x(), self.y()
if p is not None:

dx -= p.x()
dy –= p.y()

return math.sqrt(dx*dx + dy*dy)

Let us design the new type for Point

ADTs © Dept. CS, UPC 24

⋮
def angle(self) -> float:

"""Returns the angle of the polar coordinate"""
if self.x() == 0 and self.y() == 0:

return 0
return math.atan2(self.y()/self.x())

def __add__(self, p: 'Point') -> 'Point':
"""Returns a new point by adding the coordinates of two points.

This is a method associated to the + operator"""
return Point(self.x() + p.x(), self.y() + p.y())

def __eq__(self, p: 'Point') -> bool:
"""Checks whether two points are equal.

This is a method associated to the == operator"""
return self.x() == p.x() and self.y() == p.y()

How the class methods are invoked
p1 = Point(5.0, -3.2) # __init__(p1, 5.0, -3.2)
p2 = Point(2.8) # __init__(p2, 2.8, 0)

dist12 = p1.distance(p2) # distance(p1, p2)

Distance to the origin
r = p1.distance() # distance(p1, None)

Create another point by adding coordinates
p3 = p1 + p2 # Equivalent to p1.__add__(p2)

We get the coordinates of the new point
x = p3.x() # x = 7.8
y = p3.y() # y = -3.2

ADTs © Dept. CS, UPC 25

self

How the class methods are invoked
p1 = Point(5.0, -3.2)
p2 = Point(2.8)

dist12 = p1.distance(p2)

r = p1.distance()

p3 = p1 + p2

x = p3.x()
y = p3.y()

ADTs © Dept. CS, UPC 26

class Point:

def __init__(self, x: float = 0, y: float = 0):

def x(self) -> float:

def y(self) -> float:

def distance(self, p: Optional['Point']) ->
float:

def angle(self) -> float:

def __add__(self, p: 'Point') -> 'Point':

def __eq__(self, p: 'Point') -> bool:

Python naming conventions

ADTs © Dept. CS, UPC 27

Type Examples

Function distance, dot_product, multiply_by_two

Variable x, num, num_elements

Class Point, CityGraph, ParkingLot

Public method distance, get_angle, shortest_path

Private method _gcd, _check, _calculate_mean

Magic method __init__, __add__, __eq__, __str__

Constant GRAVITY, MIN_DISTANCE, MAX_NUM_PEOPLE

Module point.py, city_graph.py, parking_lot.py

Package geometry, citygraph

Recommendation:
• use short names for modules and packages
• no underscores for package names

Comment: PascalCase, camelCase and snake_case

Magic methods

• They are invoked internally to implement certain actions.

• They are not supposed to be invoked by the user.

• Some examples:
– Arithmetic: __add__, __mul__, __div__, __truediv__, __neg__, …
– Relational: __eq__, __ne__, __gt__, __ge__, …
– Representation: __str__, __repr__, …
– Class initialization: __init__, __new__, __del__
– and others

ADTs © Dept. CS, UPC 28

Class Point in C++

ADTs © Dept. CS, UPC 29

// The declaration of the class Point
class Point {

public:
// Constructor
Point(double x, double y);

// Constructor for (0,0)
Point();

// Gets the x coordinate
double x() const;

// Gets the y coordinate
double y() const;

// Returns the distance to point p
double distance(const Point& p) const;

// Returns the distance to the origin
double distance() const;

// Returns the angle of the polar coordinate
double angle() const;

// Creates a new point by adding the coordinates of two points
Point operator + (const Point& p) const;

private:
double _x, _y; // Coordinates of the point

};

Implementation of the class Point

// The constructor: different implementations
Point::Point(double x, double y) {

_x = x; _y = y;
}

// or also
Point::Point(double x, double y) : _x(x), _y(y) {}

// The other constructor
Point::Point() : x(0), y(0) {}

ADTs © Dept. CS, UPC 30

They are equivalent, but only one of them should be chosen.
We can have different constructors with different signatures.

Implementation of the class Point
double Point::x() const {

return _x;
}

double Point::y() const {
return _y;

}

double Point::distance(const Point& p) const {
double dx = x() – p.x(); // Better getX() than x
double dy = y() – p.y();
return sqrt(dx*dx + dy*dy);

}

double Point::distance() const {
return sqrt(x()*x() + y()*y());

}

ADTs © Dept. CS, UPC 31

Note: compilers are smart. Small functions are expanded inline.

Implementation of the class Point

double Point::angle() const {
if (x() == 0 and y() == 0) return 0;
return atan(y()/x());

}

Point Point::operator + (const Point& p) const {
return Point(x() + p.x(), y() + p.y());

}

ADTs © Dept. CS, UPC 32

Conclusions

• The human brain has limitations: 4 things at once.

• Modularity and abstraction are for designing
large maintainable systems.

ADTs © Dept. CS, UPC 33

	Abstract Data Types (I)�(and Object-Oriented Programming)
	Slide Number 2
	Slide Number 3
	Two examples
	Hiding details: abstractions
	Different types of abstractions
	Concept maps are hierarchical: why?
	The computer systems stack
	The computer systems stack
	The computer systems stack
	The computer systems stack
	Our challenge
	Data types
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Example: a Point
	Example: a Point
	ADTs and Object-Oriented Programming
	Classes and Objects
	Let us design the new type for Point
	Let us design the new type for Point
	How the class methods are invoked
	How the class methods are invoked
	Python naming conventions
	Magic methods
	Class Point in C++
	Implementation of the class Point
	Implementation of the class Point
	Implementation of the class Point
	Conclusions

