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Abstract

This report is a quick review about the most up to date state of my
research.

Finally, I have the hope of having reached a right general measure of
the knowledge conveyed by a distribution. This measure is supported by an
axiomatic approach and has a clear interpretation in terms of a geometric
representation of knowledge. It applies equally to marginal and conditional
distributions, and provides the relation between them and the joint dis-
tribution. It also allows for a particular definition of dependence between
attributes.

Applying the same axiomatization to disjoint dependent events (in our
context, each of the outcomes of any feature), gives rise to the question of the
algebraic structure of knowledge, which still remains somewhat confused.

From this general expression of knowledge it is straightforward to give
precise definitions of the concepts of presence (representativity), coherence
(reliability) and utility (quality), that I have been handling since the very
beginning of my work.

Amazingly, after turning the matter over and over, I have ended up with
an expression of knowledge, (or certainty), which is very similar to nor-
malized entropy, (or uncertainty). This can be easily explained considering
that certainty and uncertainty are in essence the same thing, just different
degrees of believe.

It turns out that, while being entropy a logarithmic additive measure,
knowledge appears to be a multiplicative quadratic measure. Taking into
account this difference, a lot of analogies can be observed between both mea-
sures. In particular, the set of properties of entropy turns, consequently, to
the same set of properties for knowledge: monotonicity, normalization, sym-
metry, expandability, and analog properties to additivity (for independent
attributes) and subadditivity, but referred both to the operation of multi-
plication.

Our first empirical results show that this measure of knowledge, definitely
outperforms entropy. An extended version of this report will be soon ready,
including a detailed empirical comparison between both measures. I expect
to include also a new section, explaining how the parametrical evidence
function fits in this new approach.
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Chapter 1

Structural Evidence

Our intention is to define a measure of the quality of the explanation model
represented by the implication Xp → Xq (where Xp, Xq can be features or
sets of features).

Our initial hypothesis is that the quality of the information conveyed by
this implication is a combination of the knowledge explicit by its conditional
distribution, and the knowledge implicit in the marginal distribution of both,
antecedent and consequent. This two sources of knowledge are clashing
in the sense that, the more biased the marginal distribution is, the more
predictable is the possible outcome, independently of the fact of considering
the possible relation of dependence between them.

Consequently, in order to adeptly measure the quality of an implication
we should compose these two kinds of knowledge in a single measure. This
measure should express a delicate equilibrium in the way we are combining
them, and this is the way the bias/variance dilemma takes form in our
context.

A second hypothesis is that the quality (richness) of any explanation
model is going to be definitely related with the cardinality of both, an-
tecedent and consequent of the implication. The way this richness is ex-
pressed, is through the uncertainty U = 1/s and certainty C = (s− 1) /s
factors associated to any cardinality s.

1.1 Axiomatic approach

What we are concerned about is useful, or actionable, knowledge, that is,
knowledge of a consequent given that an antecedent is known.

In [3], after reviewing Kolmogorov’s axiomatization in the context of fi-
nite sample spaces, we conclude that knowledge 6= probabilities. Knowledge
is expressed in the form of rules and probabilities, but they are not exactly
the same thing. Consequently, probability axiomatization may not be the
most appropriate in our context.
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The main differences with respect to probabilities refer in particular to
the following:

• knowledge can never be zero (in the worst case, we should have equal
expectations for each possible outcome, and this states a minimum
knowledge greater then zero), neither can be one (absolute knowledge
is unfeasible due to the inherent uncertainty of the context);

• knowledge is inherently related to the cardinality of features;

• knowledge should be contrastable.

Hereof, we give the following primary axiomatic approximation to knowl-
edge:

Definition 1. Given a sample space Ω = {Xp, Xq}, and given a sample
D drawn from Ω, we write S ⊂ Ω as the set of all events observed in the
sample, and its complementary, U ⊂ Ω, as the set of all events not observed
in the sample. Then, K(A) is a knowledge measure over Ω = {S ∪ U} if:

• Axiom 1. for any event A ∈ Ω, UA ≤ K (A) < 1, being UA the uncer-
tainty factor associated to A, given at the point of equiprobability.

with analogous definitions for conditional knowledge and independence,

• Axiom 2. for any two events (A,B) ∈ Ω, UB ≤ K (B |A) < 1

• Axiom 3. B is independent of A as long as K (B |A) ≤ K (B)

Note that some significant differences with respect to probability axioms
are implicit in this axiomatization:

• we are not considering herein any particular algebraic structure for
knowledge about disjoint events, therefore no notion of countable ad-
ditivity is defined;

• a relation of dependence is not an on/off switch: it would be reasonable
to consider independence in the range stated by axiom 3, and consider
higher degrees of dependence as far as K (B |A) ≥ K (B).

Also, note that we write Ω = {S ∪ U} in order to explicitly include
the uncertainty inherently associated to any data mining process. What
we pretend, is to relax the assumption of identical distribution. But, it is
not that we are expecting that new examples may come from a possibly
diferent distribution, (in this case, our effort to model it would be sensless).
Rather, we are cautious that the sample may not convey enough evidence
about the whole of the distribution, specially when we are considering a
joint explanation model involving many features.
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1.2 States of minimum information

In order to measure the knowledge conveyed by a distribution, we define
a reference uninformative distribution from which we can take measures of
deviation. Our interpretation is that, the larger the deviation, the greater
the amount of knowledge expressed by that distribution.

This uninformative distribution is analogously defined for marginal and
conditional distributions.

1.2.1 The null conditional distribution (ncd)

Definition 2. Two features (Xp, Xq) ∈ X, with |Xq| = s, are in null
conditional distribution (ncd) whenever ∀

(
xp

i , x
q
j

)
∈ (Xp, Xq) all joint fre-

quencies are npq
ij = np

i /s

1.2.2 The perfect marginal distribution (pmd)

Definition 3. A feature Xp ∈ X, with |Xp| = r, is in perfect marginal
distribution (pmd) whenever all its possible outcomes are equally covered,
that is, ∀xp

i ∈ Xp all marginal frequencies are np
i = N/r

It is important to note that, these reference uninformative distributions
are independent of any sample or domain under consideration.

1.3 Deviation from minimum information

Given two features Xp with |Xp| = r, and Xq with |Xq| = s, a reasonable
expression of the deviation of their conditional distribution (Xq |Xp) with
respect to the ncd, is,

∆ (Xq |Xp) =
r,s∑
i,j

(
δpq
ij

)2
=

r,s∑
i,j

(
np,q

i,j

np
i

− 1
s

)2

(1.1)

A simple illustration of our analogy between marginal and conditional
knowledge is to consider the pattern � → Xq, or better said, D → Xq,
being D the sample data. This relation conveys the prior knowledge about
the feature, as it should be inferred from the data, and would be given by
the deviation of its marginal distribution with respect to the pmd, that is,

∆ (Xq) =
s∑
j

(
nq

j

N
− 1

s

)2

(1.2)
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1.4 Geometric interpretation

Let’s take as a reference the marginal distribution of feature Xq and its
deviation from the pmd. The raw deviation of any xq

j is given by,

δq
j = δ

(
xq

j

)
=

(
nq

j

N
− 1

s

)
Let’s fix a square with an area equal to one and let’s imagine that this

area represents the absolute knowledge. Let’s divide each side at the point
corresponding to 1/s, so that we get two portions, according to the certainty
and uncertainty factors. We will refer to the crossing point as the point of
minimum information.

Now, let’s represent the square of a positive δ+ and a negative δ− devi-
ations with respect to the point of minimum information, as it is shown in
fig. 1.1
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Figure 1.1: Graphical representation of knowledge

It can be observed that the square of the deviations are areas relative
to the full square, and we have a graphical representation of knowledge as
areas.

A further illustration of how deviations and square deviations are related
in our graphical representation of knowledge is given in fig.1.2.

We can easily observe the following basic properties:

• for some values of j we will have positive deviations and for others we
will have negative deviations, and they all sum up to zero,

s∑
j

δq
j =

s∑
j

(
nq

j

N
− 1

s

)
=

1
N

s∑
j

nq
j − 1 = 0 (1.3)
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Figure 1.2: Knowledge representation for Xq with s = 3

• obviously, this does not hold for square deviations, where the square
of the sum is not the sum of the squares, but we have,

s∑
j

(
δq
j

)2
=

s∑
j

(
nq

j

N
− 1

s

)2

=
s∑
j

(
nq

j

N

)2

− Us (1.4)

Hence, when we have maximum deviation, i.e.
∑s

j

(
δq
j

)2
= 1 − Us,

we still have a lack of knowledge amounting Us, and what we get is the
shadowed areas shown in figure 1.3 for different values of s.
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Figure 1.3: Areas of certainty and uncertainty for s = 2, 3, 4

For each cardinality, the shadowed, and not shadowed, areas represent
the relation between certainty and uncertainty with respect to the absolute
knowledge given by the full square. Absolute knowledge, or absence of
uncertainty, would only be achieved with an infinite cardinality, that is, a
continuous feature.
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At the same time, let’s note how the relation between quality of knowl-
edge and cardinality, appears naturally from the simple fact of taking mea-
sures of deviation with respect to minimum information.

But, does this scaling of knowledge make any sense? Does even make
any sense to consider that an additive combination of such areas is certainly
related to the global knowledge it should express?

1.5 Marginal knowledge

Referring to our axiomatic approach, the minimum knowledge we can have
is that given by the uncertainty factor. That is, at the point of minimum
information we have U , and it increases as the square deviations increase.

The most direct expression of this idea is,

K (Xq) = Us +
s∑
j

(
δq
j

)2
(1.5)

This is intuitive not only from the axiomatic point of view, but also from
the geometric point of view, where it is clear that Us is just the complemen-
tary portion of knowledge to get the full square.

In fact, by the property 1.4, the above expression 1.5, is nothing more
than,

K (Xq) =
s∑
j

(
nq

j

N

)2

and it is straightforward to show that this measure holds the following prop-
erties:

1. normalization

2. monotonicity (with respect to deviation)

3. symmetry

4. expansibility

1.6 Conditional knowledge

The same reasoning applied to marginal distributions in 1.5, can be applied
to conditional distributions, where we get,

K (Xq |xp
i ) = Us +

s∑
j

(
δpq
ij

)2
(1.6)
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which equally simplifies to,

K (Xq |xp
i ) =

s∑
j

(
npq

ij

np
i

)2

As desirable, in case of independence, this expression yields,

K (Xq |xp
i ) = K (Xq)

This gives a clear interpretation of how the knowledge conveyed by
the conditional distribution relates to the dependence relation between an-
tecedent and consequent:

• given a particular evidence, the minimum knowledge we can have is
K (Xq |xp

e) = Us, which corresponds to the point of equiprobability or
equilibrium;

• at the point of independence we will have K (Xq |xp
e) = K (Xq) ≥ Us;

• from that point on, K (Xq |xp
e) > K (Xq) and we may begin to con-

sider a possible relation of dependence;

• and in case of absolute dependence, K (Xq |xp
e) = 1

For the whole pattern Xp → Xq, it is going to be useful to define
K (Xq |Xp) in terms of a weighted mean expression of the knowledge con-
veyed by the conditional distribution given each xp

i , that is,

K (Xq |Xp) =
r∑
i

np
i

N
K (Xq |xp

i ) = Us +
r∑
i

np
i

N

s∑
j

(
δpq
ij

)2
(1.7)

1.7 Joint distributions

Following from the general expression, we have,

K (Xp, Xq) = Urs +
r,s∑
i,j

(
npq

ij

N
− Urs

)2

=
r,s∑
i,j

(
npq

ij

N

)2

(1.8)

In this case, we have the following relation between the knowledge con-
veyed by the joint distribution and the dependence relation between an-
tecedent and consequent:

• The minimum knowledge we can have is K (Xp, Xq) = Urs, which
corresponds to the point of equiprobability or equilibrium.
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• In case of independence we have,

r,s∑
i,j

(
npq

ij

N

)2

=
r∑
i

(
np

i

N

)2 s∑
j

(
nq

j

N

)2

thus,

K (Xp, Xq) = K (Xp) K (Xq) ≥ Urs (1.9)

Let’s note that this is an analog property to additivity, but with respect
to multiplication.

• From that point on, we may begin to consider a relation of dependence,
and following from,

r,s∑
i,j

(
npq

ij

N

)2

=
r∑
i

(
np

i

N

)2 s∑
j

(
npq

ij

np
i

)2

we get,

K (Xp, Xq) =
r∑
i

(
np

i

N

)2

K (Xq |xp
i ) (1.10)

So, what we have is a particular composition of the marginal and con-
ditional knowledge given each particular outcome of the antecedent.

Because of dependence, ∀xp
i , K (Xq |xp

i ) ≥ K (Xq), therefore,

K (Xp, Xq) =
r∑
i

(
np

i

N

)2

K (Xq |xp
i )

≥
r∑
i

(
np

i

N

)2

K (Xq) = K (Xp) K (Xq) (1.11)

So, the measure holds also an analog to the subadditivity property, but
in the opposite direction, and expressed again, in terms of multiplica-
tion.

• And in case of absolute dependence, for each xp
i , K (Xq |xp

i ) = 1, and
consequently,

K (Xp, Xq) = K (Xp) (1.12)
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1.8 Disjoint dependent events

At this point we are coming across with the most controversial question of
our approach. Being consequent with our axiomatization, the knowledge
we can have with respect to each elementary event xq

j , should be given
analogously by,

K
(
xq

j

)
= Us +

(
δq
j

)2
= Us +

(
nq

j

N
− Us

)2

(1.13)

In some way, this should be related with the portion of knowledge that
each element contributes to K (Xq). But it is obvious that, nor K (Xq) =∑s

j K
(
xq

j

)
, neither K (Xq) =

∏s
j K

(
xq

j

)
. Thus, the question about the

algebraic structure of knowledge remains somewhat confused. How should
we think about knowledge when it looks not to be additive neither multi-
plicative?

One alternative is to redefine eq. 1.13 as,

K
(
xq

j

)
= U2

s +
(
δq
j

)2
= U2

s +

(
nq

j

N
− Us

)2

in which case we would certainly have K (Xq) =
∑s

j K
(
xq

j

)
.

But it would not be quite fair to justify that uncertainty with respect to
any outcome xq

j is reduced to U2
s in case of minimum information.

Moreover, the relations given in 1.9 and 1.10 suggest that knowledge
should combine by multiplication rather than addition. This is the reason
why I posed that bridge to information theory [3], in which I proposed an
exponential based structure of knowledge. But this posing comes along with
some new controversial questions and I’m still working on it.

1.9 Functions of structural evidence

Once we have given a general definition of the knowledge conveyed by
marginal and conditional distributions, it is straightforward to derive the
measures of structural evidence of any implication Xp → Xq.

1.9.1 Coherence

Coherence is a measure of the reliability of the whole implication involved
by the pattern Xp → Xq, and is given by the mean conditional knowledge
given by eq 1.7,

Cpq = K (Xq |Xp) = Us +
r∑
i

np
i

N

s∑
j

(
δpq
ij

)2
(1.14)
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1.9.2 Presence

Presence is a measure of the representativity of the sample with respect to
a feature, and is given by the opposite of the marginal knowledge, that is,

Bq = 1−K (Xq) = Cs −
s∑
j

(
δq
j

)2
(1.15)

1.9.3 Utility

Utility is a composition of the two formers, in which both clashing sources
of knowledge are combined, in order to get a measure of the quality of the
implication Xp → Xq, as an explanation model of Xq,

Upq = Cpq Bq (1.16)

Note that whenever Xq is in pmd, we have Bq = Cs. That means that,
in the best case, our knowledge about Xq would be Upq = Cs Cpq.

In other words, utility is indeed the right upper bounded expression of
knowledge, in compliance with our first axiomatization [3], that we had
already introduced in eq. 3.9 in [3], that is,

K (Xq) = Cs

Us +
s∑
j

(
δpq
ij

)2


1.10 Knowledge and Entropy

At that point, it can be hardly overlooked, that after turning the matter
over and over, we have ended up with a very simple expression (far from our
first posing), which is closely related to entropy1, holding analog definitions
and analog properties. This is shown in table 1.1.

Therefore, because of the close (though reversed) conceptual meaning of
both measures, presence and coherence could be directly defined in terms of
normalized entropy, that is,

Bq = Hn (Xq)

Cpq = 1−Hn (Xq |Xp)

and composed in an expression of utility, exactly in the same way that in
eq. 1.16.

1In order to get similar values we should consider normalized entropy
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Entropy Knowledge

H (Xq) = −
∑s

j

nq
j

N log
nq

j

N K (Xq) =
∑s

j

(
nq

j

N

)2

0 ≤ H (Xq) ≤ log (s) Us ≤ K (Xq) < 1

H
(
xq

j

)
= −nq

j

N log
nq

j

N (!?) K
(
xq

j

)
= Us +

(
nq

j

N − Us

)2

H (Xq| xp
i ) = −

∑s
j

npq
ij

np
i

log
npq

ij

np
i

K (Xq| xp
i ) =

∑s
j

(
npq

ij

np
i

)2

H (Xq| Xp) = −
∑r

i
np

i
N H (Xq| xp

i ) K (Xq| Xp) =
∑r

i
np

i
N K (Xq| xp

i )

for Xq ⊥ Xp

0 ≤ H (Xq| Xp) ≤ H (Xq) Us ≤ K (Xq| Xp) ≤ K (Xq)
otherwise

K (Xq) < K (Xq| Xp) < 1

H (Xp, Xq) = −
∑r,s

i,j

npq
ij

N log
npq

ij

N K (Xp, Xq) =
∑r,s

i,j

(
npq

ij

N

)2

for Xq ⊥ Xp for Xq ⊥ Xp

H (Xp, Xq) = H (Xp) + H (Xq) Urs ≤ K (Xp, Xq) ≤ K (Xp) K (Xq)
otherwise otherwise

0 < H (Xp, Xq) < H (Xp) + H (Xq) K (Xp) K (Xq) < K (Xp, Xq) ≤ K (Xp)

Table 1.1: Definitions and properties.
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So the question is now, was it worth, after all? Did not already exist
such a measure? And in case it does not, what new contributions may we
get from this approach? Answering to these questions is the job in which
I’m working now.

Let’s forward that the key point is that while entropy is defined in terms
of uncertainty and minimum description length, our measure is directly de-
fined in terms of knowledge, (certainty), and maximum quality expression
of it, which in turn, leads equally to minimum description length models.
The advantage is that, from our side, we are giving a more direct and clear
interpretation of knowledge.

I have performed some empirical comparisons, using the synthetic toy
domain already presented in [2] and [3]. Beyond all doubt, the conclusion
that can be drawn from the results, is that the measure of knowledge per-
forms much better then entropy : convergence to the right model is more
reliable and faster, and robustness against bias and sample size is definitely
better.

This better performance can be explained basically from three facts: (i)
knowledge is more unbiased with respect to cardinality; (ii) the delicate bal-
ance between coherence and presence, (our expression of the bias\variance
dilemma), is better achieved with our measure, (in the way I like it, it states
the right will for seeing and believing); and (iii) knowledge has a preference
for lower cardinalities whenever evidence is blurred, and has a preference
for higher cardinalities whenever the representativity of the sample is good
enough, while entropy is neutral with respect to these questions. This can
be seen in fig. 1.4.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Coherence (by Knowledge)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Presence (by Knowledge)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Coherence (by Normalized Entropy)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Presence (by Normalized Entropy)

max.=1

min.=Us

max.=Cs

max.=1 max.=1

min.=0 min.=0

min.=0

Figure 1.4: Maximum and minimum values for 2 ≤ s ≤ 25

This special combination of bias toward simple models in the measure
of coherence, and bias toward complex models in the measure of presence,
is what leads to the highest quality models.
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1.11 Concluding

We have finally achieved an expression that has a nice geometric interpre-
tation in terms of knowledge conveyed by a distribution. At the same time,
this expression holds the basic properties that one would expect from an
axiomatic point of view.

But, one of the most important, is how this measure expresses that, the
notion of quality of knowledge appears naturally related to the cardinality
of the features, and it is inherent to the simple fact of measuring deviations
with respect to the minimum information.

This does not state yet any guarantee that knowledge should follow this
behavior. But indeed, it is an interesting indication that our geometric
representation of knowledge may express by itself a right cardinality scaling
of knowledge.

The empirical validations suggest that, at least for this particular kind
of problem, our measure definitely outperforms entropy. In this case, we
use our measure as a heuristic in order to search within the whole space of
models that may describe the domain, and in fact, it leads us to the right
one. Hence, we are ranking the right rules as the best. My reasoning is that,
conversely, when facing a different kind of problem in which the set of rules
is already defined, the rank given by our measure should place the best ones
in the first positions. Therefore, it is reasonable to expect that this measure
may be useful for other data mining issues.

Finally, let’s point out the following suggestive consideration: being our
measure a descriptive measure, it has its roots close to a statistical measure
as it is the χ2, and has a formal definition and properties close to entropy
based considerations. That is, in some sense, it embodies some of the char-
acteristics of all of them, being placed somewhere in the middle of the space
of interestingness measures.
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Chapter 2

Parametrical Evidence

When talking about parametrical evidence, we refer to the fact of observing
the frequencies present in the sample, with the aim of learning plausible
parametric models that can be associated to the implication Xp → Xq,
namely, the marginal distribution of the antecedent, P (Xp), and the condi-
tional distribution of the consequent, P (Xq| Xp).

Every learning paradigm in knowledge discovery,
What is our the difference between structural and parametrical evidence?
The second hypothesis expresses the idea that the global evidence con-

veyed by a sample, refers to two different aspects about the represented
domain: (i) the first one relates to which are the relations among features
that actively operate in the behaviour of the domain, what is known as
the dependencies model, and (ii), the second one relates to how this active
relations operate in case they certainly exist. We refer to the former as
structural evidence, which will determine the topology of the model, and to
the latter as parametrical evidence, which will determine the parameters of
the model.

It is clear to our intuition, that whenever a dependence exist among two
features, it should be independent of any unbalance in the marginal distri-
butions. This will affect their parametrical relation but not the dependence
nature of its relation.

From this consideration, knowledge discovery can be tackled as two sep-
arate problems, one related to the structure of the model and another one
related to the parameters of the model, (in association rule mining, the
optimal set of rules and the confidence of the rules).

2.1 Axiomatization
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