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Abstract. We address the problem of assessing the information con-
veyed by a finite discrete probability distribution, within the context of
knowledge discovery. Our approach is based on two main axiomatic in-
tuitions: (i) the minimum information is given in the case of a uniform
distribution, and (ii) knowledge is akin to a notion of richness, related
to the dimension of the distribution. From this perspective, we define a
statistic that has a clear interpretation in terms of a measure of certainty,
and we build up a plausible hypothesis, that offers a comprehensible in-
sight of knowledge, with a consistent algebraic structure. This includes
a native value for the uncertainty related to unseen events. Our con-
tributions are then faced up with entropy based measures. Finally, by
implementing our measure in a decision tree induction algorithm, we
show an empirical validation of the behavior of our measure with respect
to entropy. Our conclusion is that the contributions of our measure are
significant, and should lead to more robust models.
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1 Introduction

Many data mining tasks for knowledge discovery rely on the use of the so called
information measures. Such measures are intended in order to select an optimal
model (statistical model selection, graphical modeling), an optimal set of rules
(classification rule mining), an optimal split at each node of a tree (induction of
decision trees), an optimal discretization of a continuous variable, or whatever.
In any case, all of them are particular forms of expressing knowledge learned
from data, which in our context, means the degree of certainty with respect to
the outcome of a random variable. But, regardless to the final objective of the
mining process, (let’s suppose that no prior knowledge is available), knowledge
is invariably and uniquely expressed by occurrences and co-ocurrences of values,
observed in the sample. Therefore, such measures intend to assess the amount
of information conveyed by any finite discrete probability distribution observed
in the data.

Among others, Shannon’s entropy [11] is the most widely known measure of
uncertainty associated to a probability distribution. Some attractive properties
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hold for this measure that make it uniquely characterized [2]. A nice corre-
spondence can be established between these properties and, what is commonly
accepted as, a plausible axiomatic definition of knowledge [1]. This is the reason
of its success, and the basis of a comprehensive later work.

Although entropy is strongly rooted within the information theory commu-
nity, entropy’s characterization does not properly attain to cover some aspects
of knowledge. It is well known, for instance, that when applied to the induction
of decision trees, entropy shows a certain bias for attributes with greater car-
dinality. Also, it yields some undesired results, when the attributes to be used,
and/or the classes to be learned, have highly imbalanced frequencies. Thus, fur-
ther generalizations have been developped, like Rényi’s entropies of type a [10],
and Dardczy’s entropies of type f [3]. Furthermore, other solutions have been
suggested in the form of combined entropies, (entropic gain [8], the u coefficient
of Theil [13], the gain-ratio [9], the Kvalseth coefficient [6], or more recently the
off-centered entropies [7]).

Alternatively, we propose a new measure of certainty !, which is derived from
a slightly different axiomatization of knowledge, that takes into account these
aspects. As we will show, when applied to practical problems such as induction
of decision trees, this perspective leads to some different results.

In section 2, we describe the aim and major contributions of our approach.
In section 3, we briefly review the groundwork of the proposed measure. In
section 4, we focus on entropy based measures, and how they relate with our
contributions. In section 5, we give some experimental results. Finally, in section
6, we comment the results and summarize our conclusions.

2 Contributions

In a few words, we introduce a measure of Certainty upon empirical probability
distributions. With this measure, we aim at overcoming two important aspects
of knowledge that, in our opinion, are not yet properly covered.

2.1 The Cardinality Scaling of Knowledge

Let’s figure the problem of modeling the price of a house from a set of features
(city, square meters, garage, ...). We can deal with it as a regression problem, ok.
But we also could try to discretize the price variable, and treat it as a classifica-
tion problem. In this case, it is clear that, (overfitting issues apart), the higher
the cardinality of the class variable in our final model, the more the information
it expresses. This is a direct illustration of our intuition that knowledge is akin to
a notion of richness, related to the dimension of the distribution. But we would
like to depict a deeper idea of this concept.

! Certainty and uncertainty are indeed quite the same thing: just different degrees
of knowledge. But we want to emphasize this aspect, as opposed to entropy based
measures.
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So, let’s figure the following horse race betting example. We have a sample of
races, in which two horses, (Tomcat and Apache), show equal number of victories.
Apparently, there exist no compelling reasons to lean over either of them in future
races. Now, let’s suppose that we have an equal size second sample of races, in
which Tomcat is running against two competitors, and we observe the same 0.5
winning risk for Tomcat. In this case, it could make sense to bet. Going further,
if more competitors are involved in the race, and the sample keeps yielding the
same 0.5 risk for Tomcat, the chances of its individual competitors are bound
to decrease, and we are increasingly confident on Tomcat. Indeed, we are always
bound to loose 0.5 of our bets in the long run, but it is clear that our epistemic
state is quite different, and we are increasingly compelled to bet on those more
populated races, though Tomcat’s chances remain the same.

The aim of this example is just to show that knowledge about random events
is conditioned, not only by the observed frequencies, but also by the dimension
of the probability distribution under consideration, (or the cardinality of the
set of possible outcomes). Therefore, we call this effect the cardinality scaling
of knowledge, which we may regard as different levels of quality of knowledge.
The roots of this effect must be seek, not in the decreasing chances of each
competitor, but rather in the curse of dimensionality: given a finite fixed sample
size, the higher the dimension of the sample space (the number of competitors),
the lower the prior chance of observing a 0.5 risk for Tomcat, so its statistical
significance varies.

Now let’s think of it the other way round, as it happens to be in data mining
processes, when, given a fixed sample, models of different complexity are taken
under consideration: the statistical significance of the corresponding observed
frequencies is different, and so must be the amount of knowledge they convey.

In fig.1 we show how entropy and certainty capture this aspect of knowledge.
This depiction shows the pieces of information, that each elementary event, con-
tributes to the total certainty /uncertainty of the random process, for a growing
number of uniform competitors, (given by s), while Tomcat’s chances remain the
same. The bottom one is Tomcat’s 0.5 risk contribution.

In essence, what this figure shows is the evolution of our epistemic state
with respect to the outcome of the race, in relation with the growing number
of runners. Both of them express the obvious increase of uncertainty with the
number of competitors, but we can observe some differences:

1. the increasing rate of uncertainty is different, so we should assume that, at
a global level, each approach expresses a different scaling of knowledge;

2. the bounding is also different, lim;_, o (Hs) = 0o, while lim;_, o (Ks) = 0.25;

3. the single event Tomcat wins, contributes a fixed (cardinality independent)
amount to the total uncertainty, while its contribution to the total certainty
is dependent on the number of runners (cardinality dependent);

4. as the number of runners increases, the competitors contribute together an
increasing amount of uncertainty, while their joint contribution to the total
certainty tends to zero.
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Fig.1. Given P (O 5, (S 1),. . %), depiction of the elementary contributions to:

(left) uncertainty as expressed by entropy; (right) certainty as expressed by equation
3, (promptly introduced in section 3). Please note the different scaling

Now, given an ideal, large enough, sample size, the question is: does our
initial state of knowledge, (with two runners), evolve to an (almost) infinite
uncertainty, as the number of runners grows (almost) indefinitely? This can be
argued in many different ways, but our point of view is that the answer to this
question is definitely no. Otherwise, this assumption would leave no room to our
certainty that Tomecat is going to win half of the races.

Our reasoning comes from the certainty side. As the cardinality increases,
our certainty decreases, and each competitor’s contribution is less because their
chances are lower. Up to here, this is correctly expressed by entropy. The differ-
ence in our measure is that, while being more uncertain about the outcome, the
certainty part is increasingly due to Tomcat’s chances. At the limit, we reach an
ideal situation in which we just have the amount contributed by Tomcat. This
is because the competitors are (tending to) infinite and uniform, two reinforcing
reasons that explain a null contribution to the final certainty. At the same time,
as each competitor’s chances has almost vanished, Tomcat’s victory seems to
be amazingly guaranteed. But our certainty can not be one because Tomcat’s
chances are less than one, what leads to the maximum possible certainty, that
is, just the value contributed by Tomcat in our initial state. We judge this as a
more comprehensible description of our epistemic state, than a state of infinite
uncertainty.

2.2 Uncertainty about Unseen Events

The former example is an illustration of what we refer as the algebra of knowledge,
that is, the way we measure the pieces of knowledge contributed by each one
of the elementary events of the sample space, and the way these pieces should
be combined, in order to yield a global measure of the information conveyed
by their observed distribution. Obviously, this must include all that part of the
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sample space that is not observed in the sample, what we call the unseen events.
This is again, a well known consequence of the curse of dimensionality.

Decision trees, are a clear illustration of this issue. Given a fixed sample, the
more expanded the tree, the higher the chances of getting to empty leaves. The
set of empty leaves represents the unobserved part of the input space. When-
ever the sample is representative enough of the domain, the existence of empty
leaves could make sense: for instance, in a tree involving features as the age
and profession of people, it would make sense to find the 80-years-old-sportsman
leave empty, (though it may indeed occur in the real world). Unfortunately, real
world cases are not so clear, and even very large samples, become not enough
representative of the domain, as soon as the tree is just a few levels depth.

This lack of representation gives rise to an important amount of uncertainty.
Therefore, it is a must to take empty leaves (unseen events) under consideration,
when learning decision trees, (or more generally speaking, any kind of models),
from data.

With regard to such basic concept of generalizing from the training data, en-
tropy yields a puzzling result: the uncertainty contributed by an unseen event is
zero!, as expressed by the weird mathematical artifact H(0) = 0log co = 0. This
result is somewhat clashing, and according to this, we are lead to believe that
some issues seem to be sneaking through entropy’s axiomatization of knowledge.
The evidence is that, at this point, one has to rely on ad-hoc regularization or
smoothing procedures, in order to estimate a complete probability distribution
from the frequencies observed in the sample.

Conversely, we start up with a slightly different axiomatic approach to knowl-
edge. From there, we derive a measure of certainty which achieves both: it
takes into account the cardinality scaling of knowledge, and it yields a natively
smoothed piece of certainty about each single event, being it observed or not in
the sample. This measure is characterized by an analog set of properties to those
holding for entropy. But, in our case, the algebra of knowledge is more clearly
stated and offers a quite comprehensible insight of knowledge.

3 A Measure of Certainty

In the following, we denote by P = (p1,p2,...,Ds), a finite discrete probability
distribution, where P is a vector of observed frequencies over the set of disjoint
dependent events 2 = {ej,es,...,es} observed in a sample. Also, we denote
by Cs = (s —1)/s and Us = 1/s, what we call, the certainty and uncertainty
factors associated to the cardinality s of the distribution.

Our starting point is to measure the deviation of any such distribution, with
respect to uniformity. Uniformity means equiprobability, which is the most un-
informative distribution about the outcome of a random variable. Thus, our
interpretation follows straightforward: the larger the deviation, the greater the
amount of knowledge expressed by that distribution. The expression of such
deviation is:
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Now, let’s introduce our simple axiomatic requests: (i) the minimum knowl-
edge we can have is that given in case of uniformity, and (ii) knowledge is akin
to a notion of richness, related with the cardinality of the distribution. From the
combination of both we may derive that, in the worst case, knowledge should
not be zero. A more consequent alternative is to consider that the minimum is
expressed by the uncertainty factor. That is, at the point of minimum informa-
tion we have Us, and it increases as the square deviations increase. The most
direct expression of this idea is,

K (P)=Us+Y (pj —U)*=>_p} (1)
j=1 j=1

It is straightforward to show that the following properties hold: (i) normal-
ization, (ii) monotonicity (with respect to deviation), (iii) symmetry and (iv)
expansibility.

And yet a fifth property holds, in relation to the composition of two succes-
sive random variables: given P = (p1,pa2,...,ps) and T = (t,1 —t), and their
composition Q = (¢p1, (1 —t) p1,p2,...,ps), we have,

Ko41(Q) = Ks (P) —pt (1 — K2 (7)) (2)

This looks quite natural: our knowledge about the final outcome of the suc-
cessive composition of two distributions, is the certainty of the first distribution
except for the additional uncertainty contributed by the second distribution.

3.1 Disjoint Dependent Events

One may think that there is nothing new in eq.1: it just looks like a simple
translation of the euclidean distance to the uniform distribution, leading us to
the well known indezxes of diversity/concentration, long ago defined by [4], [5] or
[12], among others. Furthermore, eq.1 is apparently independent of cardinality,
and explicitly expresses that any unseen event has a null contribution to the
total certainty.

The point comes with the algebra of knowledge that underlies this expression.
In fact, for each elementary event we have that,

p? = (Us + (p; — US))Q = Us2 +(pj — US)2 +2Us (p; — Us)

Therefore, we see that the term U, (the certainty offset), is equally dis-
tributed among all possible outcomes of the distribution, yielding a term U2,
and the amount contributed by each e; is, (p; — U,)? + 20U, (p; — Us), from
which the second term globally cancels out.



Certainty upon Empirical Distributions 7

Fig. 2. Single event’s Certainty for s = {2,4, 8,16, 32,64, 128, 0o}

Consequently, if p; is the observed probability of occurrence of event e;, our
knowledge about the outcome of ¢; is the composition of two terms: a cardinality
dependent offset, and a deviation with respect to the uniform distribution,

K (pj) = U2+ (p; — Us)* (3)

While remaining consequent with eq.1, that is, K (P) = ijl K, (pj), this
expression, shown in fig. 2, offers a quite different picture of the elementary
contributions to global certainty:

— It is explicitly dependent on s. In the limit, where this measure would hardly
apply, certainty meets (square) probabilities,

: 2
sll>nolo K, (pj) =D;

— The minimum value is coherently given at the point of equiprobability, where
we have K, (Uy) = U2,

— It is continuous at zero, yielding a value greater than zero for any unseen
event, that is, K (0) = U2+U2. This value is the expression of a conservative
attitude with respect to future coming examples, while, at the same time,
it is an assertion of the certainties with which the rest of events have been
observed.

— Being consequent with the previous, for any event with an observed proba-
bility of one, the measure yields a value lower than one, K, (1) = U2 + C?

— In case of uniformity, or minimum information, we have,

K, (P)= ZK(})j) =U,

— In the case of observing only one event, we have maximum certainty, (which
does not mean absolute certainty),

KS(P):Ks(l)JF(S*l)Ks(O):l
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b)

u” (p;)

pi’ (p)

Fig. 3. a) Single event’s uncertainty; b) Single event’s weighted contribution.

Together with eq.2, this features synthesize the additive algebra of knowledge
that is implicit by the measure of certainty. Knowledge is defined as the sum of
the pieces contributed by disjoint dependent events, and as the square weighted
sum of knowledge about combined events.

4 Entropy based Measures

Though initially not conceived as such, Shannon’s entropy [11] is, by far, the
most widely used measure of information,

- 1
H(P)=H (p1,p2,---,pPn) = sz'lng; (4)
Further generalizations of entropy have been defined, first by Rényi [10],

1 n N
—log> (;p> , (5)

(with, @ > 0, and « # 1; in the limiting case of @ — 1, Rényi’s entropy tends to
Shannon’s entropy), and later by Daréczy [3],

Ha (P) = Ha (p17p25"'apn) =

6 27! 61
Zpl (pi) , where, u” (p;) = 2511 (1 —p; )

what yields the so called entropies of type 8, (with § > 0, and 8 # 1),

B
HY(P) = H" (p1,p2; .-, pn) = 2;1 l sz] (6)

(in the limiting case of 8 — 1, Dardczy generalization tends to Shannon’s en-
tropy, and setting 8 = 2, yields the quadratic entropy, H? = 2 (1 -7 pf) =
2 3" pi (1 — p;), identical to the so called Gini index [4]).
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The contribution of Rényi’s extended notion of entropy is that the term
—log (p;), in Shannon’s expression, is interpreted as the entropy of the general-
ized distribution consisting of the single probability p;, becoming thus evident
that eq.4 is, indeed, a mean value, [10]. Daréczy generalization is even more
explicit, by introducing the function of uncertainty u” (p;) for a single event e;.

The second contribution refers to the shape of the curve, determined by the 8
factor. As to our concern, this curve resolves a particular value of uncertainty for
unseen events, (undetermined in Shannon’s entropy), given by u” (0) = %.
In any case, the global uncertainty remains as a mean value, and therefore this
particular value is meaningless by itself.

This is what we depict in fig.3: at the left (fig.3a), we plot the values of
uncertainty u? (p;) for different values of 8, with special emphasis on Rényi’s
uncertainty, u*~! = —log (p;), and on the quadratic entropy, u? = 2 (1 — p;);
at the right (fig.3b), we plot the corresponding weighted contribution of a single
event, showing how the contribution of unseen events, inevitably, vanishes.

As already stated, some reasons exist to believe that entropy does not cover
a proper axiomatization of knowledge. If we do believe that unseen events are to
be taken under consideration, we easily come to the conclusion that the algebra
of knowledge does not fit well with the concept of a weighted mean measure.
Furthermore, if we do believe that knowledge is akin to a notion of quality, we
may yet find a reason to understand entropy’s bias. It is argued that entropy
is cardinality dependent, (being its maximum given by log (s)), but as long as
there is no room for unseen events, this argument becomes worthless.

Conversely, we are giving a different answer to each one of these questions:
certainty’s algebra of knowledge is just additive (not a weighted mean), cardi-
nality dependent, and yields not null values for unseen events. Despite of this,
expansibility is implicit in this algebra. With respect to entropy, expansibility
follows straightforward from the fact of being a weighted mean. Herein, the con-
notations of certainty’s expansibility are much stronger.

5 Empirical Validation

We have run some experiments to empirically study the behavior of our measure,
by implementing it in a decision tree algorithm, and comparing it with the
landmark decision tree C4.5 algorithm [8].

The classical implementation of an ID3 algorithm has the drawback of ex-
panding the tree until all leaf nodes are pure, or no more attributes are left to
split on. Therefore, the C4.5 algorithm was developed, with two special enhance-
ments: subtree replacement and subtree raising. Both of them are postpruning
operations, at the cost of some accuracy on the training set. These operations
are based on some weak statistical reasoning [15], and they involve some param-
eters. However, they seem to work well in practice, even with the default values
suggested for the parameters.

Thus, our challenge is clear: if certainty expresses a proper cardinality scaling
of knowledge, not only it should be able to choose the optimal attribute to split
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on at each node, but also it should stop expanding the tree, whenever further
splits are unnecessary. Therefore, the algorithm stands parameter free, and no
postpruning operations are needed.

In order to carry out our evaluation, we have used the publicly available ma-
chine learning tool Weka [15], implementing our measure in the ID3 decision tree
algorithm. Implementing certainty is straightforward: at each node we compare
the class marginal distribution certainty, K(class), with the class conditional
distribution certainty, K;(class | att.), given each one of the pending attributes
to split on. If there is no candidate yielding Ks(class | att.) > Ks(class), the
node is not expanded. If some exist, we choose the one with lower marginal dis-
tribution certainty, K, (att), (r refers to the attribute’s cardinality), what means
a more equilibrated marginal distribution. Thus, we split on the attribute which
ensures a better coverage of all of its branches.

The experimental setup includes some heterogeneous data sets from the UCI
repository [14]. The ID3 algorithm does not deal with continuous or missing
values. Therefore, examples with missing values have been discarded, and con-
tinuous values have been discretized to a reasonable number of equal width
intervals. In all runs, we use a 10 fold cross validation method. Whenever in-
dependent train and test sets are available, we also perform an independent
train/test classification. For the C4.5 algorithm we always use the default pa-
rameters.

The results are shown in table 1. We also show the results yielded by the
entropic-gain ID3 original algorithm. Thus, it is easier to figure out the way how
entropy tends to cover the sample space, and the posterior effect of the pruning
phase of the C4.5 algorithm.?

6 Conclusions

Let’s note the trade off between the complexity of the model, (column labeled
treeSize), the dimension of the input space, (column leaves), the unobserved part
of that space, (column nullLvs), and accuracy (column Z%correct). To better
appreciate this tradeoff, the column labeled %uncovered, specifies the ratio of
empty leaves with respect to the total number of leaves.?

Useless to denie it: the C4.5 algorithm yields somewhat better accuracies. Ok,
this is just due to the greedy behavior of entropy, with respect to the conservative
attitude of certainty. But, at a little cost in accuracy, we get dramatic reductions
in the complexity of the models, and dramatic reductions in the unobserved part
of the input space, along with significant reductions in computational cost. This
means that, beyond the accuracies yielded by a ten fold cross validation, we can
be much more confident on the behavior of certainty models with respect to
future coming examples.

2 Regarding to some of the data sets used, better accuracies have been reported using
other methods. Please keep in mind, that the aim of the experiment is just to compare
the behavior of certainty and entropy as measures of information.

3 The tree size values refer to the basic model build upon the whole training set.
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DataBase setSize attr. Clssf.  tree treeSize nodes leaves nullLvs. %uncovered %correct
BreastCancer 683 10 10fld ID3 211 21 190 95 50.00 91.65
10fld C45 61 6 55 14 25.45 9341

10fld Crt. 51 5 46 4 8.70 95.46

SegmentChallenge 1500 20  10fld ID3 390 44 346 193 55.78 93.92
10fld C45 213 23 190 102 53.68 94.93

10fld Crt. 171 27 144 48 33.33 91.73

OpticalDigits 5620 65  10fld ID3 11493 676 10817 7582 70.09 4411
10fld C45 4023 241 3782 2334 61.71 63.02

10fld Crt. 1769 104 1665 333 20.00 54.02

1797 testSet C4.5 3010 177 2833 1737 61.31 56.82

1797 testSet  Crt. 1225 72 1153 198 17.17 54.26

penDigits 10992 17  10fld ID3 5798 527 5271 2955 56.06 86.69
10fld C45 2366 215 2151 1068 49.65 89.16

10fld Crt. 1805 164 1641 342 20.84 86.85

3498 testSet C4.5 1915 174 1741 910 52.27 84.08

3498 testSet  Crt. 1288 117 1171 227 19.39 81.76

letterRecognition 20000 17  10fld ID3 30561 1910 28651 21832 76.20 73.53
10fld C45 13409 838 12571 9033 71.86 77.73

10fld Crt. 4657 291 4366 2060 47.18 71.65

Soybean 562 36 10fd ID3 50 51 116 31 26.72 83.77
10fld C45 69 22 47 10 21.28 91.81

10fld Crt. 161 63 98 3 3.06 87.72

CarEvaluation 1728 7 10fld ID3 408 112 296 0 0.00 89.35
10fld C45 182 51 131 0 0.00 92.36

10fld Crt. 213 58 155 0 0.00 94.21

trainSet  C4.5 182 51 131 0 0.00 96.30

trainSet  Crt. 213 58 155 0 0.00 96.30

Nursery 12960 9 10fld ID3 1159 320 839 0 0.00 98.19
10fld C45 511 152 359 0 0.00 97.05

10fld Crt. 1031 274 757 0 0.00 96.37

trainSet  C4.5 511 152 359 0 0.00 98.13

trainSet  Crt. 1031 274 757 0 0.00 98.59

Table 1. Comparison of trees induced by entropy (ID3, C4.5) and certainty (Crt.).

In the OpticalDigits, PenDigits and LetterRecognition data bases, the fea-
tures are vectors of integers ranging from 0 to 16. At this level of cardinalities,
entropy begins to show some undesired behavior, and the differences between
both measures become evident: C4.5 yields an extremely large uncovered part
of the input space, and we should be cautious about relying on the accuracy
figures given.

Soybean, CarEvaluation and Nursery, are exceptional cases in which certainty
yields more complex models, with larger input spaces. The reason is that there
exists an extra sample subspace that is sufficiently covered by the sample, and all
this extra information can be efficiently exploited. For the Soybean case, though
yielding a more complex model, the unobserved part of its input space is still
much smaller. On the other hand, the CarEvaluation and Nursery examples are
two special data bases, in which all attributes are perfectly balanced, and the
sample space is completely covered, thus, no unseen events exist. Under such
conditions, certainty tends to exploit all the information available and expands
the tree over the whole sample space. Again, that extra information seems to
be efficiently used and does not turn into excessive overfitting. Furthermore,
the classification results over the training set, (also included in table 1), show
that, once all the information about the sample space is available, the accuracies
achieved are exactly the same.
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In summary, certainty’s algebra of knowledge seems to work well. The car-
dinality scaling of the measure, along with the uncertainty of unseen events,
seems to guarantee a proper comparison of the information conveyed by distri-
butions of different dimensions. In this case, it allows implementing a parameter
free algorithm that stops the expansion of the tree at a reasonable level. This is
a significant contribution, since pruning is the most computationally expensive
part of tree induction. Thus, although we should not expect the best results in a
validation phase, it looks as a promising tool, whenever the goal is to get some
fast, robust and reliable knowledge.
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