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Abstract. What regard should a learning algorithm hold for the dif-
ferent information traces found in a sample? Answering this question
objectively is not easy. Moreover, given that a full range of traits can
be found in a human learning analogy, from the most daring or ingen-
uous, to the most conservative or incredulous. But in AI domains it is
a must to clearly state the right will for believing what is seen when
mining data bases. A key concept in this matter is assertiveness. The
aim of this work is to ponder an approach to assertive KDDB, based
on a feature cardinality driven distance measure to uninformative distri-
butions. From this perspective, we present an alternative option to the
support-confidence framework. The biases of this measure have not yet
been thoroughly studied but the measure itself has proved to be quite
effective as a heuristic when searching to optimize a sample in a simulta-
neous multi-interval discretization of continuous features. The empirical
results show that the most relevant association or classification rules
are revealed. Also, optimal cardinalities and optimal subsets of parents
are found for any feature, according to a natural bias toward the MDL
principle. As a conclusion, it appears the measure assertively captures
knowledge. This may be useful for other data mining issues.

1 Introduction

It is nothing new to point out that some kind of a disappointing shadow of
confusion hovers over the data mining scene. The flurry of different measures as
well as the comprehensive literature on selecting the right ones for each task at
hand ([4],[6]) is no more than a symptom.

In my opinion, three basic objections are the culprit: (i) the stochastic essence
of any sample is somewhat misunderstood, (ii) some subtleties about what
knowledge is or, more precisely, what better knowledge is, are somewhat set
aside, and (iii) the will for believing what is seen is not clearly stated.

These objections are further exposed in the next section as well as through-
out this paper. They form the basis for introducing an alternative approach to
knowledge discovery wherein a new measure is suggested. The aim is to present



this approach as an open door to further research while the expression given for
the measure is yet to be considered an open question.

A thorough analysis on the properties [2] and biases [3] of this measure , as
well as some examples should be presented, but unfortunately, space is limited.

In order to state a general framework addressing association and classification
rules, as well as feature subset selection, clustering and graphical modelling issues
we will use the following general terminology. Let’s consider a domain or concept
characterized by a set of m multinomial features X =

{

X1,X2,. . .,Xm
}

and a
set {D} of N examples over these features. Let’s consider two any features of this
domain and denote Xp = {xp

1, x
p
2, . . . , xp

r} and Xq = {xq
1, x

q
2, . . . , xq

s} as the set
of possible outcomes of features Xp and Xq with cardinalities crd (Xp) = r and
crd (Xq) = s, respectively. Also, for any pair

(

xp
i , x

q
j

)

we denote np
i , n

q
j and npq

ij

as the marginal and joint frequencies given in {D} .
Additionally and for the purpose of clarity, we state three levels of relation-

ship: (i) we refer to a rule whenever we are considering a relation like xp
i → xq

j ,
(ii) we refer to a subpattern whenever we are considering the set of rules in-
cluded in Xp → xq

j or xp
i → Xq, and (iii) we refer to a pattern whenever we

are considering the whole set of rules included in the relation Xp → Xq. These
designations will hold, unless explicitly noted, independently of our intention
when considering the relationships (association, classification or whatever).

2 Some Objections to Objective Measures

The most important group of objective measures is based on probability. Given a
rule xp

i → xq
j , coverage is given as the marginal probabilities of antecedent P (xp

i )

and consequent P
(

xq
j

)

of the rule, support is given by the joint probability

P
(

xp
i , x

q
j

)

, and confidence is given by the conditional probability P (xp
i

∣

∣xq
j

)

.
Down from here, all objective measures of interestingness combine in different
ways these or directly related factors, taken from raw data.

Let’s consider the simple example of a transaction data set given in Tab.1. 1

Milk Bread Eggs
1 0 1
1 1 0
1 1 1
1 1 1
0 0 1

Table 1. Transaction Dataset

Coverage for Milk is 4/5 and hence coverage for NoMilk is only 1/5. Does it
make any sense to consider a rule like Milk → Bread when there is no comparable
evidence in the dataset for the rule NoMilk → Bread?

1 This example is extracted from [2].



Some of the defined measures try to take this fact into account, introducing
factors with the probabilities for counter facts in some way. But that is not the
question. The real question is whether there is some evidence missing in the
dataset in order to adeptly measure the significance of that possible rule. This
topic is not new, and has two loose ends:

1. Due to its stochastic nature, any sample should be considered as being less
than 100% reliable. Therefore, whenever we consider evidential support from
raw data, the estimates we make are afected by the subjective consideration
of the sample as being 100% reliable, even though they are estimates. In
other words, would it be fair to always estimate a 0/100% of probability for
a rule with a 0/100% of support?

2. On the other hand, a rule should always be considered, at least, within the
framework of its subpattern [5]. If a dependence relationship between two
features do exist, this dependence should be patent for the whole pattern.
From this point of view, it is important to distinguish between structural
evidence and parametrical evidence. The former relates to the pattern or
subpattern levels and expresses whether a remarkable relationship may exist.
The latter refers to each one of the rules in the pattern and expresses how
this relationship acts whenever it exists.

Let’s think again about the transaction example of bread, milk and eggs. For
an association rule like Milk → Bread, we have a support of 3/5 and a confidence
of 3/4 and for an association rule like (Milk, Bread) → Eggs we have a support
of 2/5 and a confidence of 2/3. While the combination (Milk, Bread) has a total
of four possible outcomes, the combination (Milk, Bread, Eggs) offers as much as
eight possible outcomes, therefore with a much lower prior probability. Should
we really believe that the former is better supported than the latter? Should we
consider these levels of confidence from an absolute perspective? In other words,
is the same kind, quantity/quality, of knowledge given by these two rules?

In this case, the argument is quite subtle and it has to do with the level of
certainty/uncertainty associated with a feature as a function of its cardinality
or what is also referred to as the quantity/quality of knowledge given by that
feature. The larger the cardinality of the features involved in a rule, the more
accurate and valuable is the information, but the lesser the prior probability of
finding that rule in the dataset.

These topics have been somewhat overlooked, and this new approach tries to
offer a way to address this omission.

3 Assertiveness by means of Objectivity

One really assertive measure should be defined by assuring an impartial compar-
ison within any rule’s evidence detected in the sample. Recalling the objections
raised above, three conditions should be met for this assumption to be true: (i)
the sample should be 100% reliable and equilibrated or otherwise this should be
taken into account in some way, (ii) the quantity/quality of knowledge expressed



by the rule should be taken into account in some way, and (iii) the fairest balance
between seeing and believing should be guaranteed.

In order to define such and impartial measure we state the following three
concepts:

Definition 1. A feature Xp ∈ X, with crd (Xp) = r, is in perfect marginal
distribution (pmd) whenever all its possible outcomes are equally covered, that
is, ∀xp

i ∈ Xp all marginal frequencies are np
i = N/r

Ideally, if all features in a sample were in pmd, all rule’s prior probability
would be maximally equilibrated.

Definition 2. Two features (Xp,Xq) ∈ X, with crd (Xq) = s, are in absolutely
incoherent conditional distribution (aicd) whenever ∀

(

xp
i , x

q
j

)

∈ (Xp,Xq) all
joint frequencies are npq

ij = np
i /s

Again, this is an ideal situation, possible only between features with equal
cardinality, but clearly conveys a state of minimum information.

Definition 3. The knowledge factor Q, which is only briefly introduced here, is
defined as the degree of accuracy associated to a feature Xq as a function of its
cardinality, crd (Xq) = s, given by,

Q = (s − 1) /s (1)

On one hand, independently from any sample or domain, pmd and aicd state
two clearly defined uninformative distributions to take distances from:

1. for feature Xq, an expression of its marginal distribution distance to the pmd
is given by,

∆ (Xq) =
∑

j

(

nq
j −

N
s

N
s

)2

=
∑

j

(

s
nq

j

N
− 1

)2

. (2)

2. respect to feature Xp, an expression of Xq’s conditional distribution distance
to the aicd is given by,

∆ (Xq |Xp) =
∑

i,j





npq
ij −

n
p

i

s

n
p

i

s





2

=
∑

i,j

(

s
npq

ij

np
i

− 1

)2

. (3)

What should be kept in mind, is that expressions (2) and (3) are measuring
exactly the same concept.2

On the other hand, raw distances given in (2) and (3) are clearly affected by
a strong bias due to the cardinality of the features.

2 Strictly speaking, this expressions don’t hold the formal properties of a metric dis-
tance functional (particularly, the triangular inequality does not make sense). They
should rather be regarded as deviations.I hope this is not going to be misleading.



The philosophy behind this approach is that, taking the knowledge factor
as a base expressing the quantity/quality of knowledge, a transformation can
be applied in order to address this bias. The main contribution of this work
is to present a general expression for this transformation, wherein alternative
and significantly different measures to coverage, support and confidence, can be
derived. These new measures intend to be as objective as possible and intend to
state the most assertive will to believe what is seen. The final purpose is to allow
an objective comparison between any trace of rule/pattern found, regardless of
the actual reliability of the sample and regardless of the cardinality of the features
involved, addressing the objections formerly exposed.

4 Defining the Measure

A useful transformation of such distances is given by the general function,

Z (x) = exp

(

α
ln (Q)

Q2
(s x − 1)

2

)

, (4)

where x can either refer to the marginal or conditional distribution, nq
j/N or

npq
ij /np

i , whatever be the case.3

Aiming at simplicity, this expression can be rewritten as,

Z (x) = bxp

(

1

Q2
(s x − 1)

2

)

, (5)

where bxp (knowledge factor exponential base) is a self allowed notation, derived
from exp (natural exponential base) with analogous meaning, that is, bxp (K) ≡
QK .

The proximity of this function to a normal distribution, N
(

1
s
, Q

s

√

−1
2 ln(Q)

)

is clear, with two obvious differences which are: (i) it is not a probability distri-
bution, but a distance distribution, so not normalized as a mass function, and
(ii) it makes sense only in the range 0 ≤ x ≤ 1.

Therefore I call this function the QNormal distance distribution, QN
(

1
s
, Q

s

)

,

which is depicted in Fig.1 for different values of s.

At the mean, given by 1/s, its value is 1, and at the boundaries the values
are given by,

Zz ≡ Z (0) = bxp

(

1

Q2

)

; Zn ≡ Z (1) = bxp
(

s2
)

. (6)

3 The factor α has to do with the prior credibility we can give to the sample. Its
thorough treatment lies beyond the scope of this work, so let’s consider α = 1.
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for 2 ≤ s ≤ 15 .

4.1 Presence

Applying the general expression given in (5) to the marginal distribution of
feature Xq, we have,

∀xq
j ∈ Xq , zq

j ≡ Z

(

nq
j

N

)

= bxp





1

Q2

(

s
nq

j

N
− 1

)2


 , (7)

Combining (7) with (6) in order to fit values into (0, 1), we can derive an
alternative and significantly different measure of coverage, which I call presence,
given by,

bq
j =

1

s

(

zq
j − Zz

1 − Zz

)

; 0 ≤
nq

j

N
≤

1

s
, (8)

bq
j =

1

s

(

zq
j − Zn

1 − Zn

)

;
1

s
≤

nq
j

N
≤ 1 , (9)

This function is depicted in Fig.2. The total presence of a feature is then
given by Bq =

∑

j

(

bq
j

)

, with a maximum value of 1, given when all possible
outcomes for the feature are equally covered. As long as coverage of that feature
moves away from the pmd in any direction, the value of presence decreases,
vanishing at the boundaries.
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Fig. 2. Presence function for 2 ≤ s ≤ 15.

4.2 Coherence

Applying the general expression given in (5) to the conditional distribution
(Xq | Xp), we have,

∀
(

xp
i , x

q
j

)

∈ (Xp,Xq) , zpq
ij ≡ Z

(

npq
ij

np
i

)

= bxp





1

Q2

(

s
npq

ij

np
i

− 1

)2


 , (10)

Combining (10) with (6) in order to fit values into (0, 1) , we can derive an al-
ternative and significantly different measure of confidence, which I call coherence
given by,

cpq
ij =

1

r s

(

1 −
zpq
ij − Zz

1 − Zz

)

; 0 ≤
npq

ij

np
i

≤
1

s
, (11)

cpq
ij =

1

r s

(

1 −
zpq
ij − Zn

1 − Zn

)

;
1

s
≤

npq
ij

np
i

≤ 1 , (12)

This function is depicted in Fig.3. The total coherence of pattern Xp → Xq

is then given by Cpq =
∑

i,j

(

cpq
ij

)

, with a maximum value of 1, given when each
subpattern is maximally coherent, as it is stated in the following definition.

Definition 4. The conditional distribution (Xq | Xp) is maximally coherent
when ∀xp

i ∈ Xp ,∃xq
m ∈ Xq , such that, npq

im = np
i and ∀xq

j 6=m ∈ Xq , npq
ij = 0 .

And being both conditions necessary for the maximum coherence, they are
both assigned the same value of coherence 1/ (r s) .

Obviously, it is an asymmetric measure, so that most of the time it will be
cpq
ij 6= cqp

ji .
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Fig. 3. Coherence function with r = 2 and for 2 ≤ s ≤ 15.

4.3 Utility

Finally, combining the two former measures, we obtain the utility measure for
the rule xp

i → xq
j , which is given by,

upq
ij = cpq

ij (bp
i r)

(

bq
j s
)

, (13)

The total utility of pattern Xp → Xq is then given by Upq =
∑

i,j upq
ij , with

a maximum value of 1, given when coherence is maximal and presence for both
features is perfectly equilibrated.

A depiction example of the utility function for xp
i → xq

j with (r = 2, s = 3)
and being Xp in pmd is given in Fig.4.
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By definition, utility is inversely related to the total amount of uncertainty of
the consequent given that the antecedent is known, (see [1] for a related discus-
sion). Even in the case of independence, Up⊥q ≥ 0, being zero only when Xq is
in pmd. This expresses the idea that even being independent it is still possible to
get some certainty about the consequent, though coming from its own marginal
distribution. In such a case, there exists a subspace in the set of all possible joint
distributions, in the neighbourhood of independence, in which Upq ≤ Up⊥q. This
suggests the daring idea of expanding the concept of independence: it is not the
single point where P (Xp,Xq) = P (Xp) P (Xq) but the whole subset of joint
distributions for which Upq ≤ Up⊥q, that is, where the total uncertainty is even
greater than that given in independence.

4.4 Parametrical Perspective

Finally, the QNormal distance distribution holds yet another possible derivation
from the parametrical point of view, which clearly explains what it is conceptu-
ally being done.

From the inversion of the second half of the curve, we can derive the following
expression,

Θ (x) =
Z (x)

2
, 0 ≤ x ≤

1

s
(14)

Θ (x) =

(

1 −
Z (x)

2

)

,
1

s
≤ x ≤ 1 . (15)

The depiction of this function is given in Fig.5.
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Fig. 5. Theta function for 2 ≤ s ≤ 15.

In contrast to the raw interpretation resulting from measures like coverage,
support and confidence, this function translates the parameters to a common



space where all of them can be seen relatively to the quantity/quality of knowl-
edge they express.

There’s a saddle point at the frequency given by 1/s, which represents the
equilibrium corresponding to the state of minimum information (pmd or aicd),
and moving away from that point this equilibrium is consequently and gradually
broken in one or other direction.

The breaking gradient is determined by the σ parameter (depicted in Fig.6),
given as,

σ =
Q

s
=

(s − 1)

s

1

s
. (16)
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Fig. 6. Sigma function for 2 ≤ s ≤ 15.

It combines two factors of s expressing two clashing facts: (i) the Q factor
expresses the idea that the more the cardinality, the more accurate the informa-
tion given by the feature, therefore σ increases and the gradient decreases, so
that more evidence must be seen in order to break the equilibrium, (ii) whereas
the 1/s factor expresses the idea that the more the cardinality, the less the prior
probability for the state of both minimum and maximum information (bigger
entropy), therefore σ decreases and the gradient increases, making it easier to
reach it.

Still another notable difference is that this expression (as depicted in Fig.7)
gives non-zero values at the zero frequency and non-one values at the frequency
one, therefore providing a straight path to a full family of parameters, that is,

Θ (0) =
1

2
bxp

(

1

Q2

)

; Θ (1) =

(

1 −
1

2
bxp

(

s2
)

)

. (17)
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Fig. 7. Theta(0) and Theta(1) functions for 2 ≤ s ≤ 15.

The non-zero values express the uncertainty associated to the fact of having
no evidence of something. The more the cardinality, the more the prior proba-
bility of such a case, so the uncertainty increases. The non-one values express
the uncertainty that should be regarded, in spite of having full evidence of some-
thing, given the stochastic nature of a sample. The more the cardinality, the less
the prior probability of such a case, so the uncertainty decreases and the value
tends to one.

Obviously, this expression is not normalized; it is not a mass function. It does
not directly translate evidence into probabilities; rather, it translates traces of
evidence into biases over the equilibrium. Anyway, normalization allows deriving
a complete family of parameters from this expression. In classification issues, this
conservative understanding of evidence usually turns to be enough and in most
of the cases even better than a raw interpretation.

It’s hardly worth mentioning, that an interesting option arises from the pos-
sibility of applying this parametrical model to any of the measures already exis-
tent.

5 Conclusions

This expression intends to give an equable, impartial and equilibrated measure
of dependence relationship, taking into account its relative degree of support and
its associated quantity/quality of knowledge.

Coherence is measured as a trace of dependence. It’s to be assumed that
whenever two features are dependent, this dependency should be patent for the
whole pattern, moving away their conditional distribution from the aicd. On the
other hand, high rates of coherence would be easily achieved with respect to a
feature with a great bias in its marginal distribution toward or against one of its
possible outcomes. That’s the correction introduced into the expression of utility
by the measure of presence. Good coherence but poorly or excessively supported



by the sample would be punished by the presence factor, giving poor rates of
utility.

Equanimity is given by the fact that presence and coherence are measured
exactly as the same concept, a distance to their respective uninformative distri-
butions, guarantying this way the most possible assertive balance between seeing
(presence, coherence) and believing (utility).

From a summarization point of view, being the measure defined at the least
significant level, it can be summed up to whatever may be of interest, providing
ranked classifications not only at pattern, subpattern or rule levels, but even at
feature and sample levels. Therefore, relevance at each level can be objectively
analyzed.

At pattern level, the utility measure relates to marginal dependence. How-
ever, this measure is directly extensive to relationships like (Xp,Xq) → Xc. In
this case, what is measured turns out to be the relation of conditional depen-
dence (Xp⊥Xq |Xc). Therefore, this extended measure of utility can be applied
to any subset of parents of a feature, providing an ordered list of classification
rules. Both matters have significant implications regarding to clustering and/or
graphical modelling. At feature level, conclusions can be derived related to feature
subset selection issues.

A striking practical application is to implement this measure as a heuristic
in a search in order to optimize a simultaneous multi-interval discretization of
a sample with some/all continuous features. This application has been tested
both in real domain and synthetic data bases, and has shown that the measure
leads to optimal cardinalities and optimal subsets of parents for each feature,
according to a natural bias to the MDL principle.
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