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Abstract

We present some theoretical background and recent improvements about our
feature cardinality driven distance measure to uninformative distributions.
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Chapter 1

Introduction

This work is an uncomplete, six weeks deadline, effort to present some the-
oretical background to our recently introduced new approach to knowledge
discovery, (please refer to [2], [3]).

Some new ideas are presented:

• In the second chapter we present an axiomatic approach to knowledge
discovery. Kolmogorov’s axiomatization, and its simplified probability
version, are reviewed in order to state the relation of knowledge with
probability. Although being knowledge closely related with frequen-
cies, our conclusion is that probability axiomatization may not be the
most appropriate in the context of knowledge discovery. Therefore we
present an alternative ’list of axioms’, (let’s say it), for this context.

• In the third chapter we present a geometric interpretation of our mea-
sure of deviation from uninformative distributions. This perspective
suggests a graphical representation of knowledge from which many in-
teresting new ideas can be derived. The most important one is that,
contrary to what we had previously presented, it turns out that the
measure may state by itself a right cardinality scaling of knowledge.

• In the fourth chapter we present yet a different approach, setting a
bridge to information theory and contributing further theoretical sup-
port to our work.

• Finally, we end with a short statement of our up to date conclusions
and future work. We also present some examples showing that, with
respect to our previous approach, better results can be achieved with
this one.
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Chapter 2

Axiomatization

2.1 Kolmogorov’s Axioms

The axiomatic approach to probability, as originally formulated by Kol-
mogorov in 1933, states verbatim [5]:

Let E be a collection of elements ... which we shall call elementary events,
and F a set of subsets of E ; the elements of the set F will be called random
events.

• Axiom 1. F is a field of sets.

• Axiom 2. F contains the set E .

• Axiom 3. To each set A in F is assigned a non-negative real number
P (A). This number P (A) is called the probability of the event A.

• Axiom 4. P (E) = 1.

• Axiom 5. If A and B have no element in common, then

P (A + B) = P (A) + P (B) . (2.1)

About axiom 5, let’s note that Kolmogorov simply uses +, instead of
the ∪ symbol, and explicitly states the condition that A and B are disjoint
instead of the expression A ∩B = �.

Kolmogorov adds that, a system of sets is a field, if it also contains the
sum, difference and product of any two of its sets. In modern notation,
for any A ∈ F → Ac ∈ F , and we can derive that A ∩ Ac = � ∈ F and
A∪Ac = E ∈ F , but it is not necessary to postulate P (�) = 0 or P (A) ≤ 1,
because it is all implicit in the above axioms.

If E is an infinite collection of elements, then F is normally restricted
to be such that it is closed under countable unions of sets, and axiom 5 is
replaced by the σ-additivity condition,
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• Axiom 5’. If An is a set of pairwise disjoint sets in F , then

P (∪nAn) =
∑

n

P (An) . (2.2)

This axiomatization is complemented with the notions of stochastic in-
dependence and conditional probability :

• Axiom 6. The necessary and sufficient condition that A and B be
stochastically independent events is,

P (A ∩B) = P (A) P (B) . (2.3)

Note that this is not always equivalent to physical independence.

• Axiom 7. If P (B) 6= 0, then the conditional probability of event A,
given event B, is defined by,

P (A |B ) =
P (A ∩B)

P (B)
(2.4)

Note that independence is quite different from disjointness, from which
axiom 5 applies. Moreover, if A and B are independent, then P (A |B ) =
P (A).

In his aim was to demonstrate that these axiomatization could be used
as a rigorous basis for the study of infinite sequences of random variables.

2.2 Probability Axioms

When referred to finite sample spaces, Kolmogorov’s axiomatization gets
considerably simplified.

In this case, given a sample space Ω and an event A with a probability
P (A), Kolmogorov’s axioms are equivalent to the following [6]:

• Axiom 1. for each A, 0 ≤ P (A) ≤ 1.

• Axiom 2. if A = �, then P (A) = 0.

• Axiom 3. if A = Ω, then P (A) = 1.

• Axiom 4. P (A ∪B) = P (A) + P (B) iif A ∩B = �.

This is really concise (and it can even be stated in a more concise way).
But it is not its conciseness what we are interested in. On the contrary,
probability is a complex idea and we would have liked Kolmogorov to be
more explicit.

Because of this, three standard interpretations of probability, each one in
accordance with Kolmogorov’s axiomatization, have been closely entangled
all along the development of probability theory.
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• Frequency. From the frequentest interpretation, P (A) is taken to be
the long-run frequency with which A happens in a certain experimental
setup or in a certain population. This frequency is something inherent
to the experimental setup or the population, and independent of any
person’s beliefs. (Example dices)

• Belief. This interpretation is close to the former but allows some sub-
jectivity at the time of posting odds for P (A). (Example horse-racing)

• Support. From this interpretation, P (A) is a rational degree of belief
to which we should expect A will happen, according to the degree our
evidence supports it. (Example database).

Another point of controversy is whether the Kolmogorov’s axioms are
normative or descriptive, and this may have a special relevance in AI do-
mains.

2.3 Knowledge Discovery Axioms

What is the interpretation of probability from our knowledge acquisition
perspective? Does it fit to any of the standard interpretations exposed
above?

The answer to this question depends on our ultimate objectives. When
we are mining data, we expect to find useful knowledge. That is, truthful
information that may lead to accurate models of the given domain, in order
to make inference or take decisions, or in order to get some understanding
about it.

In essence, that means that knowledge is going to be expressed as asso-
ciation patterns between features, eventually bound to a set of conditional
probability parameters. Therefore, knowledge is here the answer to two
different questions that may, or may not, be combined: knowing what and
knowing how, both of them closely related to the frequencies observed in the
sample, and consequently to probability theory.

At first glance, the support interpretation of probability seems to be
the closest one. Anyway, we expect to get whats, and whats relate to facts
or essential characteristics of the domain, prior to the support observed
in the sample. Hence we approach the frequentest interpretation, seeking
for probabilities as something expected to hold in the long run. The belief
interpretation should be the furthest. But obviously, if we are willing to have
a rational degree of belief based upon evidential support, we are intrinsically
facing a subjective question. And here lies the motivation of our work. We
pretend to state the right will for this rational degree of belief, so as to avoid
any subjectivity.
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We may conclude that knowledge seems to be definitely related to prob-
ability. Indeed, to all of its classical interpretations. But, we don’t subscribe
to the whole of this idea.

What are the reasons to believe that knowledge behaves under the Kol-
mogorov’s axioms? Does knowledge about different events combine (addi-
tion, product) to give knowledge of them both together? What’s the mean-
ing of a knowledge of one? Can we have full certainty in the context of
knowledge acquisition? What’s the meaning of a knowledge of zero? We
can figure out a probability of zero as the impossibility of an event. But we
are definitely expressing some knowledge with this assertion.

In short, in a knowledge discovery context the relation frequencies →
probabilities, is not the same as the relation frequencies → knowledge, or
stated in other words probabilities 6= knowledge.

We already introduced this concept as one of the basic hypothesis in our
previous work by the distinction between structural evidence and parametri-
cal evidence: structural evidence refers to the question of whether a relation
between two features exist or does not exist, and parametrical evidence refer
to how this relation operates in case it does exist. This is the meaning of
our assertion that probabilities 6= knowledge.

Then, if we are going to assume that probabilities 6= knowledge, we may
wonder whether probability axiomatization is the most appropriate in this
context or could be more conveniently expressed.

In this work we present an approach to knowledge discovery that sug-
gests a somewhat different axiomatization for the behavior of knowledge. We
are far from pretending to state an absolute set of axioms for this question,
but our work suggests some interesting ideas. Basically, a more appropri-
ate axiomatization for knowledge discovery would be the following slightly
modified version of probability axioms:

Given a sample space Ω = {Xp, Xq}, for any event A ∈ X we write
CA = (|X| − 1) / |X| and UA = 1/ |X| as the certainty and uncertainty
factors associated to A. Additionally, given a sample D drawn from Ω,
we write S ⊂ Ω as the set of all events observed in the sample, and its
complementary, U ⊂ Ω, as the set of all events not observed in the sample.
Then, K(A) is a knowledge measure over Ω = {S ∪ U} if:

• Axiom 1. for any event A ∈ Ω, UA ≤ K (A) ≤ CA

with analogous definitions for conditional knowledge and independence,

• Axiom 2. for any two events (A,B) ∈ Ω, UB ≤ K (B |A) ≤ CB

• Axiom 3. B is independent of A as long as,

K (B |A) ≤ K (B) (2.5)
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Note that some significant differences with respect to probability axioms
are implicit in this axiomatization:

• knowledge can never be zero (in the worst case, we should have equal
expectations for each possible outcome, and this states a minimum
knowledge greater then zero), neither can be one (absolute knowledge
is unfeasible due to the inherent uncertainty of the context);

• knowledge is inherently related to the cardinality of features;

• we are not considering any particular algebraic structure for knowledge
about disjoint events, therefore no notion of countable additivity is
necessary;

• in case a relation of dependence certainly exists, knowledge about the
consequent does not depend on knowledge about the antecedent, it
depends only on the knowledge conveyed by the pattern;

• a relation of dependence is not an on/off switch: it would be reasonable
to consider independence in the range stated by axiom 3, and consider
higher degrees of dependence as far as K (Xq |Xp ) ≥ K (Xq).

Also note that we write Ω = {S ∪ U} in order to explicitly include the
uncertainty inherently associated to any data mining process.

2.4 The quality of knowledge

We have stated that we are concerned with useful knowledge in the form
of patterns or rules, as expressions of knowledge of a consequent given that
an antecedent is known. Also, we have stated that in the context of data
mining, this is inherently related to uncertainty.

From information theory, uncertainty is defined from the point of view of
a set of possibilities, from which one is expected to be selected. This is called
a scheme of choice and is denoted by S = {e1, e2, ..., em}, [1]. Uncertainty
refers to the fact of not knowing which one is going to be selected. Intuitively,
the larger the cardinality |S| of S, the larger the uncertainty. Anyway, due
to some information based considerations, uncertainty is considered to be
much lower, and given by the entropy of S, H (S) = log (|S|). This makes
perfect sense in this context and sets the basis for a sound theory about
information, from which many measures are defined, [7], [4].

From our perspective, we focus uncertainty from the idea of discretizing
a continuous feature. In this context uncertainty takes quite a different
sense: a discretization into k intervals renders an uncertainty of 1/k, hence,
the higher the number of intervals, the lower the uncertainty. This is quite
opposite to the information theory point of view, though making perfect
sense too.
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Such a difference is not amazing at all. One thing is to be concerned
about what will be or what will happen or what’s the reason for, in other
words, to make up and down reasoning on some already known model. A
different one is to be concerned about what it is, that is, to discover the
model itself. In each case, uncertainty, and therefore knowledge, are as
defined.

Then, being our concept of uncertainty that of a relative lower qual-
ity of information, we consequently have to consider different qualities of
knowledge, being of higher quality that knowledge given by more accurate
discretization. And pushing further this idea, we extend this perception of
knowledge, not only to continuous, but to any kind of multinomial features.

Some good approaches already exist which deal directly with continuous
features. Then, following the previous reasoning, this one should be the
right path to the highest quality of knowledge, and one may question the
motivations for discretization approaches. But this is not more than a new
form of the Ockham’s razor dilemma: considering and inferring continuous
values in an inherently uncertain context does not seem to have any logic,
and furthermore, a good discretization of features should be regarded as the
first step against variance of models.
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Chapter 3

Geometry

3.1 Deviation from minimum information

We have recently introduced an approach to knowledge discovery based on
a measure of deviation with respect to minimum information distributions,
namely the perfect marginal distribution (pmd) and the null conditional
distribution (ncd). In all the following let’s refer to [2], [3].

Briefly reviewed, given two features Xp with |Xp| = r, and Xq with
|Xq| = s, a reasonable expression of the knowledge conveyed by the pattern
Xp → Xq is the deviation of their conditional distribution (Xq |Xp) with
respect to the ncd, given by,

∆
(
xq

j |x
p
i ) =

(
xp,q

i,j − Us

Us

)2

; 0 ≤ xp,q
i,j ≤ Us

∆
(
xq

j |x
p
i ) =

(
xp,q

i,j − Us

Cs

)2

; Us ≤ xp,q
i,j ≤ 1

where, Us = 1/s is the uncertainty factor, Cs = (s− 1) /s is the certainty
factor, and xp,q

i,j are the relative conditional frequencies, given by,

xp,q
i,j =

npq
ij

np
i

We also exposed the intuition that an analogy could be established be-
tween marginal and conditional distributions, based on the idea of consider-
ing the pattern � → Xq, or better said, D → Xq, being D the sample data.
Following the analogy, this relation conveys the prior knowledge about the
feature, as it should be inferred from the data, and would be given by the
deviation of its marginal distribution with respect to the pmd, that is,
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∆
(
xq

j

)
≡ ∆

(
xq

j |D) =

(
xq

j − Us

Us

)2

; 0 ≤ xq
j ≤ Us

∆
(
xq

j

)
≡ ∆

(
xq

j |D) =

(
xq

j − Us

Cs

)2

; Us ≤ xq
j ≤ 1

where the xq
j are the marginal frequencies. 1

From these measures of deviation we derived the concepts of coherence
and presence, as measures of reliability and representativity of the sample.

Finally, as a measure of amount of knowledge conveyed by a rule, (or
strength of implication as the closest concept commonly used in the litera-
ture), we combined these two concepts in a notion of utility, in which both
forms of knowledge are assumed to be clashing.

By clashing, we mean that marginal knowledge about a feature is prior
to its relation with any antecedent, and it should be wiped away from the
measured conditional knowledge. This turned out to be, in essence, how the
bias/variance dilemma takes form in our context.

But, what is what we are really measuring? A simple geometric inter-
pretation brings some light to this question.

3.2 Graphical representation of knowledge

Let’s take as a reference the marginal distribution of feature Xq and its
deviation from the pmd. The raw deviation of any xq

j is given by,

δq
j = δ

(
xq

j

)
=

(
nq

j

N
− 1

s

)
Let’s fix a square with an area equal to one and let’s imagine that this

area represents the absolute knowledge. Let’s divide each side at the point
corresponding to 1/s, so that we get two portions, according to the certainty
and uncertainty factors. We will refer to the crossing point as the point of
minimum information.

Now, let’s represent the square of a positive δ+ and a negative δ− de-
viations with respect to the point of minimum information, as shown in
fig.3.1

1Notation may be here somewhat misleading because xq
j refers either to the attribute-

value pair itself as well as to its marginal frequency.
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Figure 3.1: Graphical representation of knowledge

It can be observed that the square of the deviations are areas relative
to the full square, and we have a graphical representation of knowledge as
areas.

Let’s note also, that the normalized version of the square deviations, is
not more then these areas relative to the maximum knowledge that can be
achieved at each side of the point of minimum information,

∆− =
δ2
−

U2

∆+ =
δ2
+

C2

A further illustration of how deviations and square deviations are related
in our graphical representation of knowledge is given in fig.3.2.

For some values of j we will have positive deviations and for others we
will have negative deviations, and they all sum up to zero,

s∑
j

δq
j =

s∑
j

(
nq

j

N
− 1

s

)
=

1
N

s∑
j

nq
j − 1 = 0 (3.1)

that is, ∑
+

δq
+ = δq

3 = δq
1 + δq

2 =
∑
−

δq
− .

Obviously, this does not hold for square deviations, where the square of
the sum is not the sum of the squares, but we have,
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Figure 3.2: Knowledge representation for Xq with s = 3

s∑
j

∆q
j =

s∑
j

(
δq
j

)2
=

s∑
j

(
nq

j

N
− 1

s

)2

=
s∑
j

(
nq

j

N

)2

− Us (3.2)

Hence, when we have maximum deviation, i.e.
∑s

j ∆q
j = 1−Us, we still

have a lack of knowledge amounting Us, and what we get is the shadowed
areas shown in figure 3.3 for different values of s.

� � �
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�
�� �

�

�
�� �

�

�
�� �

�

�
�� �

�

�
�� �

�

�
�� �

Figure 3.3: Areas of certainty and uncertainty for s = 2, 3, 4

For each cardinality, the shadowed, and not shadowed, areas represent
the relation between certainty and uncertainty with respect to the absolute
knowledge given by the full square. Absolute knowledge, or absence of
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uncertainty, would only be achieved with an infinite cardinality, that is, a
continuous feature.

An immediate pretty useful conclusion can be derived from this graphical
representation. As long as we are uniquely interested on

∑s
j ∆q

j , analogous
results (though and asymmetrical curve) can be obtained by symmetrical
normalization of square deviations at both sides of U with,

∆ (x) =
(x− U)2

C
(3.3)

This is really advantageous at the time of handling these expressions in
further definitions or properties, and constitutes a real improvement with
respect to our previous approach.

Anyway, in all the following, it is going to be more useful to consider
the not normalized areas, so, except when explicitly noted, let’s consider the
∆’s just as,

∆q
j =

(
δq
j

)2
=
(
xq

j − Us

)2
(3.4)

But, does this scaling of knowledge make any sense? Does even make
any sense to consider that an additive combination of such areas is certainly
related to the global knowledge it should express?

Let’s refer to our axiomatic approach,

• The minimum knowledge we can have is that given by the uncertainty
factor. That is, at the point of minimum information we have U , and
it increases as the square deviations increase.

The most direct expression of this idea is,

K (Xq) = Us +
s∑
j

(
δq
j

)2
(3.5)

This is intuitive not only from the axiomatic point of view, but also
from the geometric point of view, where it is clear that Us is just the com-
plementary portion of knowledge to get the full square. Note that we are
considering here not normalized areas.

Still more important is that, this simple expression holds an interesting
property related to the cardinality scaling of knowledge, as an inherent effect
to discretization of continuous features.

This does not state yet any guarantee that knowledge should follow this
behavior. But indeed, it may be considered as an interesting indication
that our geometric representation of knowledge expresses by itself a right
cardinality scaling of knowledge.
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Finally, following the same reasoning for each event xq
j , we would have,

K
(
xq

j

)
= Us +

(
δq
j

)2
= Us +

(
nq

j

N
− Us

)2

and it is worth noting the slight but significant difference that appears,
at this point, between knowledge and probabilities (as estimated from raw
frequencies), that is,

P
(
xq

j

)
= Us +

(
nq

j

N
− Us

)

Now, let’s refer again to our axiomatic approach,

• The maximum knowledge we can have is that given by the certainty
factor.

Again, the most simple expression of this idea is,

K (Xq) = Cs

Us +
s∑
j

∆q
j


where the ∆’s should now be referred to the certainty factor, that is nor-
malized with respect to Cs,

∆q
j =

(
δq
j

)2

Cs
=

(
xq

j − Us

)2

Cs

with an analogous expression of knowledge for each event xq
j as,

K
(
xq

j

)
= Cs

(
Us + ∆q

j

)
(3.6)

Its minimum and bounder values are given by,

• for xq
j = 0 → ∆q

j = U2
s

Cs
, thus

K
(
xq

j

)
= Cs

(
Us +

U2
s

Cs

)
= CsUs + U2

s = Us (Cs + Us) = Us

• for xq
j = Us → ∆q

j = 0 , thus K
(
xq

j

)
= Cs (Us + 0) = CsUs

• for xq
j = 1 → ∆q

j = Cs , thus K
(
xq

j

)
= Cs (Us + Cs) = Cs
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Figure 3.4: Knowledge for 2 ≤ s ≤ 10

Finally, in order to get normalized values of knowledge, we should nor-
malize again this expression with respect to its global maximum for all events
xq

j , given by,

K (Xq)max = (s− 1) Us + Cs = 2Cs

what finally renders eq. 3.6 as,

K
(
xq

j

)
=

1
2

(
Us + ∆q

j

)
(3.7)

In fig. 3.4, we show the depiction of eq. 3.6. This graphical representa-
tion is certainly illustrative. It suggests a reference point given by the value
of minimum information with cardinality 2, and given a relative frequency
of xq

j = 1/2, knowledge is the same, be what it be the cardinality. This looks
as a new perspective of our scaling property, once the measures referred to
Cs. We show this in fig. 3.5.

Then, from this reference point, and given any deviation ε in one or the
other sense, we have that for any cardinality s,

• while Us ≤ xq
j ≤ U2, knowledge is higher with cardinality 2, and the

lower the cardinality, the lower the knowledge,

• if xq
j ≥ U2, knowledge is higher with cardinality s, and the higher the

cardinality, the higher the knowledge.

In other words, this means that whenever there is good information,
we would like it to be expressed with the highest possible accuracy, and
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Figure 3.5: K
(
xq

j

)
for xq

j = 1/2

whenever information is blurred, it is wiser to be more conservative and
express it with lower accuracy.

Finally, let’s just note that the same reasoning given above applies more
appropriately to the conditional distribution (Xq |Xp). In this case we have
the following normalized expressions of the knowledge conveyed by:

• the whole pattern Xp → Xq

K (Xq |Xp
i ) =

1
2 r

Us +
r,s∑
i,j

∆pq
ij

 (3.8)

• the subpattern Xp
i → Xq

K (Xq |Xp
i ) =

1
2 r

Us +
s∑
j

∆pq
ij

 (3.9)

• or the rule Xp
i → Xq

j ,

K
(
Xq

j |X
p
i ) =

1
2 r

(
Us + ∆pq

ij

)
(3.10)

where,

∆pq
ij =

(
xpq

ij − Us

)2

Cs
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3.3 Half dependence

In our axiomatic dissertation we also conclude that the dependence or in-
dependence condition between any two features, should be better regarded
as a relation of half dependence, with a reasonable decision boundary given
by the point where the conditional, and the marginal knowledge, about the
consequent, are equal.

Consequently, we may consider a measure about their degree of depen-
dence, defined as the difference between these two expressions, that is,

K (Xq |Xp)−K (Xq)

what yields,

r,s∑
i,j

1
2 r

(
Us + ∆pq

ij

)
−

s∑
j

1
2

(
Us + ∆q

j

)
=

1
2

 r,s∑
i,j

1
r

∆pq
ij −

s∑
j

∆q
j


Let’s note that, for Xq⊥Xp, we should expect that,

∀
(
xp

i , x
q
j

)
;

npq
ij

np
i

=
nq

j

N
⇒ xpq

ij = xq
j

and therefore,

r,s∑
i,j

∆pq
ij =

r,s∑
i,j

(
xpq

ij − Us

)2

Cs
= r

s∑
j

(
xq

j − Us

)2

Cs
= r

s∑
j

∆q
j

hence,

K (Xq |Xp)−K (Xq) = 0

So, this difference is zero for stochastical independence, is negative when-
ever marginal knowledge is greater then conditional knowledge, and is pos-
itive otherwise.
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Chapter 4

Information theory

In our previous work, based on the intuition that some extra scaling should
be given to our measure of deviation, we presented the following general
expression,

Z
(
xq

j

)
= k Q(α ∆q

j)

where k is a normalizing factor, Q is a scaling factor, α is a shaping factor
and ∆q

j is the area associated to a deviation δq
j

Afterward, assuming that knowledge is indeed related with deviation
from minimum information, and hence, ∆q

j represents the piece of knowledge
contributed by xq

j , we thought that we may directly add these pieces.

Z (Xq) =
s∑
j

Z
(
xq

j

)
= k

s∑
j

Q(α ∆q
j)

Although with important analogies with this, in this work we have pre-
sented a different approach, based upon a certain axiomatization of knowl-
edge discovery and a geometric interpretation of knowledge.

In this chapter, we still present a different approach, which sets a bridge
between our previous exposition and some information theory based con-
cepts.

As exposed in 2.4, within the framework of information theory, uncer-
tainty is defined as logarithmic. Among other reasons, this contributes an
important ease of mathematical handling of expressions at the time of defin-
ing concepts and deriving important properties about information.

In this sense, it is good to adopt this idea, and we may wonder whether
a better aternative would be to consider the following general expression,

Z (Xq) =
s∏
j

Z
(
xq

j

)
= k Q

(α
Ps

j ∆q
j)

s (4.1)

or its analog for conditional distributions,
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Z (Xq |Xp) =
r,s∏
i,j

Z
(
xq

j |x
p
i ) = k Q

(α
Pr,s

i,j ∆pq
ij )

s (4.2)

where, still assuming that knowledge is related to the global area, we focus
on a volumetric idea of it.1

4.1 Presence and Coherence

The most important difference between the two approaches is that the latter
allows us to handle the knowledge conveyed by a distribution as a whole.

Thus, relaying again on information theory, we can apply the concept of
distance between distributions, as a measure of relative knowledge between
distributions. That is, given two different distributions A (X) and B (X),

D (A ‖ B) = log

(
ZA (X)
ZB (X)

)
(4.3)

holds the properties of a directed distance [4], and may be considered as the
difference in knowledge conveyed by each, being X either a marginal or a
conditional distribution.

This allows us to express our previously defined concepts of presence and
coherence from this perspective:

• given any marginal distribution of Xq, we can redefine our concept of
presence as a relative distance to the point of maximum information,
that is with

∑s
j ∆q

j = s,

Bq = log

(
Z (Xq)
Zmax.

)
= log

k bxp
(
α
∑s

j ∆q
j

)
k bxp (α s)


what gives,

Bq = −α log (Qs)

s−
s∑
j

∆q
j

 (4.4)

and from Bq =
∑s

j bq
j , for each xq

j we have,

bq
j = −α log (Qs)

(
1−∆q

j

)
(4.5)

1Depending on whether Qs is greater or less then 1 this expression is going to measure
certainty or uncertainty. Based on our previous experience we are going to assume that
Qs < 1.
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• given any conditional distribution (Xq |Xp
i ), we can redefine our con-

cept of coherence as the relative distance to the point of minimum
information, with

∑s
j ∆pq

ij = 0,

Cpq
i = −log

(
Z (Xq |Xp

i )
Zmin.

)
= −log

k bxp
(
α
∑s

j ∆pq
ij

)
k bxp (α 0)


what gives,

Cpq
i = −α log (Qs)

 s∑
j

∆pq
ij

 (4.6)

and from Cpq
i =

∑s
j cpq

ij , for each xpq
ij we have,

Cpq
ij = −α log (Qs) ∆pq

ij (4.7)

4.2 The scaling and shaping factors

Right till now, we have given some redefinitions of our concepts, but essen-
tially, we still know nothing about our scaling and shaping factors.

By one side, it is obvious that the shaping and scaling factor have a joint
effect.

By the other side, it is easy to realize that the behaviour of knowledge,
as given in section 3.2, fits well with the assumption given in eq.4.2, and we
can easily identify terms by comparing equations 3.9 and 3.10 with equations
4.6 and 4.7, that is,

K (Xq |Xp
i ) =

1
2 r

Us +
s∑
j

∆pq
ij

 vs. Cpq
i = −α log (Qs)

 s∑
j

∆pq
ij


K
(
Xq

j |X
p
i ) =

1
2 r

(
Us + ∆pq

ij

)
vs. Cpq

ij = −α log (Qs) ∆pq
ij

From this comparison, and as we pointed out in section 3.2, we may
conclude that the geometry of our graphical representation of knowledge,
certainly states a right cardinality scaling of knowledge, and the scaling
factor is indeed replaced by an offset of knowledge, determined by the un-
certainty factor. Herein, the roll of the scaling factor would be merely as a
unit of measure.

This is so in information theory, where it is common to take 2 as the
logarithmic base, so as to have measures in bits. But we had assumed from
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the beginning that Q < 1. Consequently, and due to the directionality of
distances, we have to change some negative signs in our expressions.

These considerations render, as the most simple form of equations 4.1
and 4.2, the following expressions,

• marginal knowledge,

Z (Xq) = 2−
Us
2 2−

1
2

Ps
j ∆q

j

• conditional knowledge,

Z (Xq |Xp) = 2−
Us
2 r 2−

1
2 r

Pr,s
i,j ∆pq

ij

Therefore, the particular expressions of presence and coherence are given
by,

• presence,

b
(
Xq

j

)
=

1
2

(
1−∆q

j

)
, B (Xq) =

1
2

s−
s∑
j

∆q
j


• coherence

c
(
xpq

ij

)
=

1
2 r

(
Us + ∆pq

ij

)
, C (Xpq) =

1
2 r

Us +
r,s∑
i,j

∆pq
ij


Note that, in the expression of coherence, the point of minimum informa-

tion from which we take relative distances, is the absolute minimum given
for s = ∞. This is a significative difference with respect to our previous
approach. Both expressions are depicted in fig.4.1.
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Figure 4.1: Presence and Coherence for 2 ≤ s ≤ 10.
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4.3 Half dependence revisited

Let’s note that, the distance between the conditional and the marginal ex-
pressions of knowledge about Xq is,

D ((Xq |Xp) ‖ Xq) = −log

(
Z (Xq |Xp)

Z (Xq)

)
that is,

D ((Xq |Xp) ‖ Xq) =
1
2

1
r

r,s∑
i,j

∆pq
ij −

s∑
j

∆q
j



just the same expression that we give in section 3.3, where the difference of
areas is an expression of the directional degree of dependence between both
features.
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Chapter 5

Conclusions

We have presented a graphical representation of our measures of deviation to
uninformative distributions, supported with some axiomatic considerations
about knowledge discovery. Also, setting a bridge to some information the-
ory based concepts, we have given a redefinition of the concepts of presence
and coherence, directly related to their meaning as measures of marginal
and conditional knowledge.

This graphical perspective suggests a plausible interpretation of knowl-
edge. Measures of deviation are areas that may be considered as pieces
of knowledge, either relative to the absolute knowledge, given by the full
square, or relative to the maximum knowledge that can be conveyed by
each cardinality. The geometry itself, states the different quality of knowl-
edge to each cardinality, as areas of certainty and uncertainty associated to
each.

Additionally, this graphical representation of knowledge turns to be a
powerful tool. Some interesting cardinality relations are expressed in its ge-
ometry. Herein, we have found out that the cardinality scaling of knowledge
may be given by an offset of certainty, instead of a direct scaling factor.
This is probably the most important difference with respect to our previous
work.

In our opinion, the equilibrium expressed by the function of utility is now
definitely righter then before, but we are not yet sure enough, about being
on the rightest will for believing what we see. Some different properties are
likely to be derived from this geometric relations, and this may contribute
with new ideas about the structure, the behavior and the right cardinality
scaling of knowledge.

Also, a thorough analysis about how this framework applies to the para-
metrical evidence functions and to our desiderata of properties, is left for
future work. By the moment, nothing has been worked out about this ques-
tion.

Concluding, we deemed this approach to be specially interesting, not
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only because it gives better results, as we show in the following examples,
but also because it offers a theoretical base which opens a path to further
research and development.

5.1 Examples

In our previous work we presented an application of this framework to a
synthetic domain with continuous features, with some examples about what
we call domain sensitive discretization.

Let’s remember that, being all three features continuous, the challenge
was to find the right discretization of each one, so as to identify the five
classes, and the conditional relation of dependence that governs the domain.

Following, we present in figures 5.1 and 5.2, the same examples, in order
to show a comparison of the empirical results obtained with the previous
and the new approach. The new ones are definitely better.

Basically, let’s note that for the unbalanced examples, the utility function
allows the search algorithm for a better detection of the five classes. For the
highly unbalanced one, this is at the cost of a significant over discretization of
the explanation variables, with an interval width of about the same marginal
frequencies then those of the less represented classes.
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Figure 5.1: Results with the previous approach
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Figure 5.2: Results with the new approach
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Appendix A

A.1 Cardinality scaling of knowledge

Let’s think about a discretization in (s + 1) intervals such that one of the
categories is empty, and the remaining s categories have each one the same
marginal frequencies. This is shown in fig. A.1.
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Figure A.1: Cardinality scaling of knowledge

In such situation, we have that for each non empty category, let’s gener-
ically denote them as xq

+, the marginal frequencies are, obviously, just the
uncertainty factor for cardinality s,

nq
+ =

N

s
→ xq

+ =
nq

+

N
= Us

with an associated deviation of,

δq
+ = xq

+ − Us+1 = Us − Us+1 = Us Us+1 (A.1)
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Therefore, the total square deviation of this marginal distribution is,

s+1∑
j

(
δq
j

)2
= ∆− + s ∆+

= U2
s+1 + sU2

s U2
s+1

= U2
s+1 (1 + Us)

=
(

1
s + 1

)2 (s + 1
s

)
=

1
(s + 1)

1
s

= Us+1 Us

But it is obvious that, in such situation, we should consider the real
cardinality as being s, and the feature as being in pmd, therefore, our real
knowledge about it should be the minimum for s, that is Us.

This is exactly the scaling that equation 3.5 expresses. For such a case,
it gives a total knowledge of, (apply eq. A.1),

K (Xq) = Us+1 +
s+1∑

j

(
δq
j

)2
= Us+1 + Us+1 Us = Us

A.1.1 Non-subsequent cardinalities

This holds generically for any two cardinalities s and r, being s > r. Let’s
consider a feature of cardinality s, with (s− r) empty categories and the
remaining r categories with equal frequencies, given by xq

+ = Ur, and an
associated deviation of,

δq
+ = xq

+ − Us = Ur − Us

In general, and being equation A.1 just a particular case of it, this devi-
ation between any two cardinalities, is given by,

δq
+ = Ur − Us = (s− r) Us Ur (A.2)

Therefore, the total square deviation of this marginal distribution is,
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s∑
j

(
δq
j

)2
= (s− r) ∆− + r ∆+

= (s− r) U2
s + r (s− r)2 U2

s U2
r

= (s− r) U2
s (1 + (s− r) Ur)

= (s− r) U2
s sUr

= (s− r) Us Ur (A.3)

and the total knowledge conveyed is,

K (Xq) = Us +
s∑
j

(
δq
j

)2
= Us + (s− r) Us Ur = Ur (A.4)

It is worth mentioning the following relations with respect to the differ-
ence in uncertainty between both distributions,

δq
+ = Ur − Us = (s− r) Us Ur =

s∑
j

(
δq
j

)2
(A.5)

A.1.2 Arbitrary distributions

Now, let’s see that it also holds for any arbitrary distribution with one or
more empty categories. Such situation is shown in fig.A.2.

As in the previous case, the real cardinality we should consider is r,
and the knowledge conveyed by this distribution would be that given by the
general expression,

K (Xqr) = Ur +
r∑
j

(
δqr
j

)2
(A.6)

With respect to cardinality s, the knowledge conveyed is,

K (Xqs) = Us +
s∑
j

(
δqs
j

)2
= Us +

s∑
j

(
δqs
j

)2

where for the (s− r) empty categories, let’s generically denote them as xq
z,

the square deviation is U2
s for each one, that is,
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Figure A.2: Cardinality scaling of knowledge

K (Xqs) = Us + (s− r) U2
s +

∑
j 6=z

(
δqs
j

)2
(A.7)

In this expression, the square deviation of the remaining non empty
categories is,

∑
j 6=z

(
δqs
j

)2
=
∑
j 6=z

(
δqr
j + (Ur − Us)

)2

=
r∑
j

(
δqr
j

)2
+ 2 (Ur − Us)

r∑
j

(
δqr
j

)
+

r∑
j

(Ur − Us)
2

where by equations 3.1 and A.2,

∑
j 6=z

(
δqs
j

)2
=

r∑
j

(
δqr
j

)2
+ r (s− r)2 U2

s U2
r (A.8)

Then, changing eq. A.8 into eq. A.7,

K (Xqs) = Us + (s− r) U2
s + r (s− r)2 U2

s U2
r +

r∑
j

(
δqr
j

)2

Combining now with eq. A.3 gives,

K (Xqs) = Us + (s− r) Us Ur +
r∑
j

(
δqr
j

)2
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And finally, combining with equations A.4 and A.6, we have,

K (Xqs) = Ur +
r∑
j

(
δqr
j

)2
= K (Xqr)
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