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Universitat Politècnica de Catalunya,

jgarriga@lsi.upc.edu

http://www.lsi.upc.edu/~jgarriga/

Abstract. Dealing with sparsity is still an open question in data min-
ing. As soon as the dimension of the sample space becomes high, the
number of unseen events or rare configurations in the sample, contribute
a great amount of uncertainty. Existing methodologies offer partial so-
lutions, often based on assumptions about certainly unknown prior dis-
tributions. In this work, we present an assumption free approach. We
define a statistic that has a clear interpretation in terms of a measure
of certainty, and we build up a plausible hypothesis, that offers a com-
prehensible insight of knowledge, with a consistent algebraic structure
and a consistent set of properties, yielding a native value of uncertainty
for unseen events. This hypothesis is summarized in a set of postulates
that characterize such a measure. Also, we face up our measure with
some close existing references, mainly, entropy based measures, in order
to highlight the contributions of our approach. Finally, we show how this
measure is implemented in a general context of statistical modeling.

Key words: data mining, sparsity, statistical modeling, measures of
information, entropy

1 Introduction

Many data mining tasks for knowledge discovery, rely on the use of the so called
predictive association measures, or more generally, measures of information. Such
measures are intended in order to select an optimal model (statistical model se-
lection, graphical modeling, classifiers), an optimal set of rules (association or
classification rule mining), an optimal split at each node of a tree (induction of
decision trees), or whatever. In any case, they are particular forms of expressing
knowledge learned from data, which in this context, means the degree of cer-
tainty with respect to the outcome of a random variable. But, regardless to the
final objective of the mining process, (let’s suppose that no prior knowledge is
available), knowledge is invariably and uniquely expressed by occurrences and
concurrences of values, observed in the sample. Therefore, such measures intend
to asses the amount of information conveyed by any (finite discrete) probability
distribution estimated from data. This refers to marginal, as well as conditional,
probability distributions.
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The main difficulty herein, lies on the concept of knowledge itself. Knowl-
edge is definitely an elusive concept. It is well known that, while learning models
from data, one faces a subtle trade off between complexity and accuracy, which
may lead to many different combinations of marginal and conditional distribu-
tions. Therefore, any assessment of the information conveyed by a probability
distribution should be specially sensible to both concepts. 1

Let’s suppose that we are interested in the relation of an attribute Xc, (a
sort of a class attribute, or more generally, a consequent set), with respect to a
set of other attributes Π =

{
X1, X2, . . . , Xm

}
, (a sort of joint explanation of

the class, or more generally, a set of antecedents). The most direct way to figure
this out, is an implication Π → Xc and its conditional probability distribution.
But we want to emphasize, that we refer to the most general case, in which a set
of features define together an input space, (for instance, a decision tree). Let’s
note, also, that we are not making an explicit distinction between supervised or
unsupervised learning.

With respect to Π, we may decide to include or discard some of the features
(feature subset selection), and we may have to decide how to partition the input
space (discretization and clustering). Be what it may, the joint cardinality of the
sample space under consideration, grows geometrically with the cardinality of
the features, and can easily become very high. The problem here, is not only that
of overfitting. Also, the explanation matrix will probably be very sparse, however
large it is the sample, because there will certainly be particular joint configura-
tions of the antecedents that are going to be very rare among the population, or
even non-existent. 2

We refer to these rare configurations, not present in the sample, as unseen
events. With respect to them, one can adopt two different strategies: to discard
them, by estimating a probability of zero, that is, consider that they will never
happen, (identical distribution assumption), or not to discard them, in which
case one should assume a certain amount of probability for them to occur.3

In summary, in many cases the sample may not convey all the information
about the domain. Particularly, the higher the dimension of the input space, the
sparser the input matrix, and this contributes an amount of uncertainty that
can not be obviated,

The same argument applies to a validation set. Is it fair to assume that a
validation set is representative enough of the whole distribution? Achieving a
good rate of classification accuracy in a validation process is, indeed, an indi-

1 Although some relation with MDL approaches ([7],[12]) may be perceived, we note
that we do not specifically advocate in this direction, as it will be shown along this
work.

2 Let’s note that, when tackling real world problems, the iid assumption does not
always hold. In many cases, a real underlying distribution simply does not exist.
Then, increasing the sample size will not always overcome this situation. Conversely,
we may unnecessary burden, and probably bias, the sample, yielding hardly better
results with important additional computational cost.

3 Also some connections with Good-Turing estimation [6] or with bayesian approaches
may be perceived here, and again we note that we are meaning none of this directions.
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cation of the goodness of a model, but, up to which degree can we rely on its
completeness? Hence, tunning for an extra 1% of accuracy, and/or using such
rates as a ranking feature of particular algorithms or methodologies, may not
make quite sense.

Among others, Shannon’s entropy is the most widely known measure of un-
certainty associated to a probability distribution. This measure is uniquely char-
acterized and satisfies some attractive properties. A nice correspondence can be
established between these properties and, what is commonly accepted as, a plau-
sible axiomatic definition of knowledge. This is the reason of its success, and the
basis of a comprehensive work. But, in relation to the framework above described,
entropy’s characterization does not attain to cover this aspect of uncertainty.

In this work, we build up a plausible alternative hypothesis, more suitable to
deal with the arguments given above. We start up with some axiomatic intuitions
about knowledge, from which a direct measure of certainty 4 is derived. This
measure is characterized by an analog set of properties to those holding for
entropy. But, in our case, the algebra of knowledge is more clearly stated, offering
a quite comprehensible insight of knowledge, and contributing some important
advantages.

2 Deviation from Minimum Information

In the following, we denote by P = (p1, p2, . . . , ps), a generalized finite discrete
probability distribution, where P is a vector of observed frequencies over the set
of disjoint dependent events Ω = {e1, e2, . . . , es} observed in a sample. 5 Also,
we denote by Cs = (s− 1) /s and Us = 1/s, what we call, the certainty and
uncertainty factors associated to the cardinality s of the distribution.

The basic idea of our approach is to measure the deviation of any such distri-
bution, with respect to what is commonly called uniformity. Uniformity means
equiprobability, which is obviously the most uninformative distribution about
the outcome of a random variable. Thus, our interpretation follows straightfor-
ward: the larger the deviation, the greater the amount of knowledge expressed
by that distribution.

The most direct expression of such deviation is:

∆ (P) =
s∑

j=1

(pj − Us)
2

. (1)

4 Certainty and uncertainty are indeed quite the same thing: just different degrees
of knowledge. But we want to emphasize this aspect, as opposed to entropy based
measures, which are measures of uncertainty

5 We refer to the extended concept of generalized finite discrete probability distribu-
tions, as expressed in [11]. Such extension allows to consider a simple sequence
p1, p2, . . . , pn of nonnegative numbers such that, 0 <

Pn
i pi ≤ 1. We denote,

W (P) =
Pn

i pi, as the weight of the distribution P. Thus, the weight of an or-
dinary distribution is equal to 1. A distribution which has a weight less than 1 is
called an incomplete distribution.
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Fig. 1. Graphical depiction of knowledge conveyed by P = (p1, p2, p3)

This deviation is just a statistic, probably biased with respect to population
constants. However, uniformity is a clearly defined reference point, independent
of either sample space or sampling scheme under consideration. Therefore, step-
ping aside from any distributional assumptions about the sample space, and
focusing exclusively on the information conveyed by the sample, deviation with
respect to uniformity yields always a relative idea of the information conveyed by
any estimated distribution. In other words, we intend to measure the informa-
tion conveyed by a distribution, not by its proximity to any assumed underlying
distribution, but rather from its deviation with respect to the worst imaginable
case, a sort of absolute reference baseline. Note that, while proceeding this way,
we are not concerned with any kind of validation process.

2.1 Geometric Interpretation

This deviation has a pretty illustrative geometric interpretation. Let’s fix a
square with an area equal to one and let’s imagine that this area represents
the absolute knowledge. Let’s divide each side at the point corresponding to
1/s, so that we get two portions, according to the certainty and uncertainty
factors, as it is shown in fig.1. We refer to the crossing point as the point of
minimum information.

For each pj , we have a deviation δj = (pj − Us), and a square deviation
∆j = (pj − Us)

2. It is easily observed that square deviations are areas relative
to the full square, so that we may regard them as a graphical representation of
the amount of knowledge contributed by each event ej .

It is straightforward that: (i) deviations sum up to zero,
∑s

j=1 δj = 0, and
(ii) square deviations sum up to

∑s
j=1 ∆j =

∑s
j=1 (pj)

2 − Us.
Ideally, the maximum certainty is given when only one particular event is

observed in the sample, (let’s say em, with pm = 1). In this case, the square
deviation is maximum, and is equal to 1−Us. Thus, with respect to the absolute
knowledge, we still have a lack of knowledge amounting Us, and what we get is
the shadowed areas shown in fig.2 for different values of s.



A Native Measure of Certainty for Unseen Events 5

�

�
�� �

�

�
�� �

�

�
�� �

�

�
�� �

�

�
�� �

�

�
�� �

Fig. 2. Areas of certainty and uncertainty for s = 2, 3, 4

For each cardinality, the shadowed, and not shadowed areas, represent the
relation between certainty and uncertainty with respect to the absolute knowl-
edge given by the full square. Absolute knowledge, or absence of uncertainty,
would only be achieved with an infinite cardinality, that is, a continuous feature.

Let’s highlight the special consequence of taking measures of deviation with
respect to minimum information: a notion of richness, or quality, not only quan-
tity, of knowledge, is inherently related to the dimension of the distribution. This
results in a very important feature of our measure, which we call the cardinality
scaling of knowledge.

3 A Measure of Certainty

The minimum knowledge we can have is that given in case of uniformity, ex-
pressed by the uncertainty factor. That is, at the point of minimum information
we have Us, and it increases as the square deviations increase. The most direct
expression of this idea is,

K (P) = Us +
s∑

j=1

∆j =
s∑

j=1

p2
j (2)

The geometric interpretation of this expression is shown in fig.3 a), in which
the shadowed and not shadowed areas represent the relative measures of certainty
and uncertainty associated to an example distribution.

It is straightforward to show that the following properties hold: (i) normal-
ization, (ii) monotonicity (with respect to deviation), (iii) symmetry and (iv)
expansibility.

And yet a fifth property holds, in relation to the composition of two successive
random variables, as it is graphically shown in fig.3 b): given P = (p1, p2, . . . , ps)
and T = (t, 1− t), and their composition Q = (t p1, (1− t) p1, p2, . . . , ps), we
have,

K (Q) = K (P)− p2
1 (1−K (T )) (3)
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Fig. 3. a) Certainty measure for P = (p1, p2, p3, p4); b) Successive composition of
P = (p1, p2, p3, p4) and T = (t, 1− t).

This looks quite natural: our knowledge about the final outcome of the suc-
cessive composition of two distributions, is the certainty of the first distribution
except for the additional uncertainty contributed by the second distribution.
This relation synthesizes the additive algebra of knowledge that is implicit by
our measure of certainty.

3.1 Disjoint Dependent Events

In terms of disjoint dependent events, the composition shown in fig.3 b), can
also be expressed as,

K (t p1, (1− t) p1, p2, . . . , ps) = p2
1 K (t, 1− t) +

s∑
j=2

p2
j (4)

But we are implicitly assuming that a particular amount of uncertainty, the
term Us in eq.2, is inherently due to the dimension of the distribution. Thus,
each p2

j is in fact,

p2
j = (Us+1 + (pj − Us+1))

2 = (Us + (pj − Us))
2

Therefore, though apparently independent of cardinality, it is indeed a devi-
ation with respect to minimum information: the term Us is equally distributed
among all possible outcomes of the distribution, yielding a term U2

s , and the
amount really contributed by each ej is, (pj − Us)

2 +2Us (pj − Us), from which
the second term globally cancels out.

Consequently, if pj is the observed probability of occurrence of event ej , our
knowledge about the outcome of ej is given by,

K (pj) = U2
s + ∆2

j (5)

which is consequent with eq.2, so that we have, K (P) =
∑s

j=1 K (pj).



A Native Measure of Certainty for Unseen Events 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. K (pj) for s = {2, 4, 8, 16, 32, 64, 128,∞}

Such an additive assumption contributes other remarkable features:

– The measure is explicitly dependent on s, thus expressing the notion of
quality of knowledge as a function of the cardinality, as it is shown in fig.4. In
the limit, where this measure would hardly apply, knowledge meets (square)
probabilities,

lim
s→∞

K (pj) = p2
j .

– The minimum value is coherently given at the point of equiprobability, where,

K (Us) = U2
s .

– It is continuous for an observed probability of zero, so that, as long as we
correctly estimate the dimension of the probability distribution, it yields a
value greater than zero for any unseen event,

K (0) = U2
s + U2

s .

– Conversely, for any event with an observed probability of one, as long as a
meaningful cardinality is going to be higher than one, the measure yields a
value lower than one,

K (1) = U2
s + C2

s .

– In case of uniformity, or minimum information, we have,

K (P) =
s∑

j=1

K (pj) = Us .

– In case of maximum deviation, we have maximum knowledge, (which does
not mean maximum certainty about the only seen event),

K (P) = K (1) + (s− 1) K (0) = 1 .

– and finally, the relation of composition given by eq.3, can be alternatively
postulated as,

K (t p1, (1− t) p1, p2, . . . , ps) = p2
1 K (t, 1− t) + K (p2, . . . , ps) . (6)
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3.2 Conditional Certainty

Let’s denote (Q| ei) = {q1| ei, q2| ei, . . . , qs| ei} as the observed probability dis-
tribution of a random variable, given event ei, drawn from probability distribu-
tion P = {p1, p2, . . . , pr}. Also, let’s denote ∆ji = (qj | ei − Us)

2 as the square
deviations of this conditional distribution. The information conveyed by (Q| ei)
is analogously given by,

K (Q| ei) = Us +
s∑

j=1

∆ji =
s∑

j=1

(qj | ei)
2 (7)

As desirable, in case of independence, this expression yields, K (Q| ei) =
K (Q), but moving away from that point in either direction, we have a clear
expression of dependence in terms of K (Q| ei):

– the minimum knowledge we can have is K (Q| ei) = Us, which corresponds
to the point of uniformity;

– at the point of independence we will have K (Q| ei) = K (Q) ≥ Us;
– from that point on, K (Q| ei) > K (Q) and we may begin to consider a

possible relation of dependence;
– and in case of absolute dependence, K (Q| ei) = 1.

That is, it would make sense to consider independence for the existing subset
of distributions conveying less knowledge than that given in case of indepen-
dence, an consider higher rates of dependence as long as knowledge is higher.

With respect to the whole distribution P, it makes sense to consider a
weighted mean expression of the amount of knowledge conveyed by the con-
ditional distribution given each ei, that is, 6

K (Q |P) =
r∑

i=1

pi K (Q |ei) = Us +
r∑

i=1

pi

s∑
j=1

∆ji =
r∑

i=1

pi

s∑
j=1

(qj | ei)
2 (8)

In case of independence, eq.8, yields also, K (Q| P) = K (Q).

3.3 Joint Distributions

Let’s denote (P,Q) = {p11, . . . , p1s, . . . , pr1, . . . , prs} as the joint probability
distribution of two random variables observed in the sample. Also, let’s denote
Ur,s = Ur Us, and ∆ij = (pij − Urs)

2 as the square deviations of this joint
distribution. The information conveyed by this distribution is,

K (P,Q) = Urs +
r,s∑
i,j

∆ij =
r,s∑

i=1,j=1

p2
ij (9)

6 Note that, being ei an unseen event, K (Q |ei) = Us. Thus pi stands here as the basic
form of θi ∈ Θ, a parametrical model, intrinsic to our approach, yielding assumption
free priors for unseen events, the description of which does not fit in this paper.
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In this case, we have the following expression of dependence in terms of
K (P,Q):

– The minimum knowledge we can have is K (P,Q) = Urs, which corresponds
to uniformity.

– In case of independence, we have
∑r,s

i,j p2
ij =

∑r
i p2

i

∑s
j q2

j , thus,

K (P,Q) = K (P) K (Q) ≥ Urs (10)

We may refer to this relation as multiplicativity of knowledge (certainty),
as an analog to the additivity of entropy (uncertainty), of two independent
random variables.

– From that point on, we may begin to consider a relation of dependence, and
following from

∑r,s
i,j p2

ij =
∑r

i p2
i

∑s
j (qj | ei)

2, we get,

K (P,Q) =
r∑

i=1

p2
i K (Q |ei) =

r∑
i=1

pi Ki (Q |P) (11)

So, what we have is a particular composition of the marginal and conditional
knowledge, that may be regarded as a weighted mean expression of the con-
tributions to K (Q |P) in eq.8 of each particular outcome of the antecedent,
(what we denote in eq.11 as Ki (Q |P)).

– In case of dependence given any event ei, we have ∀ei , K (Q| ei) ≥ K (Q),
therefore,

K (P,Q) =
r∑

i=1

p2
i K (Q |ei) ≥

r∑
i=1

p2
i K (Q) = K (P) K (Q) (12)

So, also an analog to the subadditivity of entropy holds, to which we may refer
as supermultiplicativity of knowledge about two dependent random variables.

– Finally, in case of absolute dependence, we have ∀ei , K (Q| ei) = 1, and
consequently, K (P,Q) = K (P)

3.4 Characterization of the Measure

We have shown how our measure of certainty applies to marginal, conditional,
and joint distributions, as well as to each elementary event, and we have shown
also the properties and relations that hold. Hereof, we can give a set of postulates,
characterizing our measure:

1. K (P) is a symmetric function of the elements of P.
2. For each element {p} ∈ P, K ({p}) is a continuous function of p for 0 ≤

p ≤ 1. Note that continuity of K ({p}) is supposed even for p = 0.
3. K ({1/s}) = (1/s)2 is a minimum.
4. K (t p1, (1− t) p1, p2, . . . , ps) = p2

1 K (t, (1− t)) + K (p2, . . . , ps) for any dis-
tribution P and for 0 ≤ t ≤ 1
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Postulate number 4 is a synthesis of the algebraic structure of knowledge im-
plicit by our measure. Knowledge is defined as the sum of the pieces contributed
by disjoint dependent events, and as the (square) weighted sum of knowledge
about combined events.

Expansibility is also implicit in this postulate. It is worth mentioning that,
with respect to entropy, the connotations of this property are much stronger,
because the piece of knowledge contributed by an unseen event is not zero,
K (0) = U2

s . Conversely, the piece of uncertainty contributed by an unseen event
is the unnatural and weird mathematical artifact H (0) = −0 log (∞) = 0, so
that expansibility follows straightforward.

At this point, it is obvious that an axiomatic definition of knowledge, that
explicitly detaches, what is information, from what is probabilities, is underlying
our approach. 7. Some subtle differences exist among these two concepts, which
are mainly expressed by the following two intuitions: (i) knowledge can never be
zero, and (ii) knowledge is akin to a notion of quality related with the cardinality
of the distribution.

On the basis of these differences, we build up a plausible hypothesis that
offers a quite comprehensible insight of knowledge, with some notable features:

– it is based on the fact of moving the gravity center to the point of equiprob-
ability, or minimum information;

– it allows for a consistent definition of an algebraic structure of knowledge,
from distribution level to elementary event level;

– it yields a cardinality dependent measure of certainty, relating knowledge to
a notion of quality;

– it yields a native measure of uncertainty associated to unseen events, as well
as of certainty about a single observed event.

4 Close Existing References

An extensive literature exists concerning references which are close to our mea-
sure. They all have in common to be classified under taxonomic labels like indexes
of diversity, or measures of heterogeneity. On the other hand, none of them seems
to be conceptually close to our posing.

4.1 Diversity Indexes

Several formulations of indexes of diversity (or concentration) have appeared.
From its origins, back to Gini’s index [4] in 1912, to Yule’s Characteristic K
of stylistic diversity [17] (1944), Hirschman’s index of trade concentration [9]
(1945), Simpson’s index of diversity [14] (1948), Herfindahl’s coefficient of con-
centration [8] (1950), Greenberg’s index of linguistic diversity [5] (1956), or
Agresti’s variability [2] (1990), among many others.
7 We don’t depict an axiomatic definition of knowledge in this paper, but it is clear

that it should be slightly different from Kolmogorov’s axiomatization of probability
[10], in the context of finite sample spaces
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Considering an infinite population such that each individual belongs to one
of Z groups, and being π1, . . . , πZ , (

∑
π = 1), the proportions of individuals in

the various groups, the probability of choosing two individuals from group i is
π2

i . Then, λ =
∑

i π2
i can be interpreted as the probability that two individuals

chosen at random and independently from the population will be found to be-
long to the same group. Therefore, λ is a measure of the concentration of the
classification. This is the most common basis of this group of measures.

While this posing may look quite distant from ours, the formal similarity is
clear. Let’s note however, that diversity embrace two basic aspects of the popu-
lation, which are exactly the same components that we combine in our measure
of knowledge: (i) richness, the number of different groups in the population, as
an analog to richness, or quality, of knowledge, and (ii) evenness, the uniformity
in the number of individuals of the various groups, as a baseline reference.

What is most significant to us, is that: (i) any of them can be regarded from
the point of view of knowledge about the outcome of the experiment at hand,
(ii) the exact formal expression that we derive, is independent of sample size,
(for instance, see [14]).

4.2 Entropy Based Measures

Though initially not conceived us such, Shannon’s entropy is, by far, the most
widely used diversity index. It was introduced in [13], within the framework
of communication theory, and quickly reinterpreted by the information theory
community, with the following formal definition:

Let P = {p1, p2, . . . , pn} be a finite discrete probability distribution, that is
∀i , pi ≥ 0, and

∑n
i pi = 1. The amount of uncertainty of P, that is, the amount

of uncertainty concerning an experiment, the possible results of which, have the
probabilities p1, p2, . . . , pn, is called the entropy of the distribution, given by,

H (P) = H (p1, p2, . . . , pn) =
n∑
i

pilog2
1
pi

(13)

The simplest set of postulates which uniquely characterize the quantity given
by eq. 13 is [1]:

1. H (P) is a symmetric function of the elements of P.
2. H (p, 1− p) is a continuous function of p for 0 ≤ p ≤ 1.
3. H (1/2, 1/2) = 1.
4. H (t p1, (1− t) p1, p2, . . . , pn) = H (p1, p2, . . . , pn)+p1H (t, 1− t) for any dis-

tribution P and for 0 ≤ t ≤ 1.

The analogy of our measure’s characterization, (sec. 3.4), is evident, though
a main difference is expressed by postulate 4: while the entropy of combined
events is a sum of the weighted uncertainty of the successive events, knowledge
is defined such that, the final certainty, is the initial certainty, minus the (square)
weighted uncertainty contributed by each successive event (eq. 3). The difference
itself, is illustrative of the consistency of both posing.
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Fig. 5. a) Single event’s uncertainty; b) Single event’s contribution.

Shannon’s entropy has been the basis for a comprehensive posterior work.
As far as it is of our concern, let’s just highlight two generalizations given for
entropy measures:

– Rényi’s extension of entropy to the set of generalized probability distribu-
tions, [11], defined by,

Hα (P) = Hα (p1, p2, . . . , pn) =
1

1− α
log2

(
n∑

i=1

pα
i

)
, (14)

with, α > 0, and α 6= 1. In the limiting case of α → 1, Rényi’s entropy tends
to Shannon’s entropy.

– Daróczy entropies of type β, [3], defined by, Hβ (P) =
∑n

i=1 pi uβ (pi), being

uβ (pi) = 2β−1

2β−1−1

(
1− pβ−1

i

)
, what yields,

Hβ (P) = Hβ (p1, p2, . . . , pn) =
2β−1

2β−1 − 1

[
1−

n∑
i=1

pβ
i

]
(15)

with, (β > 0, and β 6= 1). In the limiting case of β → 1, Daróczy generaliza-
tion tends also to Shannon’s entropy, and setting β = 2, yields the quadratic
entropy, H2 = 2

(
1−

∑n
i p2

i

)
= 2

∑n
i pi (1− pi), (identical to the so called

Gini index).

The contribution of Rényi’s extended notion of entropy is that the term
−log (pi), in Shannon’s expression, is interpreted as the entropy of the general-
ized distribution consisting of the single probability pi, becoming thus evident
that eq.13 is, indeed, a mean value, [11]. Daróczy generalization is even more
explicit, by introducing the function of uncertainty uβ (pi) for a single event ei.
Together with postulate 4, (adequately adjusted in each case), the assignment of
each event’s contribution to the total uncertainty, states an implicit algebra of
knowledge. This is depicted in fig.5 a), where we plot uβ (pi) for different values
of β, with special emphasis on Rényi’s uncertainty, uβ→1 = −log (pi), and on
the quadratic entropy, u2 = 2 (1− pi). Also, h (pi) = −pi log (pi) is plotted as



A Native Measure of Certainty for Unseen Events 13

the single event’s uncertainty assumed from Shannon’s original posing. In fig.5
b), the corresponding weighted contributions are plotted.

With respect to our algebra of knowledge (refer to sec.3.1 and fig.4), some
significant differences arise:

– In our case, certainty and contribution, of each single event, is the same:
knowledge is just the sum of the parts, not a weighted mean.

– At single event’s level, uncertainty is not dependent on cardinality. This is,
by all means, counterintuitive for us: the probability of observing a particular
frequency of occurrence of an event, can not be the same, being this event
one out of two, or one out of more.

– The value of uncertainty for an unseen event, 2β−1/
(
2β−1 − 1

)
, is somewhat

arbitrary and not easy to comprehend. On the other hand, it is zero when
the observed probability of an event is 1, excessively confident to us, (having
assumed a cardinality greater than one).

– Even assuming these values, there is no space left for unseen events in the
algebra of entropy. Otherwise, one should assume the puzzling result that the
contribution of an unseen event is zero, (while its uncertainty is greater than
zero). Despite of this, expansibility is systematically ascribed to entropy as
a property.

– Certainty is symmetric (at any level) with respect to its minimum, given at
the point of minimum information, while contributions to entropy present
eccentric maximums, (except for H2), which are not easy to comprehend.

– Additionally, the question arises of what is the right value of α\β for each
task at hand, contributing some additional confusion.

Furthermore, though at distribution level, entropy is upper bounded by
2β−1/

(
2β−1 − 1

) (
1− n1−β

)
(log n for Shannon’s and Rényi’s entropies), we

should be cautious about interpreting this as a dependence on cardinality. Just
think about a sample in which we observe uniform frequencies for the (n− 1)
outcomes of a random variable, while the remaining one is unseen. In such a
case, we get a value of uncertainty of log(n− 1), when the right entropy should
be higher, as far as we know nothing at all about the unseen event. For this
same reason, we assign an assumption free value to this case, which, at least, is
consequent with a baseline scaling of knowledge.

5 Structural Evidence Functions

In a general case, we will be interested in assessing the utility of considering a
particular pattern of association between an antecedent set Π and a consequent
set Xc, having observed the marginal distributions P (Π) and P (Xc), and the
conditional distribution P (Xc| Π), in the sample. We denote in the following,
K (X) ≡ K (P (X)), for simplicity.

As K (Xc) and K (Xc| Π) are clashing sources of information about the
consequent, in order to adeptly measure the quality of a pattern, we define the
following functions of structural evidence:
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– Coherence, a measure of the reliability of the pattern, given by the weighted
mean conditional certainty,

CΠ,c = K (Xc| Π)

– Presence, a measure of the representativity, or bias, of the sample with re-
spect to the consequent, given by the opposite of the marginal certainty,

Bc = Us + (1−K (Xc))

Note that, Us ≤ K (Xc| Π) ≤ 1 while 0 ≤ (1−K (Xc)) ≤ Cs. Inasmuch both
measures must be equilibrated, we need to add the term Us to (1−K (Xc)).

Thus, from the composition of the above two functions, we can define a sort
of certainty gain as,

KG (Xc| Π) = Bc CΠc

Note, that this expression is the analog to entropy based measures of infor-
mation gain. But, our formalism allows to push this idea further, by including
the presence of the antecedent, BΠ = Ur + (1−K (Π)), so as to take also into
account the bias in the antecedent set. Thus, we get what we call, the utility of
the pattern, given by,

UΠc = BΠ Bc CΠc (16)

The composition of all amounts of information involved in a pattern, is a
step forward in order to get a relative measure of the quality of the information
given by alternative patterns under consideration. But a necessary condition to
combine antecedent and consequent, with potentially different cardinalities, is
that the measure must express a right cardinality scaling of knowledge. This is,
of course, related with the fact of having a balanced measure of certainty for
unseen events.

As a little illustration of our approach, we will refer to the weather ex-
ample, extracted from [16]. This is a tiny dataset with 14 examples and at-
tributes: outlook (sunny,overcast,rainy), temperature (hot,mild,cool), humidity
(high,normal), windy (false,true), and the class play (yes,no). In order to select
an attribute to place at the root node of a decision tree, we consider the tree
stumps shown in fig. 6. Also we show a table, where we summarize the infor-
mation gain for each attribute, based on Shannon’s entropy, resulting from the
following usual measures: a) entropic gain, (h (Y )− h (Y | X)), b) u coefficient
of Theil, (h (Y )− h (Y | X)) /h (Y ), c) gain-ratio, (h (Y )− h (Y | X)) /h (X), d)
Kvalseth coefficient, 2 (h (Y )− h (Y | X)) / (h (X) + h (Y )). On the other hand,
our measures of presence, coherence, certainty gain and utility are also given.

All measures yield the same ranking of attributes, being outlook the best
choice. However, humidity is also a good choice because it has a highly selective
right branch. Now, let’s imagine that humidity, originally a continuous feature,
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Fig. 6. Tree stumps for the weather data.

had been differently discretized, splitting the normal interval into medium and
low, so that just the discordant example of that branch would have fallen in the
new medium category. In such case, (shown in the table as humidity(i)), this
attribute becomes highly informative, what is clearly indicated by all entropy
based measures. Utility selects it as well, though it is not so confident about this
new partition. The reason is that the medium branch is poorly represented, this is
reflected in the attribute’s presence, and the value of utility is heavily penalized.
Following this line of reasoning, we present also the case humidity(ii), in which
the medium branch includes also an example with play = yes. In such case,
though with lower values, entropy based measures still select this attribute as
the best choice. Conversely, our measure of utility does not select it any more.
To the previous reason, we must add now the minimum information contributed
by this branch. In summary, this balance between presence and coherence, leads
to a balance between the size of the tree and the number of examples at each
leaf.

6 Conclusions

To put in a few words, this work can be summarized in the principle of making
no assumptions about what is not known. Instead, we introduce a sort of bar
measure, which always makes the same exact assumption about what is not
known, in a cautious and balanced way. As such, it allows us to pick an optimal
choice from a set of options, based on what we certainly can observe.
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Our main contribution is to build up a plausible hypothesis from which a
measure of certainty is derived, yielding a consistent algebraic structure and
a consistent set of properties. With respect to entropy based measures, our ap-
proach contributes some important advantages, namely, a comprehensible insight
of knowledge, with a native cardinality scaling, from which an assumption free
measure of certainty for unseen events is derived. This hypothesis is summa-
rized in a set of postulates that characterize such a measure of knowledge. The
question remains, about whether this characterization is unique of this measure.
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