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Our Framework

I Knowledge: certainty about the outcome of a random event/variable.

Given,

I a relational (/transactional) domain;

I we have X =
{
X 1,X 2, ...,Xm

}
, and a sample D of fixed size N;

I we does not assume any underlying distribution in the origin of the sample;

I we just observe some empirical distributions: for any X q ∈ X we observe
P (X q) and P (X q | Π (X q)).

Any such distribution expresses a degree of certainty about its outcome.
We want to measure this degree of certainty.

For the general case, we denote,

I Ω = {e1, e2, . . . , es}, a set of disjoint dependent events;

I P = (p1, p2, . . . , ps), a finite discrete probability distribution, (a vector of
observed frequencies over Ω)



Shannon’s Entropy

Shannon’s Entropy is the most widely known measure of certainty, (uncertainty).

H (P) = H (p1, p2, . . . , pn) = −
n∑

i=1

pi logpi

Attractive properties:

1. symmetry: (p, 1− p) and (1− p, p) have equal entropy;

2. normalization: a fair coin has entropy one, (more generally, max.entropy is logn);

3. monotonicity: the entropy of a coin, with bias p, goes to zero as p goes to zero;

4. subadditivity: H (X ,Y ) ≤ H (X ) + H (Y ), with equality for X ⊥ Y ;

5. expansibility: H (p1, p2, . . . , pn, 0, . . . , 0) = H (p1, p2, . . . , pn);

6. composition:
H (t p1, (1− t) p1, p2, . . . , pn) = H (p1, p2, . . . , pn) + p1 H (t, 1− t).

It is uniquely characterized by these properties.

A nice correspondance with a plausible axiomatic definition of knowledge.



Entropy generalizations

1. Rényi: Hα (P) = Hα (p1, p2, . . . , pn) = 1
1−α log

(∑n
i=1 p

α
i

)
2. Daróczy: Hβ (P) =

∑n
i=1 pi u

β (pi ) , where, uβ (pi ) = 2β−1

2β−1−1

(
1− pβ−1

i

)
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Entropy is a weighted mean value, where −log pi is the elementary entropy of ei :

I higher values of α, β give more weight to the most probable events;

I lower values of α, β give more uniform weights to all possible values;

I α, β → 1 tend to Shannon’s entropy, where the weight is just pi



Entropy drawbacks

Generally known drawbacks:

I bias towards attributes with greater cardinalities

I undesired results with highly imbalanced frequencies

Particular questions, (the curse of dimensionality):

I the cardinality scaling of knowledge;

I the uncertainty of unseen events.

Is there any alternative, also plausible, axiomatic definition of knowledge?



The curse of dimensionality

I Let’s figure our input space uniformly distributed in a p-dimensional unit
hypercube.

I In order to capture a fraction r of the input space, we must consider an
hypercubical fraction r of the unit volume.

I The expected edge length is ep = r1/p : a fraction of 10% yields an edge length
e3 = 0.46, but e10 = 0.79, and e100 = 0.98 !!.

I The sample density is proportional to N1/p : if N1 is a dense sample for a single
input problem, then N10 = N10

1 is the sample size required for the same
sampling density with 10 inputs.

I General case: given a fixed sample size (whatever large it is), the fraction
captured is dramaticaly reduced, as the dimension of the input space increases.
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The cardinality scaling of knowledge

Knowledge is akin to a notion of richness, related to the cardinality of Ω.

(The statistical significance of the observed frequencies is related to the dimension of
the distribution).

I Let’s figure a horse race beting example, with a fixed sample size N.
I Two runners (Tomcat and Apache): 50% of victories each.
I s runners (Tomcat and (s − 1) uniform competitors): we still observe a 50% of

victories for Tomcat.
I We are always bound to loose 0.5 of our bets in the long run, but our epistemic

state is quite different.
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Uncertainty of unseen events

I The dimension of the input space grows geometrically with the cardinalities of
the input features.

I As soon as the complexity of the model involves just a few number of features,
the sample will be very sparse.

I A great number of configurations will not be present in the sample: unseen
events (observed frequency, pi = 0.)

For any unseen event, entropy yields a puzzling result (!?):

H (0) = 0 log∞ = −0 log0 = 0

At this point, one has to rely on ad-hoc smoothing procedures



Our proposal

Two main axiomatic intuitions:

I the minimum knowledge is given in the case of uniformity;

I knowledge is akin to a notion of richness, related to the cardinality of Ω.

Given:

I a set of disjoint dependent events Ω = {e1, e2, . . . , es} with an observed
distribution P = (p1, p2, . . . , ps);

I | Ω |= s;

I Cs = (s−1)
s

, and Us = 1
s

, the certainty and uncertainty factors;

We take the distance to the most uninformative distribution,

∆(P) =
n∑

j=1

(pj − Us)2 ≡ L2(P,U)

plus, our axiomatic requests, (knowledge can not be zero), i.e.,

Ks(P) = Us + ∆(P) =
n∑

j=1

p2
j

We get a direct measure of Certainty , or knowledge, conveyed by distribution P



Geometric interpretation

Graphical depiction of knowledge conveyed by P = (p1, p2, p3).
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Certainty properties I

I symmetry: (p, 1− p) and (1− p, p) convey equal certainty;

I normalization: the maximum certainty is one for any distribution;

I monotonicity, (with respect to deviation): the certainty of a coin, with bias p,
goes to one as p goes to one; (but different from small information for small
probabilities !!!)
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Certainty properties II

I expansibility:

Ks+1(p1, p2, . . . , ps , 0) = Ks(p1, p2, . . . , ps) =
s∑

j=1

p2
j

(note the different offset, Us+1 +
∑s+1

j=1 (pj − Us+1)2 = Us +
∑s

j=1(pj − Us)2).

I composition: given distributions P = (p1, p2, . . . , ps) and T = (t, 1− t), and
their composition Q = (t p1, (1− t) p1, p2, . . . , ps),

Ks+1(Q) = Ks(P)− p2
1 (1− K2(T ))
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(remember, H(Q) = H(P) + p1 H(T ) )



Elementary contributions to certainty of disjoint dependent events

∀ej ∈ Ω, p2
j = (Us + (pj − Us))2 = U2

s + (pj − Us)2 + 2Us (pj − Us) , that is,

Ks(pj ) = U2
s + (pj − Us)2 =⇒ Ks(P) =

s∑
j=1

Ks(pj )

I explicitely dependent on s: lims→∞ Ks(pj ) = p2
j ;

I coherent minimum at equiprobability: Ks(Us) = U2
s ;

I not null values for unseen events, (continuous at zero): Ks(0) = U2
s + U2

s ;
I not one values for completely biased events: Ks(1) = U2

s + C2
s

I minimum certainty: Ks(U) = Us ;
I maximum, (not absolute), certainty: Ks(1, 0, . . . , 0) = Ks(1) + (s − 1)Ks(0) = 1
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Conditional Certainty

Given, (Q | ei ) = (q1i , q2i , . . . , qsi ), ei drawn from P = (p1, p2, . . . , pr );

Ks(Q | ei ) = Us +
s∑

j=1

(qji − Us)2 =
s∑

j=1

q2
ji =⇒ Q ⊥ ei , Ks(Q | ei ) = Ks(Q)

Clear expression of dependence in terms of conditional certainty:

I minimum certainty given at the point of uniformity: Ks(Q | ei ) = Us ;

I at the point of independence we have: Ks(Q | ei ) = Ks(Q) ≥ Us ;

I from that point on, Ks(Q | ei ) ≥ Ks(Q), and we may begin to consider a
relation of dependence;

I in case of absolute dependence, Ks(Q | ei ) = 1.

With respect to the whole distribution P, it makes sense to consider:

K(Q | P) =
r∑

i=1

pi Ks(Q | ei ) =
r∑

i=1

pi

s∑
j=1

q2
ji

	 (different from composition: different cardinality of the final outcome !!)



Joint Certainty

Given, (P,Q) = (p11, . . . , p1s , . . . , pr1, . . . , prs), and its Ufactor, Urs = Ur Us ,

K(P,Q) = Urs +

r,s∑
i,j

(pij − Urs)2 =

r,s∑
i,j

p2
ij

I minimum certainty given at the point of uniformity: Krs(P,Q) = Urs ;

I in case of independence,(multiplicativity):

Krs(P,Q) = Kr (P)Ks(Q);

I from that point on: Krs(P,Q) =
∑r

i p
2
i Ks(Q | ei ) =

∑r
i piK

i
s (Q | P)

I in case of dependence, (supermultiplicativity):

∀ei , Ks(Q | ei ) ≥ Ks(Q) , therefore,

Krs(P,Q) =
r∑

i=1

p2
i Ks(Q | ei ) ≥

r∑
i=1

p2
i Ks(Q) = Kr (P)Ks(Q),

I in case of absolute dependence, ∀ei , Ks(Q | ei ) = 1, and Krs(P,Q) = Kr (P).



The algebra of Certainty

We build up an alternative hypothesis, that:

I offers a comprehensible insight of knowledge, (plausible axiomatic definition);

I has a consistent algebraic structure, (certainty is not a weighted mean);

I satisfies a set of consistent properties;

I is cardinality dependent, (stronger implications of expansibility);

I yields not null values for unseen events, (native smoothing);
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Our former example
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Given a fixed sample size N, and P = (0.5, 0.5
s−1

, . . . , 0.5
s−1

) of increasing dimension:

I as the cardinality increases, certainty decreases, and each competitor’s
contribution is less, (up to here, correctly expressed by both);

I the difference: our certainty is increasingly due to Tomcat’s chances;
I at the limit (ideal situation), we just have the amount contributed by Tomcat,

(the competitors contributions are null because their chances vanish);
I Tomcat’s victory seems amaizingly guaranteed, but our certainty can not be

one, because Tomcat’s chances are less than one.

We judge this a more comprehensible description of our epistemic state,
than a state of unbound uncertainty.



Native smoothing
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Empirical Evaluation on Decision Trees

Base measure implemented in ID3 and C4.5 induction tree algorithms:

I Entropic Gain (Quinlan, 1986), H(class)− H(class | attr .);

Other common measures based on Shannon’s Entropy:

I the µ coefficient of Theil, (Theil, 1970), H(class)−H(class|attr.)
H(class)

;

I the gain-ratio (Quinlan, 1993), H(class)−H(class|attr.)
H(attr.)

;

I the Kvalseth coefficient (Kvalseth, 1987), 2(H(class)−H(class|attr.))
H(attr.)+H(class)

Our implementation of certainty:

I at each node check for attributes yielding, Ks(class | attr .) ≥ Ks(class);

I among them choose the one with greater utility, i.e.,

Utl(attr .) = (1− (Kr (attr .)− Ur ))
1

2
(Ks(class | attr .) + Kr (attr . | class))



Experimental Results

DataBase setSize attr. Clssf. tree treeSize nodes leaves nullLvs. %uncovered %correct
BreastCancer 683 10 10fld ID3 211 21 190 95 50.00 91.65

10fld C4.5 61 6 55 14 25.45 93.41
10fld Crt. 51 5 46 4 8.70 95.46

SegmentChallenge 1500 20 10fld ID3 390 44 346 193 55.78 93.92
10fld C4.5 213 23 190 102 53.68 94.93
10fld Crt. 174 28 146 49 33.56 91.73

OpticalDígits 5620 65 10fld ID3 11493 676 10817 7582 70.09 44.11
10fld C4.5 4023 241 3782 2334 61.71 63.02
10fld Crt. 1769 104 1665 333 20.00 54.02

1797 testSet C4.5 3010 177 2833 1737 61.31 56.82
1797 testSet Crt. 1225 72 1153 198 17.17 54.26

penDigits 10992 17 10fld ID3 5798 527 5271 2955 56.06 86.69
10fld C4.5 2366 215 2151 1068 49.65 89.16
10fld Crt. 1805 164 1641 342 20.84 86.85

3498 testSet C4.5 1915 174 1741 910 52.27 84.08
3498 testSet Crt. 1288 117 1171 227 19.39 81.76

letterRecognition 20000 17 10fld ID3 30561 1910 28651 21832 76.20 73.53
10fld C4.5 13409 838 12571 9033 71.86 77.73
10fld Crt. 4929 308 4621 2294 49.64 72.66

Soybean 562 36 10fld ID3 50 51 116 31 26.72 83.77
10fld C4.5 69 22 47 10 21.28 91.81
10fld Crt. 149 59 90 3 3.33 89.15

CarEvaluation 1728 7 10fld ID3 408 112 296 0 0.00 89.35
10fld C4.5 182 51 131 0 0.00 92.36
10fld Crt. 213 58 155 0 0.00 94.21

trainSet C4.5 182 51 131 0 0.00 96.30
trainSet Crt. 213 58 155 0 0.00 96.30

Nursery 12960 9 10fld ID3 1159 320 839 0 0.00 98.19
10fld C4.5 511 152 359 0 0.00 97.05
10fld Crt. 1031 274 757 0 0.00 96.37

trainSet C4.5 511 152 359 0 0.00 98.13
trainSet Crt. 1031 274 757 0 0.00 98.59


