
Incremental and Decremental Learning for
Linear Support Vector Machines

Enrique Romero, Ignacio Barrio, and Llúıs Belanche

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. We present a method to find the exact maximal margin hy-
perplane for linear Support Vector Machines when a new (existing) com-
ponent is added (removed) to (from) the inner product. The maximal
margin hyperplane with the new inner product is obtained in terms of
that for the old inner product, without re-computing it from scratch
and the procedure is reversible. An algorithm to implement the pro-
posed method is presented, which avoids matrix inversions from scratch.
Among the possible applications, we find feature selection and the design
of kernels out of similarity measures.

1 Introduction

Support Vector Machines (SVMs) are widely used tools for classification and re-
gression problems based on margin maximization [1]. The standard formulation
of SVMs uses a fixed data set to construct a linear combination of simple func-
tions depending on the data. In many application domains, however, the number
of examples or the number of variables may vary with time. In these cases, adap-
tive solutions that efficiently work in these changing environments are of great
interest. Procedures for exact incremental (on-line) learning for Support Vector
Machines (SVMs) have been introduced in [2,3] for classification and regression
problems respectively. In [4,5], the dynamic adaptation of the kernel parameter
was studied. In [6], the entire SVM solution path is obtained for every value of
the regularization parameter.

In this work the situation is that of adapting the inner product for linear SVMs
in an incremental manner. Specifically, suppose that we have obtained the max-
imal margin hyperplane of a linear SVM, and we would like to add/remove a
new/existing component to/from the inner product. Can the maximal margin
hyperplane with the new inner product be obtained in terms of that for the
old inner product? A positive answer to this question would allow to add new
variables to the data and obtain the linear SVM solution with these new vari-
ables without computing it from scratch. Analogously, existing variables could
be removed from the SVM solution.

Similar to previous works [2,5], the main idea is the preservation of the Karush-
Kuhn-Tucker (KKT) conditions to find the (exact) solution and guide the pro-
cess. The solution will be updated in response to the perturbation

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 209–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

210 E. Romero, I. Barrio, and L. Belanche

induced by the addition/removal of the new/existing component to/from the
inner product. The new/existing component will not be added/removed at once,
but it will be added/removed in suitable increments that allow to control the
migrations among the subsets of support vectors (vectors in the margin, violat-
ing the margin or exceeding the margin). For small increments (no migrations
among the subsets of support vectors), the analysis leads to the solution of a
linear equations system. When a migration occurs, the dimensions of the ma-
trices involved in this linear equations system must be modified. The addition
and removal of the new/existing component can be treated in the same way, so
that the procedure is reversible. Direct applications include time-varying learn-
ing environments, feature selection and kernel design from arbitrary similarity
measures.

2 Background

To fix notation, let X = {(x1, y1), . . . , (xL, yL)} be a data set, and consider
the classification task given by X , where each instance xi = (x1

i , . . . , x
N
i) ∈ R

N

and yi ∈ {−1, +1}. SVMs can be described as follows [1]: the input vectors are
mapped into a (usually high-dimensional) inner product space through some
non-linear mapping φ, chosen a priori. In this space (the feature space), an op-
timal separating hyperplane is constructed. By using a (positive definite) kernel
function K(u, v) the mapping can be implicit, since the inner product defining
the hyperplane can be evaluated as 〈φ(u), φ(v)〉 = K(u, v) for every two vectors
u, v ∈ R

N . In the SVM framework, an optimal hyperplane means a hyperplane
with maximal normalized margin for the examples of every class. The normalized
margin is the minimum distance to the hyperplane.

When the data set is not linearly separable (neither in the input space nor
in the feature space), some tolerance to noise is introduced in the model. Using
Lagrangian theory, the maximal margin hyperplane for a binary classification
problem given by a data set X is a linear combination of simple functions de-

pending on the data: f(x) = b +
L∑

i=1
yiαiK(xi, x), where K(u, v) is a kernel

function and the coefficients vector (αi)L
i=1 is the (1-norm soft margin) solution

of a constrained optimization problem in the dual space [1,2]:

Minimize(α, b) W = 1
2

L∑

i,j=1
yiαiyjαjK(xi, xj) + b

L∑

i=1
yiαi −

L∑

i=1
αi

subject to 0 � αi � C i = 1, . . . , L

(1)

for a certain constant C. Note this is not the standard formulation, since dual
and primal variables are present at the same time. This allows to deal with the
bias term in a similar way than with the rest of the variables. The regularization
parameter C allows to control the trade-off between the margin and the training
errors. The hard margin hyperplane is obtained with C = ∞.

Incremental and Decremental Learning for Linear SVMs 211

An example is well classified if and only if its functional margin yif(xi) with
respect to f is positive. The KKT conditions uniquely define the solution {α, b}
of (1):

gi =
∂W

∂αi
= yif(xi) − 1

⎧
⎨

⎩

> 0 αi = 0
= 0 0 � αi � C
< 0 αi = C

(2)

h=
∂W

∂b
=

L∑

i=1

yiαi = 0 (3)

Following [2,5], the training examples can be partitioned into three different
categories: the set S of margin support vectors on the margin (gi = 0), the set E
of error support vectors violating the margin (gi < 0) and the set R of reserve
vectors exceeding the margin (gi > 0).

An incremental algorithm for on-line training of SVMs for classification prob-
lems (1) was presented in [2]. When new examples are considered, the KKT
conditions are preserved on all previously seen data and satisfied for the new
data. This is done in a sequence of analytically computable steps. The whole
procedure is reversible, thus allowing “decremental unlearning” and leave-one-
out error estimation. In [5], the model is extended to adapt the SVM solution
to changes in regularization and kernel parameters. A similar method for con-
structing ε-insensitive SVMs for regression problems is described in [3]. In [6],
the entire path of the solutions of SVMs is obtained for every value of the regu-
larization parameter in a similar way, exploting the fact that the coefficients αi

in the solution of (1) are piece-wise linear in C.

3 Incremental and Decremental Inner Product Learning
for Linear SVMs

3.1 Problem Setting

Suppose that we are working with linear SVMs (wherein K(xi, xj) is the inner

product 〈xi, xj〉 =
m∑

k=1
xk

i xk
j) and we would like to solve the following situations:

1. We have m < N components in our inner product and we want to add a

new component: 〈xi, xj〉new =
m+1∑

k=1
xk

i xk
j = 〈xi, xj〉 + xm+1

i xm+1
j .

2. We have m+1 ≤ N components in our inner product and we want to remove

an existing component: 〈xi, xj〉new =
m∑

k=1
xk

i xk
j = 〈xi, xj〉 − xm+1

i xm+1
j .

The problem in both cases is to obtain the solution of (1) with the new inner
product 〈xi, xj〉new in terms of that for the old one 〈xi, xj〉 (i.e., without re-
computing it from scratch). A solution to these problems is described in the
next sections.

212 E. Romero, I. Barrio, and L. Belanche

3.2 Sketch of the Solution

We start from the solution {α, b} of (1) with 〈xi, xj〉 (which satisfy the KKT
conditions). In order to obtain the solution of (1) with the new inner product, we
follow the strategy of computing the increments {Δα, Δb} such that {α+Δα, b+
Δb} satisfy the KKT conditions of (1) with 〈xi, xj〉new. The KKT conditions
will be preserved by changing the parameters in response to the perturbation
induced by the addition/removal of the new/existing component to/from the
inner product. In this process, examples of the different categories (S, E and
R) may change their state. In order to control these changes, the new/existing
component will not be added/removed at once, but added/removed in steps of
a certain amplitude Δp such that it leads to the minimum number of category
changes, which can be controlled. With the previous notation, the addition and
removal of the new/existing component can be treated in the same way. During
the process, the inner product will be

〈xi, xj〉′ = 〈xi, xj〉 + p · xm+1
i xm+1

j . (4)

Initially, p = 0. When adding a new component, p must reach p = 1 with
increments Δp > 0. When removing an existing component, p must reach p = −1
with increments Δp < 0. For every Δp (different at every step), the solution will
be recalculated so that the KKT conditions (2,3) are preserved on all data (thus
controlling the migrations among S, E and R).

Therefore, for a given perturbation Δp, our objective is to determine the
necessary changes in the solution of (1) and the migrations among S, E and R
so that the KKT conditions are preserved on all data. Let us define

W ′ =
1
2

L∑

i,j=1

yiαiyjαj 〈xi, xj〉′ + b

L∑

i=1

yiαi −
L∑

i=1

αi

with {α, b} satisfying (2,3), and

W+ =
1
2

L∑

i,j=1

yiα
+
i yjα

+
j 〈xi, xj〉+ + b+

L∑

i=1

yiα
+
i −

L∑

i=1

α+
i

with α+
i = αi + Δαi, b+ = b + Δb and 〈xi, xj〉+ = 〈xi, xj〉′ + Δp xm+1

i xm+1
j .

3.3 Calculation of the Increments

The increments {Δα, Δb} can be computed as a function of Δp, as explained
next. Two situations may arise, tackled in the rest of the section:

1. The solution changes, but no example changes its state among the different
categories (S, E and R). This is the typical situation when |Δp| is small. In
this case, only the coefficients of the support vectors and the bias term must
be updated.

Incremental and Decremental Learning for Linear SVMs 213

2. There exists one or more examples that migrate among S, E and R. These
changes can be controlled if Δp is chosen so that the minimum number of mi-
grations occurs. In this case, S, E and R must be updated, but recalculating
the solution is not necessary.

1. Small |Δp| (no migrations among S, E and R). Suppose that |Δp| is
small enough so that no example changes its state: Δαi = 0 for every i �∈ S,
αi = 0 for every i∈R and αi = C for every i∈E .

Since the new solution must satisfy the KKT conditions, we have:

g+
i =

∂W+

∂α+
i

= yif
+(xi) − 1 = yi

⎛

⎝
L∑

j=1

yjα
+
j 〈xi, xj〉+ + b+

⎞

⎠ − 1 = 0 ∀i∈S

h+ =
∂W+

∂b+ =
L∑

i=1

yiα
+
i = 0.

Therefore, for every i∈S (recall that also g′i = ∂W ′

∂αi
= 0)

g+
i − g′i = yi

⎛

⎝
L∑

j=1

yjαjΔp xm+1
i xm+1

j

⎞

⎠ + yi

⎛

⎝
L∑

j=1

yjΔαj 〈xi, xj〉+
⎞

⎠ + yiΔb = 0.

Since no example changes its state, we have

0=yi

⎛

⎝
∑

j∈S
yjαjΔp xm+1

i xm+1
j

⎞

⎠ + yi

⎛

⎝
∑

j∈E
yjCΔp xm+1

i xm+1
j

⎞

⎠+

yi

⎛

⎝
∑

j∈S
yjΔαj 〈xi, xj〉+

⎞

⎠ + yiΔb.

In addition (recall that also h′ = ∂W ′

∂b = 0),

h+ − h′ =
L∑

i=1

yiΔαi =
∑

i∈S
yiΔαi = 0.

The above analysis can be summarized as (xS1 , . . . , xSLS
are the examples in S)

(
Q′

Δp
+ U

)

·

⎛

⎜
⎜
⎜
⎝

Δb
ΔαS1

...
ΔαSLS

⎞

⎟
⎟
⎟
⎠

= − U ·

⎛

⎜
⎜
⎜
⎝

0
αS1

...
αSLS

⎞

⎟
⎟
⎟
⎠

− V (5)

where Q′, U are (LS + 1) × (LS + 1) symmetric matrices

214 E. Romero, I. Barrio, and L. Belanche

Q′ =

⎛

⎜
⎜
⎜
⎝

0 yS1 · · · ySLS
yS1 Q′

S1S1
· · · Q′

S1SLS
...

...
. . .

...
ySLS

Q′
SLS S1

· · · Q′
SLS SLS

⎞

⎟
⎟
⎟
⎠

U =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0
0 US1S1 · · · US1SLS
...

...
. . .

...
0 USLS S1 · · · USLS SLS

⎞

⎟
⎟
⎟
⎠

(6)

Q′
SiSj

= ySiySj

〈
xSi , xSj

〉′ USiSj = ySiySj x
m+1
Si

xm+1
Sj

(7)

and V is the vector

V =
(
0, VS1, · · · , VSLS

)t

VSi = C ySix
m+1
Si

∑

j∈E
yjx

m+1
j . (8)

Therefore, given Δp, the increments of the parameters can be computed by
solving the linear equations system (5). Note that, contrary to the situation in
[2,5], the solution of (5) is not a linear function of Δp.

2. Large |Δp| (controlling the migrations among S, E and R). When
|Δp| is large, migrations among S, E and R may occur after solving (5). However,
we can choose Δp such that the minimum number of migrations occurs. In
this case several migrations may occur simultaneously, but an example can only
migrate from its current set to a neighbor set (that is, between S and E or
between S and R). These migrations are determined by the KKT conditions:

1. From E to S: One error support vector becomes a margin support vector.
This happens when gi (that was negative) becomes 0.

2. From S to E : One margin support vector becomes an error support vector.
This happens when its coefficient becomes C.

3. From R to S: One reserve vector becomes a margin support vector. This
happens when gi (that was positive) becomes 0.

4. From S to R: One margin support vector becomes a reserve vector. This
happens when its coefficient becomes 0.

When a migration occurs, Q′, U and V must be updated, since not only their
components but also their dimension change. However, recomputing the solution
is not necessary as a consequence of the migration: if a new support vector is
inserted in S, its coefficient remains the same (0 if migrated from R or C if
migrated from E); if an example is deleted from S, its coefficient (which also
equals 0 or C) will not vary until it is inserted in S again.

4 Implementation

4.1 Efficient Computation of the Linear Equations System

An efficient way to solve (5) would be desirable. This section describes an efficient
way to update (Q′/Δp + U)−1 when:

1. |Δp| is small enough so that no example changes its state.
2. Migrations among S, E and R occur.

Incremental and Decremental Learning for Linear SVMs 215

1. Small |Δp| (no changes in the dimension). Note that U = u · ut, with

u =
(
0, yS1x

m+1
S1

, · · · , ySLS
xm+1
SLS

)t

. Therefore, the inverse of Q′/Δp + U can
be efficiently computed by applying the Sherman-Morrison-Woodbury matrix
inversion formula:

(Q′/Δp + U)−1 = (Q′/Δp + u · ut)−1 = Δp

(

Q′−1 − Δp Q′−1uutQ′−1

1 + Δp utQ′−1u

)

(9)

As a consequence, for every Δp such that S does not change, only Q′−1 is
needed to compute (Q′/Δp + U)−1. Note that Q′−1 can also be updated in the
same way when pnew = p + Δp, since Q′

new = Q′ + Δp U . Thus,

(Q′
new)−1 = Q′−1 − Δp Q′−1

uutQ′−1

1 + Δp utQ′−1u
(10)

2. Large |Δp| (inserting/deleting examples in/from S). When a new ex-
ample is inserted/deleted in/from S, matrix Q′−1 can be updated incrementally
using block matrices techniques, thus avoiding the computation of Q′−1 from
scratch, as explained next.

When a new margin support vector xSLS+1 is inserted in S, matrix Q′−1 is
expanded as

Q′−1 ←

⎛

⎜
⎜
⎜
⎝

0

Q′−1 ...

0 · · · 0

⎞

⎟
⎟
⎟
⎠

+
1
γ

(
B
1

)

·
(
Bt 1

)
(11)

where

B = −Q′−1 · Q′∗LS+1

γ = Q′SLS+1SLS+1 − (Q′∗LS+1)t · Q′−1 · Q′∗LS+1

with

Q′∗LS+1 =
(
yLS+1, Q′S1SLS+1 , . . . , Q′SLS SLS+1

)t

.

When an example xSk
is deleted from S, matrix Q′−1 is contracted as

Q′−1
SiSj

← Q′−1
SiSj

−
Q′−1

SiSk
Q′−1

SkSj

Q′−1
SkSk

(12)

for every Si, Sj ∈ {0, S1, . . . , SLS } such that Si, Sj �= Sk. The index 0 refers to
the first row/column.

216 E. Romero, I. Barrio, and L. Belanche

AddRemoveComponent (data set X , partitions {S ,E ,R}, {α, b} satisfying (2,3))
p ← 0
Compute Q′−1

repeat
Find the maximum |Δp| (addition: Δp ∈ (0, 1 − p]; removal: Δp ∈ [−1 − p, 0))

such that, after solving (5) with (9), the number M of migrations among
S , E and R is minimum

Update Q′−1 with (10)
{α, b} ← {α, b} + {Δα, Δb}, where {Δα, Δb} is the solution of (5)
if M �= 0 then

Update Q′−1 with (11) or (12) depending on whether it must be expanded
or contracted (i.e., an example must be inserted/deleted in/from S)

end if
p ← p + Δp

until |p | = 1
end AddRemoveComponent

Fig. 1. An algorithm to add/remove a component to/from the inner product

4.2 A Complete Algorithm

The previous analysis leads to algorithm in figure 1. Several remarks are in order:

1. If succesive additions/removals have to be done, the first computation of
Q′−1 is only necessary in the first step (for the rest, it can be a parameter).

2. The minimum number M of migrations among S, E and R may be 0. In this
case, |p + Δp| = 1 and the algorithm stops.

3. After updating Q′−1, recomputing the solution is not necessary (section 3.3).
4. After adding/removing one component, the values of {S,E ,R}, {α, b} and

Q′−1 can be used as parameters to a new call to AddRemoveComponent.
Therefore, in the whole process of adding/removing iteratively several com-
ponents to the inner product, only one matrix inversion has to be made from
scratch (the one previous to the first call to the function).

5. To find the maximum |Δp| we perform a binary (dichotomous) search in the
corresponding real interval. The first cut-point is 1−p

2 (addition) or −1−p
2

(removal). If no migrations occur, the search continues in the left subinterval,
otherwise in the right subinterval. This process iterates until the value of |Δp|
converges to machine precision.

5 Applications

5.1 Feature Selection

A first and direct application of the algorithm described in section 4.2 is to
perform feature selection with linear SVMs. Classical search algorithms for fea-
ture selection, like forward selection, backward elimination, or plus-l take-away-r

Incremental and Decremental Learning for Linear SVMs 217

work by adding and removing features one at a time. Therefore, the algorithm
described in section 4.2 can be easily used to add and remove input features in
a prescribed way. Explicit feature selection search methods for linear SVMs (see
[7], for example), can also benefit from this algorithm.

5.2 Basis Selection Guided by the Margin

Suppose that an explicit transformation of the input space is performed with
a set of predefined basis functions Φ = {φj | φj : R

N → R}M
j=1: for every

(xi, yi)∈X , consider the vector (zi, yi)∈R
M ×R, with zi = (φ1(xi), . . . , φM (xi)).

The solution of a linear SVM in this new space would give a non-linear model in
the original input space based on margin maximization. The problem, however,
would be to select an appropiate subset of basis functions from Φ, since it seems
clear that some of them may be useless for the problem at hand. In order to
select this subset, a search process can be performed, which is equivalent to
perform feature selection in the new space. The algorithm described in section
4.2 can be used to that end, adding and removing basis functions to/from the
partially obtained solutions.

5.3 Kernel Out of a Similarity

A kernel function K(x, y) can be seen as a form of similarity measure between
objects x and y. There is a vast literature in the design of similarity measures
in data analysis [8]. One of the main advantages is to be able to cope with
data heterogeneity and special values (like missing values) with a clear seman-
tics. However, the need to fulfill the positivity condition prevents their use with
SVMs. Though there are some works on proving positivity for certain similar-
ity measures [9], they are limited to certain simple measures and even then the
property may be spoiled in presence of missing data.

A kernel can be defined from a similarity as follows. Given a similariry s :
X × X → R and Z a finite subset of X , the function

K(x, y) =
∑

zi∈Z

s(x, zi) s(y, zi) (13)

is a positive kernel. The kernel defined in (13) is the sum-product aggregation
of the similarities between x, y by using their respective similarities to a third
object zi ∈ Z ⊆ X . The semantics is then that x, y are similar if both are
consistently similar to a set of reference objects Z. We call the elements of this
set Z the kernel vectors. This process can be expressed in terms of the data,
if X = {x1, . . . , xL} is the set of training vectors. In practice, the elements
in Z (the kernel vectors) can be chosen to minimize (1) while keeping their
number at a minimum, allowing more compact and computationally cheaper
models. This can be done explicitly with a search algorithm that progressively
adds/removes vectors to/from Z ⊆ X . In fact, this search process is similar to
a feature selection search process.

218 E. Romero, I. Barrio, and L. Belanche

6 Conclusions and Future Work

A method to find the exact maximal margin hyperplane for linear Support Vector
Machines when a new (existing) component is added (removed) to (from) the
inner product has been presented. The maximal margin hyperplane with the new
inner product is obtained from the solution using the old inner product and the
procedure is reversible. We have presented a full algorithm that implements the
proposed method. Applications of the algorithm include time-varying learning
environments wherein descriptive variables arrive one at a time, basis function
selection with linear SVMs and kernel design from similarity measures, avoiding
the need for positivity.

As future work, the method can be extended to non-linear SVMs where the
objective would be to find solutions combining several kernels. In this new sce-
nario, starting from the SVM solution with a certain kernel K1, and given a
function K2 such that K1 + K2 is a kernel, we would like to obtain the solution
with the new kernel Knew = K1 + K2. Similarly to the addition of components
for linear kernels presented in this work, the new “component” K2 can be added
in suitable increments controlling the migrations among the support vectors.

Acknowledgments

This work was supported by the Consejo Interministerial de Ciencia y Tecnoloǵıa
(CICYT), under projects CGL2004-04702-C02-02 and TIN2006-08114.

References

1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
2. Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Ma-

chine Learning. In: Advances in Neural Information Processing Systems, vol. 12, pp.
409–415. MIT Press, Cambridge (2000)

3. Mart́ın, M.: On-Line Support Vector Machine Regression. In: Elomaa, T., Mannila,
H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 282–294. Springer,
Heidelberg (2002)

4. Cristianini, N., Campbell, C., Shawe-Taylor, J.: Dynamically Adapting Kernels in
Support Vector Machines. In: Advances in Neural Information Processing Systems,
vol. 11, pp. 204–210. MIT Press, Cambridge (1999)

5. Diel, C., Cauwenberghs, G.: SVM Incremental Learning, Adaptation and Optimiza-
tion. In: International Joint Conference on Neural Networks, vol. 4, pp. 2685–2690
(2003)

6. Hastie, T., Rosset, S., Tibshirani, R., Zhun, J.: The Entire Regularization Path for
the Support Vector Machine. Journal of Machine Learning Research 5, 1391–1415
(2006)

7. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.N.: Gene Selection for Cancer Classi-
fication using Support Vector Machines. Machine Learning 46(1-3), 389–422 (2002)

8. Chandon, J.L., Pinson, S.: Analyse Typologique. Théorie et Applications. Masson
(1981)

9. Gower, J.C., Legendre, P.: Metric and Euclidean Properties of Dissimilarity Coeffi-
cients. Journal of Classification 3, 5–48 (1986)

	Incremental and Decremental Learning for Linear Support Vector Machines
	Introduction
	Background
	Incremental and Decremental Inner Product Learning for Linear SVMs
	Problem Setting
	Sketch of the Solution
	Calculation of the Increments

	Implementation
	Efficient Computation of the Linear Equations System
	A Complete Algorithm

	Applications
	Feature Selection
	Basis Selection Guided by the Margin
	Kernel Out of a Similarity

	Conclusions and Future Work

