Introduction: Combinatorial Problems

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

February 13, 2024

Combinatorial Problems

- A combinatorial problem consists in finding, among a finite set of objects, one that satisfies a set of constraints
- Several variations:
 - Find one solution
 - Find all solutions
 - Find best solution according to an objective function

Given a formula F in propositional logic, is F satisfiable?

(= is there any assignment of Boolean values to variables that evaluates F to "true"?)

- Given a formula F in propositional logic, is F satisfiable?
 - (= is there any assignment of Boolean values to variables that evaluates F to "true"?)
- $\blacksquare \quad \mathsf{Is} \ (p \lor q) \ \land \ (p \lor \neg q) \ \land \ (\neg p \lor q) \ \mathsf{satisfiable?}$

Given a formula F in propositional logic, is F satisfiable?

(= is there any assignment of Boolean values to variables that evaluates F to "true"?)

■ Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?

Yes: set p, q to true

Given a formula F in propositional logic, is F satisfiable?

(= is there any assignment of Boolean values to variables that evaluates F to "true"?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable? Yes: set *p*, *q* to true
- $\blacksquare \quad \mathsf{Is} \ (p \lor q) \ \land \ (p \lor \neg q) \ \land \ (\neg p \lor q) \ \land \ (\neg p \lor \neg q) \ \mathsf{satisfiable}?$

Given a formula F in propositional logic, is F satisfiable?

(= is there any assignment of Boolean values to variables that evaluates F to "true"?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable? Yes: set p, q to true
 - Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable? No

Given a formula F in propositional logic, is F satisfiable?

(= is there any assignment of Boolean values to variables that evaluates F to "true"?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable? Yes: set p, q to true
 - Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable? No
 - Arises in:

. . .

- Hardware verification
- Circuit optimization

Examples (II): Graph Coloring

Given a graph and a number of colors, can vertices be painted so that neighbors have different colors?

Arises in:

Register allocation

Examples (III): Knapsack

Given *n* items with weights w_i and values v_i , a capacity *W* and a number *V*, is there a subset *S* of the items such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

Arises in:

- Selection of capital investments
- Cutting stock problems

Examples (IV): Bin Packing

Given n items with volumes v_i and k identical bins with capacity V, is it possible to place all items in bins?

A Note on Complexity

All previous examples are NP-complete

- No known polynomial algorithm (likely none exists)
- Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
- In real-world problems there is a lot of structure, which can hopefully be exploited

A Note on Complexity

All previous examples are NP-complete

- No known polynomial algorithm (likely none exists)
- Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
- In real-world problems there is a lot of structure, which can hopefully be exploited
- Other combinatorial problems solvable in P-time, e.g.
- Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
- Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?

A Note on Complexity

All previous examples are NP-complete

- No known polynomial algorithm (likely none exists)
- Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
- In real-world problems there is a lot of structure, which can hopefully be exploited
- Other combinatorial problems solvable in P-time, e.g.
- Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
- Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?
- Our focus will be on hard (= NP-complete) problems

Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend

Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend
- Declarative methodology
 - 1. Choose a problem solving framework (what is my language?)
 - 2. Model the problem (what is a solution?)
 - Define variables
 - Define constraints
 - 3. Solve it (with an off-the-shelf solver)

Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend
- Declarative methodology
 - 1. Choose a problem solving framework (what is my language?)
 - 2. Model the problem (what is a solution?)
 - Define variables
 - Define constraints
 - 3. Solve it (with an off-the-shelf solver)
 - Pros of Declarative methodology
 - Specification of the problem is all we need to solve it!
 - Fast development and easy maintenance
 - Often better performance than ad-hoc techniques

About CPS

- Problem solving frameworks
 - Constraint Programming (CP)
 - Linear Programming (LP)
 - Propositional Satisfiability (SAT)
 - For each of these frameworks
 - Modeling techniques
 - Inner workings of solvers