Introduction: Combinatorial Problems

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

February 13, 2024

Combinatorial Problems

■ A combinatorial problem consists in finding, among a finite set of objects, one that satisfies a set of constraints

■ Several variations:

- Find one solution
- Find all solutions
- Find best solution according to an objective function

Examples (I): Prop. Satisfiability

■ Given a formula F in propositional logic, is F satisfiable?
($=$ is there any assignment of Boolean values to variables that evaluates F to "true"?)

Examples (I): Prop. Satisfiability

■ Given a formula F in propositional logic, is F satisfiable?
($=$ is there any assignment of Boolean values to variables that evaluates F to "true"?)

■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)$ satisfiable?

Examples (I): Prop. Satisfiability

■ Given a formula F in propositional logic, is F satisfiable?
($=$ is there any assignment of Boolean values to variables that evaluates F to "true"?)

■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)$ satisfiable?
Yes: set p, q to true

Examples (I): Prop. Satisfiability

■ Given a formula F in propositional logic, is F satisfiable?
($=$ is there any assignment of Boolean values to variables that evaluates F to "true"?)

■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)$ satisfiable?
Yes: set p, q to true
■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q)$ satisfiable?

Examples (I): Prop. Satisfiability

■ Given a formula F in propositional logic, is F satisfiable?
($=$ is there any assignment of Boolean values to variables that evaluates F to "true"?)

■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)$ satisfiable?
Yes: set p, q to true
■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q)$ satisfiable?
No

Examples (I): Prop. Satisfiability

■ Given a formula F in propositional logic, is F satisfiable?
($=$ is there any assignment of Boolean values to variables that evaluates F to "true"?

■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)$ satisfiable?
Yes: set p, q to true
■ Is $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q)$ satisfiable?
No

- Arises in:
- Hardware verification

Circuit optimization

Examples (II): Graph Coloring

- Given a graph and a number of colors, can vertices be painted so that neighbors have different colors?

Arises in:

- Frequency assignment
- Register allocation

Examples (III): Knapsack

■ Given n items with weights w_{i} and values v_{i}, a capacity W and a number V, is there a subset S of the items such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i} \geq V ?$

- Arises in:
- Selection of capital investments
- Cutting stock problems

Examples (IV): Bin Packing

- Given n items with volumes v_{i} and k identical bins with capacity V, is it possible to place all items in bins?

- Arises in:

Logistics

A Note on Complexity

- All previous examples are NP-complete
- No known polynomial algorithm (likely none exists)
- Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
- In real-world problems there is a lot of structure, which can hopefully be exploited

A Note on Complexity

- All previous examples are NP-complete
- No known polynomial algorithm (likely none exists)
- Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
- In real-world problems there is a lot of structure, which can hopefully be exploited

■ Other combinatorial problems solvable in P-time, e.g.

- Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
- Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?

A Note on Complexity

- All previous examples are NP-complete
- No known polynomial algorithm (likely none exists)
- Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
- In real-world problems there is a lot of structure, which can hopefully be exploited

■ Other combinatorial problems solvable in P-time, e.g.

- Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
- Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?

■ Our focus will be on hard (= NP-complete) problems

Approaches to Problem Solving

- Specialized algorithms
- Costly to design, implement and extend

Approaches to Problem Solving

- Specialized algorithms
- Costly to design, implement and extend

■ Declarative methodology

1. Choose a problem solving framework (what is my language?)
2. Model the problem (what is a solution?)

- Define variables
- Define constraints

3. Solve it (with an off-the-shelf solver)

Approaches to Problem Solving

- Specialized algorithms
- Costly to design, implement and extend
- Declarative methodology

1. Choose a problem solving framework (what is my language?)
2. Model the problem (what is a solution?)

- Define variables
- Define constraints

3. Solve it (with an off-the-shelf solver)

- Pros of Declarative methodology
- Specification of the problem is all we need to solve it!
- Fast development and easy maintenance
- Often better performance than ad-hoc techniques

About CPS

- Problem solving frameworks
- Constraint Programming (CP)
- Linear Programming (LP)
- Propositional Satisfiability (SAT)

■ For each of these frameworks

- Modeling techniques
- Inner workings of solvers

